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Conservative SPDE as �uctuating continuum models

The zero range process

(could also consider simple exclusion, independent particles).

Figure: Harris, Rákos, Schütz; 2005

State space MN := NTN
0

, i.e. con�gurations η : TN → N0 : System in state η

if container k contains η(k) particles.
Local jump rate function g : N0→ R+

0
.

Translation invariant, asymmetric, zero mean transition probability

p(k , l) = p(k− l), ∑
k

kp(k) = 0.

Markov jump process η(t) on MN .
η(k, t) = number of particles in box k at time t.
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Conservative SPDE as �uctuating continuum models

Hydrodynamic limit? Multi-scale dynamics

Figure: see Zimmer et. al.

Empirical density �eld

µ
N(x , t) :=

1

N ∑
k

δ k
N

(x)η(k , tN2).

[Hydrodynamic limit - Ferrari, Presutti, Vares; 1987]

µ
N(t) ⇀∗ ρ̄(t)dx

with
∂t ρ̄ =

1

2
∂xxΦ(ρ̄)

with Φ the mean local jump rate Φ(ρ) = Eνρ
[g(η(0))].
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Conservative SPDE as �uctuating continuum models

Rate of convergence?

[Central limit �uctuations in non-equilibrium - Ferrari, Presutti, Vares; 1988]:
Fluctuation density �elds

Y N(x , t) =
1√
N

∑
k

δ k
N

(x)[η(k , tN2)−Eη(k, tN2)] (?)

=
√
N(µ

N(x , t)−Eµ
N(x , t))

for t ≥ 0. Then,
L (Y N) ⇀∗ L (Y ) for N → ∞

with Y the solution to

dY (x , t) = ∂xx (Φ′(ρ̄(x , t))Y (x , t))dt + ∂x (
√

Φ(ρ̄(x , t))dW (t))

with dW space-time white noise.

Therefore, expect

d(µ
N , ρ̄ dx)≈ N−

1

2 .
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Conservative SPDE as �uctuating continuum models

Re-interpret (?) as �uctuation correction

µ
N(x , t) =

√
NY N(x , t) +Eµ

N(x , t)

=
1√
N
Y N(x , t) + ρ̄(x , t)︸ ︷︷ ︸

:=ρ̄N (x ,t)

+Eµ
N(x , t)− ρ̄(x , t)︸ ︷︷ ︸

=O(N−1)

.

Hence,

d(µ
N , ρ̄N)≈ N−1.

and notice that the linearly corrected continuum model ρ̄N(x , t) satis�es

d ρ̄
N(x , t) = ∂xx (Φ′(ρ̄(x , t))ρ̄

N(x , t))dt +
1√
N

∂x (
√

Φ(ρ̄(x , t))dW (t)) (?)

i.e. a linear stochastic PDE with noise of small amplitude.
Rare events? For (?) we have rare events

P[ρ̄N ≈ ρ dx ]≈ exp{−N Ī0(ρdx)},
with

Ī0(ρdx) = inf

{∫ T

0

∫
T
|g |2dxds : g ∈ L2t,x , ∂tρ = ∂xx (Φ′(ρ̄)ρ) + ∂x (Φ

1

2 (ρ̄)g)

}
.
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Conservative SPDE as �uctuating continuum models

[Large deviation principle, Kipnis, Olla, Varadhan; 1989 & Benois, Kipnis,
Landim; 1995]: Let now ρ0 constant. Then, informally,

P[µN ≈ ρ dx ]≈ exp{−N I0(ρdx)},

with rate function

I0(ρdx) = inf


∫ T

0

∫
T
|g |2dxds : g ∈ L2t,x , ∂tρ = ∂xxΦ(ρ) + ∂x (Φ

1

2 (ρ)g)︸ ︷︷ ︸
"skeleton equation"

 .

Note: This does not coincide with the rate function of the linearly corrected
continuum model ρ̄N ,

Ī0(ρdx) = inf

{∫ T

0

∫
T
|g |2dxds : g ∈ L2t,x , ∂tρ = ∂xx (Φ′(ρ̄)ρ) + ∂x (Φ

1

2 (ρ̄)g)

}
.

Ansatz: Derive a nonlinear �uctuating continuum model to simultaneously
obtain higher order approximation and correct rare event behavior.
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Conservative SPDE as �uctuating continuum models

Ansatz: Langevin dynamics

∂tρ
N = ∂xx

(
Φ(ρ

N)
)

+
1√
N

∂x

(√
Φ(ρN)dWt

)
. (?)

Model case: Dean-Kawasaki, independent particles, Φ(ρ) = ρ, i.e.

∂tρ = ∂xxρ +
1√
N

∂x (
√

ρdWt) .

Informal justi�cation:

1 Physics: Fluctuation-dissipation relation, ��uctuating hydrodynamics�

2 Mean behavior / law of large numbers

ρ
N → ρ̄ as N → ∞.

3 Central limit �uctuations: Y N :=
√
N(ρN − ρ̄). Then, L (YN) ⇀∗ L (Y ) with

∂tY = ∂xx

(
Φ′(ρ̄)Y

)
+ ∂x

(√
Φ(ρ̄)dWt

)
.

4 Large deviations: See below, large deviations of (?) are the same as for µN .
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Conservative SPDE as �uctuating continuum models

Informally, correct rare events:

Informally applying the contraction principle to the solution map

F :
1√
N
dW 7→ ρ

yields as a rate function

I (ρ) = inf{IdW (g) : F (g) = ρ}.

Schilder's theorem for Brownian sheet suggests

IdW (g) =
∫ T

0

∫
T
|g |2 dxdt.

Get

I (ρ) = inf

{∫ T

0

∫
T
|g |2 dxdt : ∂tρ = ∂xx (Φ(ρ)) + ∂x

(√
Φ(ρ)g

)}
.
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Conservative SPDE as �uctuating continuum models

Obstacle
∂tρ = ∂xx (Φ(ρ)) +

1√
N

∂x

(√
Φ(ρ)dWt

)
1 not well-posed, supercritical -> no regularity structures
2 Renormalization? Does renormalization appear in rate function? E.g. compare

Φ4

2/3 [Hairer, Weber; 2014].

Decorrelation length of discrete system = 1

N .

Ansatz: joint limit �small noise, ultraviolet cuto��

∂tρ
N,K = ∂xx

(
Φ(ρ

N,K )
)

+
1√
N

∂x

(√
Φ(ρN,K )◦dWK

t

)

whereWK = ∑
K
k=1

ekβ k is a spectral (smooth) approximation ofW = ∑
∞
k=1

ekβ k .

Gives the correct rate function for 1

N << 1

K .

Note: This is a particular case in which the link between Macroscopic �uctuation

theory [Bertini, De Sole, Gabrielli, Jona-Lasinio, Landim; 2015] and �uctuating

hydrodynamics [Landau-Lifshitz 1973, Spohn 1991] can be made rigorous.
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Two ways to the LDP, the skeleton equation
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Two ways to the LDP, the skeleton equation

In the following concentrate on the case

Φ(ρ) = ρ
m, m ≥ 1.

We consider stochastic PDE of the type

∂tρ
N,K = ∆

(
(ρN,K )m

)
+ 1√

N
div
(

(ρN,K )
m
2 ◦dWK

t

)
, (*)

on Td × (0,∞), where WK = ∑
K
k=1

ekβ k .

Pathwise well-posedness of (∗): [Lions, Souganidis; 1998�], [Lions, Perthame,
Souganidis; 2013], [Lions, Perthame, Souganidis; 2014], [G., Souganidis;
2014], [G., Souganidis; 2015], [G., Fehrman; 2017], [Dareiotis, G.; 2019].

Two ways to the LDP:

1 Γ-convergence of the rate functional: N ↑ ∞ yields LDP for (∗) with rate
function

IK (ρ) = inf

{∫ T

0

∫
Td
|g |2 dxdt : ∂tρ = ∂xxρ

m + ∂x

(
ρ

m
2 PKg

)}
.

Then consider K ↑ ∞.

2 Joint scaling: Weak convergence approach to LDP ( 1

N << 1

K ).
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Two ways to the LDP, the skeleton equation

Both approaches crucially depend on understanding the skeleton PDE.

The skeleton equation

∂tρ = ∆ρ
m +div

(
ρ

m
2 g(t,x)

)
(∗)

ρ(0,x) = ρ0(x),

with g ∈ L2t,x?

This leads to the key problem

Problem

1 Existence and uniqueness of solutions to (∗).
2 Stability of solutions: Let gn ⇀ g in L2t,x with corresponding solutions ρn,ρ.

Then

ρ
n→ ρ

in L∞
t L

1

x .

Di�culty: Stable a-priori bound? Lp framework does not work.

Do we expect non-concentration of mass / well-posedness?
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Two ways to the LDP, the skeleton equation

Scaling and criticality of the skeleton equation

We consider
∂tρ = ∆ρ

m +div(ρ
m
2 g) on R+×Rd

with g ∈ Lq(R+,t ;L
p(Rd

x ;Rd
x )) and ρ0 ∈ Lr (Rd

x ).

Via rescaling (�zooming in�):

p = q = 2 is critical.
r = 1 is critical, r > 1 is supercritical.
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Two ways to the LDP, the skeleton equation

Apriori-bounds and energy space

Consider
∂tρ = ∆ρ

m +div(ρ
m
2 g) on R+×Td (*)

with g ∈ L2(R+,t ;L
2(Rd

x ;Rd
x )).

L1 estimate only gives ∫
Td

ρ(t,x)dx =
∫
Td

ρ0(x)dx .

Use entropy-entropy dissipation: Evolution of entropy given by
∫
Td log(ρ)ρ.

Informally gives∫
Td

log(ρ)ρ dx
∣∣t
0

+
∫ t

0

∫
Td

(∇ρ
m
2 )2 .

∫ t

0

∫
Td

g2.

Caution: Can only be true for non-negative solutions.

Non-standard weak solutions, rewriting (∗) as

∂tρ = 2div(ρ
m
2 ∇ρ

m
2 ) +div(ρ

m
2 g) on R+×Td

Conclusion: Have to prove uniqueness within this class of solutions.
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Two ways to the LDP, the skeleton equation

Ansatz for uniqueness: Show that every weak solution is a renormalized entropy
solution (extending the concepts of DiPerna-Lions, Ambrosio to nonlinear PDE).

Theorem

A function ρ ∈ L∞
t L

1

x is a weak solution to

∂tρ = 2div(ρ
m
2 ∇ρ

m
2 ) +div(ρ

m
2 g)

if and only if ρ is a renormalized entropy solution.

Uniqueness for renormalized entropy solutions (variable doubling)

Additional errors from space-inhomogeneity (with little regularity)

Note: Entropy dissipation measure

q(x ,ξ , t) = δ (ξ −ρ(x , t))4
ξm

ξm−1 |∇ρ
m
2 |2

does not satisfy

lim
|ξ |→∞

∫
t,x

q(x ,ξ , t)dxdt = 0.

Established arguments [Chen, Perthame; 2003] not applicable.
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Two ways to the LDP, the skeleton equation

Theorem (The skeleton equation)

Let g ∈ L2([0,T ]×Td ;Rd ), ρ0 ∈ L1(Td ) non-negative and
∫

ρ0 log(ρ0)dx < ∞,

m ∈ [1,∞).

1 There is a unique weak solution

∂tρ = ∆ρ
m +div(ρ

m
2 g) on R+×Td . (*)

For two weak solutions ρ1,ρ2 ∈ L∞([0,T ];L1(T1)) we have

‖ρ1−ρ
2‖L∞([0,T ];L1(Td )) ≤ ‖ρ

1

0
−ρ

2

0
‖L1(Td ).

2 Let {gn}n∈N ⊆ L2([0,T ]×Td ;Rd ) with

lim
n→∞

gn = g weakly in L2([0,T ]×Td ;Rd )

and let ρn ∈ L1([0,T ];L1(Td )) be the corresponding solutions with control

gn. Then,

lim
n→∞

ρn = ρ strongly in L1([0,T ];L1(Td ))

where ρ ∈ L1([0,T ];L1(Td )) is the solution with control g .
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Two ways to the LDP, the skeleton equation

Consider

dρ
N = ∆(ρ

N)m dt +
1√
N
div

(
Φ

1

2

n(N)(ρ
N)◦dWK (N)(t)

)
.

Theorem (Large deviation principle)

Let K (N), n(N)→ ∞ with
K (N)3

N → 0 for N → ∞ . For ρ0 ∈ Lm+1(Td ) and

ρ ∈ L∞([0,T ];L1(Td )) let

Iρ0(ρ) := inf

{
1

2

∫ T

0

‖g(s)‖2L2x ds : g ∈ L2t,x , ∂tρ = ∆ρ
m +div(ρ

m
2 g)

}
.

Then, the family {ρN} satis�es the large deviation principle on L∞([0,T ];L1(Td ))
with good rate function Iρ0 , uniformly on compact subsets of Lm+1(Td ).
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Two ways to the LDP, the skeleton equation
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