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Conservative SPDE as fluctuating continuum models

@ Conservative SPDE as fluctuating continuum models

© Two ways to the LDP, the skeleton equation
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Conservative SPDE as fluctuating continuum models

The zero range process
(could also consider simple exclusion, independent particles).
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Figure: Harris, Rakos, Schiitz; 2005

o State space My := NE"’, i.e. configurations 1 : Ty — Np : System in state 1
if container k contains 1 (k) particles.

e Local jump rate function g : Ng — R{.

e Translation invariant, asymmetric, zero mean transition probability

p(k,1) = p(k—1), ka(k) =0.
k

e Markov jump process 1n(t) on M.
o 1(k,t) = number of particles in box k at time t.
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Conservative SPDE as fluctuating continuum models

o Hydrodynamic limit? Multi-scale dynamics

Microscopic picture: Macroscopic picture:
Particles PDE
‘E

ﬁgg Evolution of p = E[p|? »
e
e Empirical density field

Figure: see Zimmer et. al.

Z i« ()N (k, tN?).

k

2

@ [Hydrodynamic limit - Ferrari, Presutti, Vares; 1987]
uN(t) = p(t) dx

. _ 1 _

with 8tP = Eaxxcb(p)

with ® the mean local jump rate ®(p) = Ey, [g(n(0))].
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Conservative SPDE as fluctuating continuum models

Rate of convergence?

@ [Central limit fluctuations in non-equilibrium - Ferrari, Presutti, Vares; 1988]:
Fluctuation density fields

YN (x,t)= ()N (k, tN?) —En(k, tN?)] (%)

1
R
= VN(u"(x,t) ~Eu"(x,1))

for t > 0. Then,
2(YN) =" 2(Y) for N — oo

with Y the solution to
dY (x,t) = (P (P(x, 1)) Y (x,t)) dt + I (/P(p(x, t))dW(t))

with dW space-time white noise.

@ Therefore, expect
N = _1
d(u",pdx) =~ N"2.
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Conservative SPDE as fluctuating continuum models

@ Re-interpret (x) as fluctuation correction
uN(x,t) = VNYN(x,t) + EuN(x,t)

— YNk )+ A, 6) + Bu(x,8) — p(x, ).

VN

=0O(N-1
::ﬁN(th) ( )

@ Hence,
d(u",pN)y~ Nt

and notice that the linearly corrected continuum model pN(x, t) satisfies
N(x,t) = 0 (D' (P(x, 1))V (x, 1)) dt+ L (VO(P(x,1)dW(t)) (%)

i.e. a linear stochastic PDE with noise of smaII amplitude.
o Rare events? For (x) we have rare events

P[5" ~ p ] ~ exp{~ N To(pdx)}.

dp

with
(par) =inr{ [ [ lePasds: ¢ € L2, 0p = @ (P)p) + 2(0F (D) |
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Conservative SPDE as fluctuating continuum models

@ [Large deviation principle, Kipnis, Olla, Varadhan; 1989 & Benois, Kipnis,
Landim; 1995]: Let now po constant. Then, informally,

Plu" ~ p dx] ~ exp{—N lh(pdx)},

with rate function

T
b(pd) =inf{ [ [ lgPduds: g€ L2, 9ip = () + 2u(03 (P)e)
[ ,

"skeleton equation"

@ Note: This does not coincide with the rate function of the linearly corrected
continuum model pV,

_ T
b(par)=int{ [ [ lePards: ¢ € 12,0 3@ (PIp) + (0 (P)e) .

@ Ansatz: Derive a nonlinear fluctuating continuum model to simultaneously
obtain higher order approximation and correct rare event behavior.
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Conservative SPDE as fluctuating continuum models

Ansatz: Langevin dynamics
1
2ep" = 9, (q>(pN)) + ok (,/q>(pN)th). (*)

Model case: Dean-Kawasaki, independent particles, ®(p) =p, i.e.

9tP axxp +— \/* (\Fde)

Informal justification:
@ Physics: Fluctuation-dissipation relation, “fluctuating hydrodynamics”
@ Mean behavior / law of large numbers

pN —=p as N— o,

© Central limit fluctuations: YN := \f(pN p). Then, 2(YN)—~* 2(Y) with

DY = 0 (¥'(P)Y) + 05 (V/O(R)AWL )

© Large deviations: See below, large deviations of (x) are the same as for u™.
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Conservative SPDE as fluctuating continuum models

Informally, correct rare events:

o Informally applying the contraction principle to the solution map

1
F:—dW—
VN P

yields as a rate function

I(p) =inf{law(g): F(g)=p}-

@ Schilder’s theorem for Brownian sheet suggests

;
/dW(g):/O /T|g|2dth'

(p)—lnf{/ /|g|2dxdt 9ep = O (@ (Fg)}

o Get
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Conservative SPDE as fluctuating continuum models

@ Obstacle

2up = e (0()) + ﬁax (Vepyaw,)

© not well-posed, supercritical -> no regularity structures
@ Renormalization? Does renormalization appear in rate function? E.g. compare
d>‘2‘/3 [Hairer, Weber; 2014].

@ Decorrelation length of discrete system = %

@ Ansatz: joint limit “small noise, ultraviolet cutoff”

2ep"K = a0 (0(p™5)) + ﬁax (\/Wodwf)

where WK = Zle ex ¥ is a spectral (smooth) approximation of W =Y%_, e %

o Gives the correct rate function for ﬁ << %

Note: This is a particular case in which the link between Macroscopic fluctuation
theory [Bertini, De Sole, Gabrielli, Jona-Lasinio, Landim; 2015] and fluctuating
hydrodynamics [Landau-Lifshitz 1973, Spohn 1991] can be made rigorous.
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Two ways to the LDP, the skeleton equation

Two ways to the LDP, the skeleton equation

@ Conservative SPDE as fluctuating continuum models

© Two ways to the LDP, the skeleton equation
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@ In the following concentrate on the case
d(p)=p™, m>1
@ We consider stochastic PDE of the type

2P K = A ((pMHYm) + Fydiv ((pMF)F 0 W), (*)

on T? x (0,00), where WK =YK ¢ B.

o Pathwise well-posedness of (x): [Lions, Souganidis; 1998ff], [Lions, Perthame,
Souganidis; 2013], [Lions, Perthame, Souganidis; 2014], [G., Souganidis;
2014], [G., Souganidis; 2015], [G., Fehrman; 2017], [Dareiotis, G.; 2019].

Two ways to the LDP:

@ [-convergence of the rate functional: N 1 e yields LDP for (x) with rate
function

T m
1%(p) —inf{/0 /]I‘d |lg|? dxdt : drp = D™ + O (szKg)}.

Then consider K 1 oo,
@ Joint scaling: Weak convergence approach to LDP (% << %)
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Two ways to the LDP, the skeleton equation

@ Both approaches crucially depend on understanding the skeleton PDE.
@ The skeleton equation

dep = Ap™ +div (p%g(t,x)) (*)
p(07X) = pO(X)a

with g € 7 ?
@ This leads to the key problem

Problem

@ Existence and uniqueness of solutions to (x).

@ Stability of solutions: Let g" — g in L%’X with corresponding solutions p",p.

Then
p"—p

. o1
in LTL;.

o Difficulty: Stable a-priori bound? LP framework does not work.
@ Do we expect non-concentration of mass / well-posedness?
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Two ways to the LDP, the skeleton equation

Scaling and criticality of the skeleton equation
o We consider .
d:p =Apm+div(pzg) on R, xRY
with g € LI(R, ,; LP(R;RY)) and po € L"(RY).
e Via rescaling (“zooming in"):

e p=qg=2is critical.
e r=1is critical, r > 1 is supercritical.
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Two ways to the LDP, the skeleton equation

Apriori-bounds and energy space

o Consider N
dip =Apm+div(p2g) on R, xT¢ *)

with g € L2(R +; L2(RZ;RY)).
o [! estimate only gives

/po(nx)dX:/poo(X)dx.

@ Use entropy-entropy dissipation: Evolution of entropy given by [ log(p)p.
Informally gives

t ‘ V2 < t 2
[ og0paxly+ [ [ vp%rs [ ] e

Caution: Can only be true for non-negative solutions.

Non-standard weak solutions, rewriting () as
d:p =2div(p2Vp?)+div(pZg) on R, xT9
@ Conclusion: Have to prove uniqueness within this class of solutions.
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Two ways to the LDP, the skeleton equation

Ansatz for uniqueness: Show that every weak solution is a renormalized entropy
solution (extending the concepts of DiPerna-Lions, Ambrosio to nonlinear PDE).

Theorem

A function p € L7 L is a weak solution to
dep =2div(p?Vp?)+div(p? g)

if and only if p is a renormalized entropy solution.

Uniqueness for renormalized entropy solutions (variable doubling)
o Additional errors from space-inhomogeneity (with little regularity)

@ Note: Entropy dissipation measure
gm
gmfl

q(x,§,t) = 8(5 —p(x,1))4 VpE P

does not satisfy
lim / q(x, &, t) dxdt = 0.
t,x

€| o0
o Established arguments [Chen, Perthame; 2003] not applicable.
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Theorem (The skeleton equation)
Let g € L2([0, T] x T?;RY), po € L2(T9) non-negative and [ pglog(po)dx < oo,
m € [1,e0).

© There is a unique weak solution

dp=0p"+div(p?g) onR, x T (*)
For two weak solutions p*,p? € L=([0, T]; L*(T")) we have
1P =Pl oo, 322 ¢n¢y) < [1P0 — P51l 2¢pe)-
Q Let {gn}nen C L2([0, T] x TY;RY) with

Iijw gn =g weakly in L2([0, T] x T%;RY)
n—oo
and let p, € L*([0, T]; LX(T9)) be the corresponding solutions with control
gn- Then,
lim p, = p strongly in L}([0, T]; L*(T9))

n—soo

where p € L}([0, T]; LY(T9)) is the solution with control g.
LDP & SPDE 17/19




Two ways to the LDP, the skeleton equation

Consider

1 1
dpN = A(pNy" dt + ﬁdiv (cb;(,v)(p"’) o dWK(N)(t)> .

Theorem (Large deviation principle)

Let K(N), n(N) — o with X8> 0 for N — o . For po € L™(T9) and
p € L=([0, T]; LY(T9)) let

(1T o m
ho(e) =i {3 [ le(6) s+ g € L2 dep = Bp™+dilpTe) .

Then, the family {p} satisties the large deviation principle on L=([0, T]; L*(T9))
with good rate function lp,, uniformly on compact subsets of L™+1(T4).
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Two ways to the LDP, the skeleton equation

@ K. Dareiotis and B. Gess.
Nonlinear diffusion equations with nonlinear gradient noise.
Electronic Journal of Probability, 25:Paper No. 35, 43, 2020.

@ N. Dirr, B. Fehrman, and B. Gess.
Conservative stochastic PDE and fluctuations of the symmetric simple exclusion process.
arXiv:2012.02126 [math], Dec. 2020.

@ B. Fehrman and B. Gess.
Well-posedness of nonlinear diffusion equations with nonlinear, conservative noise.
Archive for Rational Mechanics and Analysis, 233(1):249-322, 2019.

@ B. Fehrman and B. Gess.
Large deviations for conservative stochastic PDE and non-equilibrium fluctuations.
arXiv:1910.11860 [math], Mar. 2020.

@ B. Gess and P. E. Souganidis.
Scalar conservation laws with multiple rough fluxes.
Commun. Math. Sci., 13(6):1569-1597, 2015.

@ B. Gess and P. E. Souganidis.
Stochastic non-isotropic degenerate parabolic—hyperbolic equations.
Stochastic Process. Appl., 127(9):2961-3004, 2017.

LB (2 T FO) 10




	Conservative SPDE as fluctuating continuum models
	Two ways to the LDP, the skeleton equation

