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Outline

Nonlocal minimal surfaces

Energy functional dealing with “pointwise interactions”
between a given set and its complement

Main idea: the “surface tension” is the byproduct of long-range
interactions

Implications: nonlocal phase transitions and nonlocal
capillarity theories

New effects due to the long-range interactions

Contributions from “far-away” can have a significant influence
on the local structures of these new objects

STICKINESS Differently from classical minimal surfaces, the
nonlocal minimal surfaces have the strong tendency to “stick
at the boundary”
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The fractional perimeter functional

Given s ∈ (0, 1) and a bounded open set Ω ⊂ Rn with
C1,γ-boundary, the s-perimeter of a (measurable) set E ⊆ Rn in
Ω is defined as

Pers(E; Ω) := L(E ∩ Ω, (CE) ∩ Ω)

+ L(E ∩ Ω, (CE) ∩ (CΩ)) + L(E ∩ (CΩ), (CE) ∩ Ω),

where CE = Rn \ E denotes the complement of E, and L(A,B)

denotes the following nonlocal interaction term

L(A,B) :=

∫
A

∫
B

1
|x− y|n+s dx dy ∀A,B ⊆ Rn,

This notion of s-perimeter and the corresponding minimization
problem were introduced in [Caffarelli-Roquejoffre-Savin,
2010].
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[Caffarelli-Roquejoffre-Savin, 2010]

1) Existence theorem:
there exists E s-minimizer for Pers in Ω with
E \ Ω = E0 \ Ω.

2) Maximum principle:
E s-minimizer and (∂E) \ Ω ⊂ {|xn| 6 a} ⇒
∂E ⊂ {|xn| 6 a}.

3) If ∂E is an hyperplane, then E is s-minimizer.

4) If E is s-minimizer in B1, then ∂E is C1,α in B1/2 except in
a closed set Σ, with Hausdorff dimension less or equal
than n− 2.

5) If E is s-minimizer and 0 ∈ ∂E, then∫
Rn

χE(y)− χEc(y)

|y|n+s dy = 0.
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Regularity in dimension 2

[Savin-Valdinoci, 2013]:
Regularity of cones in dimension 2.

If E is s-minimizer in B1, then ∂E is C1,α in B1/2 except in a
closed set Σ, with Hausdorff dimension less or equal than n−3.
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Limit as s→ 1

[Bourgain-Brezis-Mironescu, 2001], [Dávila, 2002], [Ponce,
2004], [Caffarelli-Valdinoci, 2011], [Ambrosio-De
Philippis-Martinazzi, 2011], [Lombardini, 2018]:

(1− s)Pers → Per, as s↗ 1

(up to normalizing multiplicative constants).

⇓

[Caffarelli-Valdinoci, 2013]:
s close to 1: nonlocal minimal surfaces are as regular as
classical minimal surfaces.

(If E is s-minimizer in B1, then ∂E is C1,α in B1/2 except in a
closed set Σ, with Hausdorff dimension less or equal than
n− 8.)
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Limit as s→ 0

[Maz’ya-Shaposhnikova, 2002] and
[Dipierro-Figalli-Palatucci-Valdinoci, 2013]:
If there exists the limit

α(E) := lim
s↘0

s
∫

E∩(CB1)

1
|y|n+s dy,

then

lim
s↘0

s Pers(E,Ω) =
(
ωn−1 − α(E)

) |E ∩ Ω|
ωn−1

+ α(E)
|Ω \ E|
ωn−1

.
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Stickiness to half-balls

For any δ > 0,

Kδ :=
(
B1+δ \ B1

)
∩ {xn < 0}.

We define Eδ to be the set minimizing the s-perimeter among
all the sets E such that E \ B1 = Kδ.

K
δ
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Stickiness to half-balls

There exists δo > 0 such that for any δ ∈ (0, δo] we have that

Eδ = Kδ.
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Stickiness to the sides of a box

Given a large M > 1 we consider the s-minimal set EM

in (−1, 1)× R with datum outside (−1, 1)× R given by the
jump JM := J−M ∪ J+

M , where

J−M := (−∞,−1]× (−∞,−M)

and J+
M := [1,+∞)× (−∞,M).
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Stickiness to the sides of a box

There exist Mo > 0 and Co ≥ C′o > 0, depending on s, such
that if M ≥ Mo then

[−1, 1)× [CoM
1+s
2+s , M] ⊆ Ec

M

and (−1, 1]× [−M, −CoM
1+s
2+s ] ⊆ EM.

Also, the exponent β := 1+s
2+s above is optimal.
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Stickiness to the sides of a box
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Stickiness as s→ 0+

We consider a sector in R2 outside B1, i.e.

Σ := {(x, y) ∈ R2 \ B1 s.t. x > 0 and y > 0}.

Let Es be the s-minimizer of the s-perimeter among all the
sets E such that E \ B1 = Σ.
Then, there exists so > 0 such that for any s ∈ (0, so] we have
that Es = Σ.
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Stickiness as s→ 0+
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Instability of the flat fractional minimal surfaces

Fix ε0 > 0 arbitrarily small. Then, there exists δ0 > 0, possibly
depending on ε0, such that for any δ ∈ (0, δ0] the following
statement holds true.
Assume that F ⊃ H ∪ F− ∪ F+, where

H := R× (−∞, 0),

F− := (−3,−2)× [0, δ)

and
F+ := (2, 3)× [0, δ).

Let E be the s-minimal set in (−1, 1)× R among all the sets
that coincide with F outside (−1, 1)× R.
Then

E ⊇ (−1, 1)× (−∞, δ
2+ε0
1−s ].
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Instability of the flat fractional minimal surfaces

β := 2+ε0
1−s

δ

δβ

1−1
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A useful barrier
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Three further questions
[Dipierro-Savin-Valdinoci, 2020]

1. How regular are the nonlocal minimal surfaces coming from
inside the domain?

2. Is the Euler-Lagrange equation satisfied up to the boundary?

3. How typical is the stickiness phenomenon?
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Regularity coming from inside

“Continuity implies differentiability”

Consider a nonlocal minimal graph in (0, 1), with a smooth
external graph u0.

There is a dichotomy:

I either
lim
x↗0

u0(x) 6= lim
x↘0

u(x)

and
lim
x↘0
|u′(x)| = +∞,

I or
lim
x↗0

u0(x) = lim
x↘0

u(x)

and u is C1, 1+s
2 at 0.
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Some remarks

This dichotomy is a purely nonlinear effect, since the boundary
behavior of linear equation is of Hölder type [Serra-Ros Oton].
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Some remarks

Stickiness + dichotomy = butterfly effect

An arbitrarily small perturbation of the flat data produce a
boundary discontinuity, which entails an infinite derivative at
the boundary.

An arbitrarily small perturbation of the flat data produce an
infinite derivative at the boundary.
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Some remarks

As a curve, the nonlocal minimal graph turns out to be always
C1, 1+s

2 :

it is either the graph of a C1, 1+s
2 -function (when it is continuous

at the boundary!), or it is discontinuous and sticks vertically
detaching in a C1, 1+s

2 fashion [Caffarelli-De Silva-Savin] (then
the inverse function is a C1, 1+s

2 function).
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Some remarks

The nonlocal mean curvature can be written in the form∫ +∞

−∞
F
(

u(x + y)− u(x)

|y|

)
dy
|y|1+s .

And this is a “C1,s operator”.

But 1+s
2 > s, therefore we can “pass the equation to the limit”...
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|y|

)
dy
|y|1+s .

And this is a “C1,s operator”.

But 1+s
2 > s, therefore we can “pass the equation to the limit”...
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Boundary Euler-Lagrange equations

If u is a nonlocal minimal graph in (0, 1) with smooth datum
outside, then∫ +∞

−∞
F
(

u(x + y)− u(x)

|y|

)
dy
|y|1+s = 0

for all x ∈ [0, 1].
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Stickiness is generic

Let ϕ ∈ C∞0 ([−2,−1], [0, 1]), with ϕ 6≡ 0.

Let u(t) be the nonlocal minimal graph in (0, 1) with external
datum

u(t)
0 := u0 + tϕ.

Suppose that
lim
x↗0

u0(x) = lim
x↘0

u(x).

Then
lim
x↗0

u(t)
0 (x) < lim

x↘0
u(t)(x).
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With the Euler-Lagrange equation up to the boundary, we can
take any configuration, add an arbitrarily small bump and use
the unperturbed configuration as a barrier.

At touching points the additional bump produces an extra-mass
violating the Euler-Lagrange equation.

Notice that now also touching at the boundary can be taken into
account!
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Proof of dichotomy

Think about the usual suspects (discontinuous, Lipschitz,
Hölder, smooth).

Blow-up.

The “worst” cases to understand are the Hölder and the smooth
(the Lipschitz produces non-minimal corners).

The smooth case produces flat objects: use a boundary
improvement of flatness (combined with a boundary
monotonicity formula) to deduce smoothness of the initial
minimizer (for this, use new barrier to go beyond the linear
theory!).

The Hölder case produces vertical angles: rule them out by
proving that close-to-vertical nonlocal minimal graphs are
indeed vertical (for this, slide balls).
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(Dis)connectedness of nonlocal minimal surfaces
[Dipierro-Onoue-Valdinoci, 2020]

We consider nonlocal minimal surfaces in a cylinder with
prescribed datum given by the complement of a slab.

Ω := {(x′, xn) with |x′| < 1}.

E0 := {(x′, xn) with |x′| > M}.

Click for video
76 / 137

https://www.youtube.com/watch?v=mziis4pbBOw
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(Dis)connectedness of nonlocal minimal surfaces
[Dipierro-Onoue-Valdinoci, 2020]

As in the classical case, when the width of the slab is large the
minimizers are disconnected and when the width of the slab is
small the minimizers are connected.

Differently from the classical case, when the width of the slab
is large the minimizers are not flat discs, and when the width of
the slab is small then the minimizers completely adhere to the
side of the cylinder.
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(Dis)connectedness of nonlocal minimal surfaces
[Dipierro-Onoue-Valdinoci, 2020]

There exists m0 ∈ (0, 1) such that if M ∈ (0,m0), then the
minimizer in Ω coincides with Ω. In particular, it is connected
(but it does not look like a catenoid!).
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(Dis)connectedness of nonlocal minimal surfaces
[Dipierro-Onoue-Valdinoci, 2020]

There exists M0 > 1 such that if M > M0, then the minimizer
in Ω is disconnected.

Differently from the classical case, the minimizer contains

BcM−s(0, ..., 0,−M) ∪ BcM−s(0, ..., 0,M),

so it is not the complement of a slab. Also (at least in
dimension 2) it sticks at the boundary.
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Yin-Yang Theorems

...com’ è difficile trovare l’ alba dentro l’ imbrunire...
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Yin-Yang Theorems
[Bucur-Dipierro-Lombardini-Valdinoci, 2020]

There exists ϑ > 1 such that if E is s-minimal in Ω ⊂ Rn

and E ∩ (Ωϑdiam(Ω) \ Ω) = ∅, then

E ∩ Ω = ∅.

Ω
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Stickiness in dimension 3
[Dipierro-Savin-Valdinoci, 2020]

While stickiness in dimension 2 corresponds to a boundary
discontinuity, in dimension 3 or higher even more complicated
phenomena can arise.
Namely, not only one has to detect possible boundary
discontinuities, but also to understand the geometry of the
“trace”.
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Stickiness in dimension 3
[Dipierro-Savin-Valdinoci, 2020]

Let u be s-minimal in (−1, 1)× (0, 1)× R with u = 0
in (−2, 2)×

(
− 1

100 , 0
)
.

Consider the trace of u

f (x) := lim
y↘0

u(x, y).

Assume that f (0) = 0. Then, near the origin,

|u(x, y)| ≤ C (x2 + y2)
3+s

4 .

In particular, f ′(0) = 0.
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Stickiness in dimension 3
[Dipierro-Savin-Valdinoci, 2020]

Vanishing of the gradient of the trace at the zero crossing points

x

x

3

1

f

−2 +2

O
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Stickiness in dimension 3
[Dipierro-Savin-Valdinoci, 2020]

x

x

x3

1

2
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Stickiness in dimension 3
[Dipierro-Savin-Valdinoci, 2020]

On the one hand, boundary points which attain the flat exterior
datum in a continuous way have necessarily horizontal
tangency.

On the other hand, boundary points with a jump have
necessarily a vertical tangency.

Consequently, points with vertical tangency accumulate to zero
crossing points possessing horizontal tangency, preventing a
differentiable boundary regularity in a neighborhood of
horizontal points!
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Stickiness in dimension 3
[Dipierro-Savin-Valdinoci, 2020]

...a bit complicated to plot. Think, for instance, to the function

(x2 + y2)7/8(1 + x4/7) with x ∈ (0, 1), y ∈ (−1, 1).
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Stickiness in dimension 3
[Dipierro-Savin-Valdinoci, 2020]

y = 0
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Stickiness in dimension 3
[Dipierro-Savin-Valdinoci, 2020]

y = 10−4
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Stickiness in dimension 3
[Dipierro-Savin-Valdinoci, 2020]

y = 10−3
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Stickiness in dimension 3
[Dipierro-Savin-Valdinoci, 2020]

y = 10−2
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Stickiness in dimension 3
[Dipierro-Savin-Valdinoci, 2020]

y = 1
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Stickiness in dimension 3
[Dipierro-Savin-Valdinoci, 2020]

Pivotal step: if a homogeneous nonlocal minimal graph
in {x > 0} vanishes in {x < 0} and is continuous at the origin,
then it necessarily vanishes at all points:

Let u : R2 → R be an s-minimal graph in {x > 0}, with u = 0
in {x < 0}.

Assume also that u is positively homogeneous of degree 1, i.e.
u(tX) = tu(X) for all X ∈ R2 and t > 0. Suppose that

lim
x↘0

u(x, y) = 0.

Then u ≡ 0.
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Assume also that u is positively homogeneous of degree 1, i.e.
u(tX) = tu(X) for all X ∈ R2 and t > 0. Suppose that

lim
x↘0

u(x, y) = 0.

Then u ≡ 0.
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Open problems [Dipierro-Savin-Valdinoci, 2020]

What happens in dimension n ≥ 4?

(Dimension 3 was “easier” because the trace is a function
from R to R, so knowing the derivative at a point, together with
the 1-homogeneity, determines already half of the trace; in
dimension 4 this only determines the trace along a half-line).
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Open problems [Dipierro-Savin-Valdinoci, 2020]

x

x

3

1O

f

Is it possible to construct examples of nonlocal minimal graphs
which are locally flat from outside and whose trace develops
vertical tangencies?
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Open problems [Dipierro-Savin-Valdinoci, 2020]

What is the behavior of a nonlocal minimal graph and of its
trace at the corners of the domain and in their vicinity?

Can one understand (dis)continuity and tangency properties,
possibly also in relation with the convexity or concavity of the
corner?
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If full knowledge about the very base of our
existence could be described as a circle, the best we
can do is to arrive at a polygon.

Nicholas of Cusa
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How “nonlinear” is the problem?

The linearization of the trace of a nonlocal minimal graph is
given by the fractional normal derivative of a fractional Laplace
problem.

Indeed, if u is a nonlocal minimal graph, say in x ∈ (0, 1), and
it is ε-flat near the origin, then u

ε (the “vertical rescaling”) tends

to a function u which is a solution of (−∆)
1+s

2 u(x) = 0
for x ∈ (0, 1).

By the boundary regularity of linear equation (Serra, Ros-Oton,
Grubb, etc.) the first order of u is of Hölder type: near the
origin u ' ax

1+s
2 , for some a ∈ R.

So, one may expect that, near the origin, u(x) ' aεx
1+s

2 .

But since |u(x, 0)| ≤ C x
3+s

2 , one is tempted to guess that
necessarily a = 0.
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Flexibility of linear equations
[Dipierro-Savin-Valdinoci, 2020]

But this is not the case! The fractional normal derivative of a
fractional Laplace problem is not only different than zero in
general, but it can be arbitrarily prescribed:

Let n ≥ 2 and f ∈ C(Rn−1). Then, for every δ > 0 there
exist fδ, uδ ∈ C(Rn−1) such that

sup|x′|≤1 |fδ(x′)− f (x′)| ≤ δ,
(−∆)σuδ = 0 in B1 ∩ {xn > 0},
uδ = 0 in {xn < 0},
limxn↘0

uδ(x)
xσn

= fδ(x′) for all |x′| < 1.
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...so, in some cases, linear and nonlinear equations are very
different...

and nonlocal minimal surfaces are precisely one of such cases
(in which the nonlinearity is the outcome of a complex and
nonlocal geometric problem)!
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Thank you very much for your attention!
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