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Semilinear wave equations

Consider the Cauchy problem to the wave equation

D¢ = _8t2¢+A¢ :M’¢‘p_1¢7 (1)
$(0,z) = po(x), 0p(0,7) = ¢1(x)

in R4 The energy

Bll) = [ 0f + Vof + o1 ds

is conserved for sufficiently smooth solution.

e Focusing, u = —1;
e Defocusing, u = 1.
@ Scaling symmetry

Or(t, ) = APT (M, Az
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Criticality in terms of the power p

o Critical in H*»

Sp =

d 2
2 p—-1

o l<p<l+ ﬁ, energy subcritical, local well-posedness;
ep=1+ d%“Z, energy critical, existence of local solution;

op>1+ d%“2, energy supcritical, nothing too much is known: small
data global solution, existence of global solution with large critical
Sobolev norm (Krieger-Schlag 20', Luk-Oh-Y. 18', Soffer 18'". ect.),
finite time blow up for defocusing systems(Tao 16'). Recent
breakthrough blow up results for defocusing NLS by
Merle-Raphael-Rodnianski-Szeftel.
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Finite time blow up for the focusing case

For the focusing case, ODE type blow up in finite time can happen.
Indeed the following function

- ()

verifies the equation 9Zv(t) = v(¢)P. Now by choosing a cut-off function
©(z) which is equal to 1 when |z| < 2T, we see that the solution with
data (¢(x)v(0), ¢(x)0w(0)) must blow up in finite time.
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Focusing Energy Critical

Focusing ;x = —1, energy critical p =1+ ﬁ, existence of ground state

A (1 2P T
AW (@) + |W|T2W(2) =0, W(z) = {1+ g

@ Kenig-Merle 08': global existence and scattering with data under the
ground state for 3 < d < 5.

o Kenig, Merle, Liu, Duyckaerts, Jia, Lawrie ect.: soliton resolution
conjecture.
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Defocusing Energy Critical

@ Struwe 89', d = 3, global solution with spherical symmetry;

o Grillakis 90', 3 < d < 5, global regularity of the solution. This result
has been extended to d < 9 by Shatah-Struwe 93', Kapitanski 94';

o Kapitanski 90, also showed that the existence of unique global weak
solution in energy space for all dimension.

@ Shatah-Struwe 94', finally addressed the global well-posedness in
energy space for all dimension.

@ Bahouri-Gérard 98', scattering by observing that the potential energy
decays to zero.
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Defocusing Energy Subcritical

@ Ginibre-Velo 85', global well-posedness in energy space.
@ d =1, Lindblad-Tao 12', averaged decay

1 /7
lim / |6t x)|| Lo dz = 0.
oL Jo

In particular the solution asymptotically does not behave like linear
wave.

@ Pointwise estimate, 2 < d < 3;

@ Scattering theory, consists of constructing a wave operator and
proving asymptotic completeness.
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Pointwise decay

@ Strauss 68', d = 3, superconformal case 3 <p < 5
¢] < Ot

e Wahl 72, improved to t~! for 3 < p < 5 and t~'1nt for p = 3.
o Bieli-Szpak 10’, improved sharp decay

o(t, )| < CL+t+]a))THL+ |t — |2[])*7?
@ Pecher 82", 2.3 < 1 \ﬁ<p<3 then

6+2p—2p2

lp(t,x)| < Ct™ 3+ +e.
o Glassey-Pecher 82", d =2

tfé, p>5;
—1
o) < (T BB <p<s
7+2
(st e 1+¢g<pg3+2f33.
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Complete scattering theory

Constructing a one to one map in weighted energy space:

@ Ginibre-Velo 87, d > 2, 1 + ﬁ <p<l+ ﬁ, in weighted energy
space (or conformal energy space) with v = 2

&6 = [+l (01 +VnP + 1o

o Baez-Segal-Zhou 90', d = 3, p = 3, still in conformal energy space,
using conformal method.

@ Hidano 01', 03', extended to

>d+2+\/d2+8d

3<d<5
== 20d-1)

covers part of subconformal cases. Similar result also holds in d = 6
and d = 7 but with spherical symmetry.
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Asymptotic completeness in other space

Compare the solution with linear waves at time infinity.

@ Asymptotic completeness in the the above mentioned results
lim ||Fa¢(tvx) - Fa¢+(t7$)”L2 = 07 V|Oé| < 17
t—o0 z
I' e {04, Qu = 2,0y — 2,0y, S =10y + 10, }
o Pecher, scatters in energy space H' with
d=3, p>27005 ord=2, p>4.15.

@ Shen 17', d = 3, 3 < p < 5 with spherical symmetry, scatters in H*
for data in &14¢[¢]. This recently was greatly improved by Dodson for
data bounded in the critical Sobolev space H*».
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Global behavior in higher dimension

Theorem (Y. 2019)

For d > 3, the solution verifies the following asymptotical decay properties:

@ Forl<p< %, an integrated local energy decay estimate

|09 +| (1+7)” 1¢!2 PPt + Vol

o For Hl < p< di'Q and 1 < v9 < min{2, 3(p — 1)(d — 1)},

09> + [oP+! -
// )i dedEs Cuy €[4,

//Rler 1)10_6_1|¢|P+1d$dt = CE’YO [(b]

,o=t+r, vy =1+0.
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Scattering in higher dimension

Corollary (Y. 2019)
Assume that d > 3 and

1++vVd2+4d—4 d+2
d—1 <SP<y—o

4 1
= d+2,1} <y < min{i(p— 1)(d—1),2}

max{

then the solution is uniformly bounded

9] @tiyp-1) < C(p,d, 0,4, [9))

1,

As a consequence , there exist pairs gb(f e H N Hz1 and qbli € H;p_l NnL?
such that for all s, < s <1

t—=+

lim [|(¢(t,2), Qg z)) — L(t)(¢5 (), 81 (@)l grg e rs—1 = 0-

Shiwu Yang (jointed with Dongyi Wei) (BeijilAsymptotic decay for semilinear wave equatio



Pointwise decay in dimension 3

Theorem (Y. 2019)

In R'3, the solution verifies the following pointwise decay estimates

@ For the case when

1 17 4
+2\/_ <p <5, max{ — — 1,1} < 7 < min{p — 1,2},
then
5 —il
6(t,2)] < CL+ Erng[8) "7 (L4t + [al) (L + |2 — ¢) =7

@ Otherwise if 2 < p < %ﬁ and 1 <~y <p—1, then

_ 3+(p=2)2 _
16(t,7)| < Cy/E1n[B](1 +t + []) “TFIED (1 + ||| — ¢]) 71
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Improved scattering in energy space in dimension 3

The above pointwise decay estimate for the solution can be used to show
the scattering in energy space with improved lower bound of p.

Corollary (Y. 2019)

For p > 2.3542 and initial data bounded in & ,—1[¢], the solution ¢ is
uniformly bounded in the following mixed spacetime norm

”CZ)HLfLiP < 0.

Consequently the solution scatters in energy space, that is, there exists
pairs (¢5 (2), ¢ (x)) such that

lim_|06(t, 2) — OL(1) (65 (), &1 (2))l| 2 = 0.
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Pointwise bound in dimension 3 with small p

The above results are based on the vector field method originally
introduced by Dafermos and Rodnianski, which however fails in lower
dimension or for the case in dimension 3 but with small power p < 2. By
introducing new vector fields as multipliers, we are able to derive
quantitative pointwise bound for the solution for all p > 1.

Theorem (Wei-Y.)
For all 1 < p < 2, the solution ¢ verifies the following pointwise bound

2

—1) 3—2pte
(1+ [t [al)) 74

(6(t,2)| < CrJE12d](1 + £+ |z]) 5o

for some constant C' depending only on e > 0 and p. As a consequence,
the solution decays uniformly in time

2p2

|6(t, )| < Cr/Ea[¢](1 +t) pr
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Asymptotic decay in dimension 1

As conjectured by Lindblad and Tao, in dimension d = 1, the solution
should decay in time with an inverse polynomial rate. We give this
conjecture an affirmative answer.

Theorem (Wei-Y. 2020)

In R'*1 and for all p > 1, the solution ¢ decays in the following sense

p—1

6(t, 2)| < C(1+1) @D

for some constant C' depending only on p and the initial weighted energy

Vv €o,1[¢)].
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Asymptotic decay in dimension 2

For the space dimension two case, we show that

Theorem (Wei-Y. 2020)

For the subconformal case 1 < p < 5, we have the potential energy decay

/ 16(¢, 2)PHde < CEald)(1 + 1)~ 7, V>0
]RQ

as well as the pointwise decay estimates

_1
Ca+173, T <p<5
Cl+t)y" 5+, 1<p<il.

|¢(t, )| < {

As a consequence the solution scatters in the critical Sobolev space when
p > 14 /8 and scatters in energy space when p > 2v/5 — 1.
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Conformal energy

All the previous results heavily rely on the following conformal energy
identity obtained by using the conformal vector field
K = (2 +12)0, + 2trd, as multiplier

2
11 (t* +r?)|p(t, z) [P dw

d—1 d+3. [t
_ 2 p+1
o d_l)/s T/|¢<T,x>r dudr

= Qo)+ = [+ laP)iots. o) o

Qo(t) +

where

Q)= ). /\Quu¢|2+|5gb+(d—1)¢|2dx

0<p,v<d
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The superconformal case

For the superconformal case when

d+3
>
P=07

the left hand side of the previous conformal energy identity is nonnegative.

Qolt) + / (2 + 1) ot )Pz < Eg).

This time decay is sufficient to conclude the scattering and pointwise (for
2 < d < 3) properties of the solution.
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The subconformal case

Key observation to go beyond the conformal power (p < %) is to use

Gronwall's inequality. Define

Glt) = 12 / 6(t, )P+ dx
The previous conformal energy identity implies that
G(t) < G(0) + (d+3 — p(d — 1)) /Ot 1G(r)dr.
Thus
G(t) < G(0)pd+3-pld=1),

The leads to the time decay of the potential energy for p close to the
conformal power

/ |¢(t,$) |P+1d1‘ < 052[¢](1 + t)d-i'l—p(d—l)‘
R
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Dafermos-Rodnianski's new approach

The foliation

t—r=t-R
2.

=1
lightcone

=r 1=const

2
together with multipliers
f(r)or, O, rP(0+0y)

to derive the integrated local energy decay, the classical energy estimate
and a hierarchy of r-weighted energy estimates. Using a pigeon hole
argument, one can derive the energy flux decay.
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The r-weighted energy identity for semilinear wave

equation
We have the following energy identity for 0 < vy < 2.

u

2
+ [ 2mededot [ a0 (U 6t o P duds
H, Z, p+1

/Z>wwwwwf+@—7MWW2+%VHW%%H%M%WQH1

2
/ PLOP + V0P + —2— P9 4 cqr2 ) drdow
(=0, >2]ul} p+1

Here?/JZT%QiL:@t—F&n, g = 4=1d=3)

7) and
2y+2d—-2 (d—-1)(p—1)—2y
Cyag=d—1~— = .
p+1 p+1
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Energy flux decay

This new method enables us to derive the energy flux decay

/ L6 + Vol + |9l do < O, [6lu™

Integrate in terms of u, we obtain

//Rw B[P ) dadt < CE, 4], YO < < 7.

Combining this with the r-weighted energy estimate

//RHd T7071|¢‘p+1d$dt < C&y[d]

we conclude that

//]Rl-»—d U_’T_—l’(z)‘erldxdt < CSWO [(Z)], V0 < v < .
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The improvement of the time decay of the potential energy

This new method requires

d—1)(p—1

1<’7<()2(p)7 ’Y<’707 870[¢]<007
2 d+1

I s Tl

Recall the previous time decay of the potential energy
[ lotta)Hide < Cfal(1-+ 100,

Compared to the new time decay
/ ot ) PHldn < C&, gl (1 + )7

For the subconformal case when p < 4£3 note that

d—1"
(d=1)p-1)

5 >p(d—1) — (d+1).
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Proof for the one dimensional case

The key estimate in the work of Lindblad and Tao is the improved
potential energy decay

to+T mo+vt+R
/ / o(t,z) P dedt < C(VRT +R™'T), VT >R>0
o+vt—R

on parallelogram, derived by using the vector field v0; + 0, as multiplier.
The averaged decay estimate of the solution then follows by using the
classical Rademacher differentiation theorem.

One of the key new ingredients of our proof is the new multipliers
B A+t—2)P (1 +t+2) 18, —0p) +a A+t —2) LA+t +2)%(8;+0,)

with constants «, 8 such that
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Proof for the two dimensional case

One of the key new ideas in dimension two is to apply a new class of
non-spherically symmetric vector fields

p—1

p=1_o 9 p=1_4
X=u? (0 —0)+u > 250+ 01)+2uy®> 2200

with u; =t — x1 + 1 as multipliers to to regions bounded by hyperplanes
{t = x1}. This enables us to derive the improved time decay of the
potential energy

/ |6(t, )P de < CElg)(1+1) "7, p<5.
RQ

The pointwise decay estimate for the solution for all p > 1 relies on the
following Brézis-Gallouet-Wainger inequality

||U||H2(R2)
|| oo < Cllu 14+ In+—7—
|| ”L (R2) || ||H1(R2) ( ||u||H1(R2)
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Proof for the three dimensional case with small p

The proof is inspired by the method in dimension two. Instead of using
spherically symmtric vector fields as multiplier, we try

X =uP7 Y8y — 0y) + uP73(23 + 22) (0 + 01) + 2uP™2(2200 + x303)

with u =t — x1. Applying this vector field to the backward light cone
N~ (q) with ¢ = (tg,70,0,0), we derive the weighted energy estimate

/N NIt BT < O
—q

B |z — x|

The key point of using such non-spherically symmetric vector field is that
it allows us to use the reflection symmetry x1 — —x1 to obtain that

1 —To

Ydo < C.

/ ito + rolP1(1 +
N=(q)

|z — 0]
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Thank you!
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