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Chern-Simons-Schrédinger Equation



Chern-Simons-Schrddinger equation

We consider the Chern-Simons-Schrédinger equation:

D¢ = iD;D;¢ +igl¢|*9.
Fo1 = —Im(¢D29),
Fo2 = Im(¢D1¢),
Fi2= -39/,
with a scalar field ¢ : R1*2 — C, covariant derivatives Dy = dy + iAg for
o €{0,1,2}, (real-valued) connection 1-form A= Apdt+ Ajdxy + Azdxz, and
curvature 2-form Fj = d;Ai — i A;.
» Non-relativistic Lagrangian theory,

» Planar physical phenomena, e.g. quantum Hall effect and high
temperature superconductivity,

» Gauge invariance: for any x : R1*2 5 R,
(6.4) = (%9, A~ dy)
> See Jackiw-Pi ('90 PRL, '90 PRD)



Coulomb gauge and equivariance condition

Coulomb gauge condition
01A1+0hA> =0 or A, =0.

Equivariance ansatz: )
o(t,x) = e™u(t,r).

» me Zis called the equivariance index.
» The full equation becomes

, 1. m 2mA
Iatu+<arr+?ar7r72>llf dlal

u—AZu—Agu+tglufPu=0
with connection components
1 r
Ao =3 [ luPrar,
2 Jo

roo dr/
Ao =~ [ (m+ )2



Bogomol'nyi operator
Bogomol’'nyi operator

A
Diu= Dgf)u = <8r — w> u.
» It is the radial part of D1 +iD>.
» Hamiltonian structure:
. 0E
09 = %7

where g—g is the Fréchet derivative computed under the real inner product

(u,v)r ==Re [p2TV.
» Energy functional has the expression

1 l1-g
Elu = /|D+u\2+T /|u\44

The factor 1 arises from the curvature term F,q. Thus, g <1is
defocusing and g > 1 is focusing.
» GWP and Scattering under equivariance: Liu-Smith ('16)
» g<1: all L2-data
> g >1: [2-data whose charge is less than that of the ground state.

» The borderline case g =1 is called the self-dual case.



Equivariant self-dual CSS
From now on, we restrict to the self-dual case g = 1.
» (CSS) in various forms:

A 2
iatu:7<8,,+ o )ut mt ©) ut Aou—|u?u, (CSS)
r
2 A A2
idru+ Apmu = —|u?u+ me —&——gu—i—Aou, (lin./nonlin.)
igeu=L;DWu. (self-dual)

> Ay =0y + %8, — ’:’—: is the Laplacian for m-equivariant functions.
> L, is the linearized operator of D(+“)u =0y — 1(m+ Agu)).

Lif = Dsru)*er u [ Reuf dr' is its adjoint.
» Connection components:

1 r
Aglu] = —5/0 lu|?f dr’,
roo dr/
Aol = = [ (m+Ag[u)|uP <
» Tail of Ag:

Ap(0) =0, Ag(r) L Ag(e=) = — - M[u] #0.



Symmetries and conservation laws
» Symmetries:

eOu(t,r) (phase rotation)

u(t,r)— lu(lzt Ar) (L2-critical scaling)
1 "f o(— %%) (pseudoconformal)

Also, there are space/time translation, spatial rotation, time reversal, and
Galilean boost.

» Charge and Energy:

A 1
(P20 Y 2 Sl

2
Ml = [1uP,  EL= [t

/§|D+u\2.

at(/|r|2|u|2) :4/]1%2 Im(@- rd,u),
at(/Rz i@ roru)) = 4E.

» Virial Identities:



Cauchy theory

The evolution by (CSS) should be understood modulo gauge equivalence. To
study the Cauchy theory of (CSS), we should fix one representative (¢, A) from
its (gauge-)equivalence class.

» Under the Coulomb gauge:
Large data Hl-subcritical LWP (Berge-de Bouard-Saut '95, Huh '13, Lim
'18)
Sufficient conditions for blow-up (Berge-de Bouard-Saut '95)
Explicit blow-up solutions for g =1 (Jackiw-Pi '90, Huh '09)
Decay estimates for small data (Oh-Pusateri '15)

» Equivariance under the Coulomb gauge:
Large data L2-critical GWP and Scattering (Liu-Smith '16)

» Under the Heat gauge:
Small data HE-subcritical LWP for any € > 0 (Liu-Smith-Tataru '14)



Static solution

A solution u(t,r) to (CSS) is said to be static if u is independent of t. From
. 0E 1
I&tUZE and E[u]:i/\D+u|220.

> FACT: A solution is static if and only if of zero energy.
> It satisfies the Bogomol’'nyi equation;

r
D+u:<8r—w)u:0, A@[u]:—%/0 u2rdr.

This is a nonlocal first-order ODE.
> Explicit m-equivariant static solutions (unique up to phase/scaling):

Qr) = VB(m+1) ;s

m+1) "

Note @ has degeneracy r™ at 0 and polynomially decays r—(m+2) at oo,
1
Ap(Q)() = —2(m+1) = -~ M(Q).
» Applying the pseudoconformal transformation to the static solution Q, we
have an explicit finite-time blow-up solution

1 r\ i
= —Q(— Ti
S(t,r): ‘t‘Q(‘th 4 vVt < 0.

And the blow-up rate is

1
v 2~ —.
1VS(e)li ~

We call this blow-up rate the pseudoconformal blow-up rate.



Outline

Pseudoconformal Blow-up Solutions



Main Results

Question: How generic is the pseudoconformal blow-up solutions?
Let m>1. Let z* be a prescribed asymptotic profile satisfying (H) with
O<a* <1

Assumption (H)

—(m+2)-equivariant function z* := e~/(2m+2)0

z* satisfies ||Z*|| y« < a* for
“(m+2)

some k = k(m) > m+3.

> H,’;, is the usual Sobolev space HX restricted on m-equivariant functions.

*

» Roughly speaking, z* is smooth, small, and degenerate at the origin

lz*()| < a*rmt2,
Our main results are threefold:

1. (Existence) There exists a pseudoconformal blow-up solution u with the
asymptotic profile z*.

2. (Uniqueness) Such a solution u is unique in a suitable class;

3. (Instability) Such a solution u shows a rotational instability.



Existence

Theorem (Kim and K. '19)
Let m>1. Let z* be an m-equivariant profile satisfying (H) with sufficiently
small o* > 0. Then, there exists a solution u to (CSS) on (—o0,0) such that

1 rN ;27 ; . _
[u(t,r)—mQ<m>e '4‘f‘}e”"9—>z* in HY, ast - 0",
Moreover, u scatters backward in time. Indeed, u satisfies

ﬁ%(

.
It]

lJu(t, r) —

)eltorl®) — 2(e,r) [y, < @™,

> Here, z(t,r) is a solution to (zCSS) with the initial data z(0,r) = z*(r).
More precisely, an —(m -+ 2)-equivariant function
2(t,x) = e 12m+2)02(¢ x) solves —(m+ 2)-equivariant (CSS) with the
initial data Z(0,x) = e /(2m+2)6 2% (x).

> Yor(t) is a phase correction term, whose explicit formula is described in
terms of z.



Uniqueness

Theorem (Kim and K. '19)

Let m and z* be as above. Assume two H} -solutions u; and up to (CSS)

satisfy
1 ry
ot = 77 Qe (57 ) €™ = 28y < el

for all j =1,2 and t near zero, for sufficiently small o* >0 and ¢ > 0. Then,
up = up.

> In particular, if 0 < o* < ¢ < 1, then the solution constructed in the
above is unique.



Instability

Theorem (Kim and K. '19)

Let m and z* be as above. Let u be the pseudoconformal blow-up solution
constructed in the above. There exists N* > 0 and one-parameter family of
H} -solutions {“(n)}ne[om*] to (CSS) with the following properties.

> u(o) =u,

» Forn >0, u(M scatters both forward and backward in time,

\{

The map 1 € [0,n*] — u(M) is continuous in the C(_w‘0)7locH1’ topology,

v

The family {“(n)}ne[oﬂl*] exhibits the rotational instability near time 0.



Rotational instability

We can write

(n)

,
v o e

+ OH,’;,(a*)v

where y(M(t) satisfies
POl sa's,

||m5up Y(TI) /y(n (_ )_ <L‘|'1) ‘ <o for all small 7> 0.

n—0+

» When 11 > 0, one almost has
N~ M1t
(0~ TS ()

so the abrupt spatial rotation takes place on the time interval |t| < 7.

» Notice that u(®) = u does not rotate at all.



Results in (NLS)

Our main result is analogous to mass-critical NLS, which are originally due to
Bourgain-Wang ('97), and Merle-Raphaél-Szeftel ('13).
The mass-critical nonlinear Schrédinger equation on R?:

ey + Ay +|yPy =0, (NLS)
where ¥ : R x R? — C. There is a standing wave solution (but not static)
e R(x),

where R is a minimizer of %f\y/\z—k%ﬂvwz Z Ll = % (w)+ Enes(v),
or R is the ground state soliton

AR-R+R3=0.
Applying the pseudoconformal symmetry,

1 il
SNLS(t,X) = mR(%)e“\e ! e Vvt <O0.

=N



Bourgain-Wang solutions(NLS)

Theorem (Bourgain-Wang '97)

Let {* : R? — C be a profile that degenerates at the origin at large order and is
in some weighted Sobolev space. Then, there exists a (conditionally unique)
solution ygw to (NLS) such that

wBw(t) — Snis(t) = ¢* ast—0.

Idea of proof
Via the pseudoconformal transform ¥, it suffices to construct a solution €y
such that e TGy (t) — R — e ¢ (t) — 0 as t — oo, where {(t) is a solution
to (NLS) with initial data {*. Write the Duhamel formulation for e~ %€ y(t)
(from t = +oo to the present time) and run a contraction principle by exploiting
the decoupling

IR()EL(t,x)| <t™A, A1

» Working directly with the pseudoconformal transform requires solutions to
belong to a weighted Sobolev space. In case of (CSS), Q has polynomial
tail r—(M2) as r — . This does not belong to HXX with k large.

> (Discussed later), there is a nontrivial long-range interaction in (CSS),
induced from the gauge potential.



Instability of Bourgain-Wang solutions(NLS)

Pseudoconformal blow-up solutions are believed to be non-generic. Here is an

instability result by Merle-Raphaél-Szeftel.

Theorem (Merle-Raphaél-Szeftel '13)

There is a continuous family of solutions yy to (NLS) for n € [-1,1] such that
1. (1 =0) yp = ypw is the Bourgain-Wang solution,
2. (n > 0)yy scatters both forward and backward in time,
3. (n <0)yy scatters backward and blows up forward in finite time under

the log-log law, i.e.

log|log(T —t)|\ 3
IVyn(6)le ~ . (PELET D2

> No explicit use of the pseudoconformal transform. Instead, they use
modulation analysis with modified profiles, say Ry, ,. Here, 7 is fixed and

. _ip?
b is a parameter for the pseudoconformal phase e~ T

> Instability direction is induced by pnis, which lies in the generalized null
space of the linearized operator for (NLS).

» The case 11 < 0 falls into the negative energy and hence to the regime of
stable log-log blow-up by Merle-Raphaél’s works.



Comparison with (CSS) and (NLS)

> All the symmetries of (CSS) are valid for (NLS), including L?-scaling and
pseudoconformal symmetries. Conservation laws are also valid.

» Profiles Q@ and R:

1 m+ Ag[Q]\ 2
*(&rrﬂ‘ ;ar)Q'f‘ <%) Q = Q37AOQ3
—~AR+R=R3,
Because of the mass-term, R shows exponential decay, whereas Q shows
polynomial decay r—(m+2),
> Generalized null spaces of Z\1s and Z:

iAwspais = ily*R,
iAausily|?R = 4AR, iZop =iQ, iZLQir*Q=4AQ,
i AuwsAR = —2iR, { iZoiQ=0, iZoAQ=0.
i AusiR =0,
Note that i sAR # 0 but i.ZoAQ =0. This is again because et R(x) is
not a static solution to (NLS), but Q is a static solution to (CSS).
> The self-duality appears at the linearized level as

iLq=ilkLq.



Comments on main theorems

» Assumption (H).
1. Degeneracy of z* at the origin |z*(r)| < a*r™2. Required for
decoupling estimates for the marginal interaction between S(t) and z*.
2. Long-range interaction. After approximating |S(t)|2 as a point charge
at the origin, due to

m+Ag[S(t)]m—2(m+1)=—(m+2),

the natural evolution equation for z is the —(m+ 2)-equivariant (CSS).

» Assumption m > 1 is required at many places.
1. S(t,r) is a H} -solution if and only if m> 1.
2. Nice embedding properties: I-/%, < L= and Hardy's inequality.
3. Many other places where the proof breaks.

> Interaction of S(t) and z*. In contrast to (NLS), we have to incorporate
the long-range (nonlocal) interaction between S(t) and z. Thus,
1. we evolve z under —(m+2)-equivariant (CSS),
2. there is a phase correction Yo (t) in the theorem,
3. but this does not change the blow-up rate.



Comments on main theorems

> Rotational Instability.
1. The source of the instability is the phase rotation, which shows a sharp
contrast to (NLS). Mathematically, the difference comes from that of the
spectral properties of A5 and .Zp.
2. When 1 =0, u(®) does not rotate at all. But u(™ with 0 <n <1
shows a spatial rotation on |t| <71 by the angle

m+1
()
m
3. A rotational instability is observed in the energy-critical Schrédinger
map (1l-equivariant) by Merle-Raphaél-Rodnianski '12.
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Strategy of the proof



Modulation analysis
We write

N(t,r) = (t) [Qb(t)+8]( @) e

> Q(”) is some profile exhibiting the rotational instability with Q(O) = Q.

> Pseudoconformal phase f,(r) = f(r)e_i%’z.

» For given z*, we fix evolution of z(t,r) by (zCSS) equation (a small
scattering global solution). (zCSS) is motivated to absorb the strong
interaction between S(t) and z.

> we have freedom to choose 3 conditions to fix dynamics of b(t),A(t),¥(t)
and hence (t,x).

> Initial dataa at t =0

((0),(0),6(0)) = (n,0,0), u<"><o7x):%oW)(%)e""%z*(x).

> Establish uniform estimate (wrt 1) for €,4,7, b by bootstrapping
argument via Laypunov method.

t
b(e)~ [t A() = VEEN, 0= o)+ (m+ Dtan (), and
A3 leliz+ el gy S @A™+ Adn3,

» The blow-up solution is constructed by limiting 7 — 0.



Pseudoconformal phase Q,(r) = Q(r)e~'a"

b, 2

Recall: s
@DQ=0 and fi(y):=r(y)e %,

For a profile Q(M), assume Qb(t) solves (CSS). Then, by dynamic rescaling

(m)#
0= iat Qt(gn)u _ LE[(’TMDSLQI’ )Qt()n)ﬁ

1. A " (1) i
= [,asolgm % nQi -y - Lo;pDiQ" o]
(m A s i
=72 [(/_* S_Q n )Q(n))b+ ,<TS + b)/\an) +,},SQ£T]) _ (bs+b2)%Q£n)] .
where A =1+ rd, is the L? scaling generator. When 1 = 0, the above

computation suggests

A
75+b:o, % =0, bs+b*>=0.

This is satisfied by S(t), i.e. (b,A,y)(t) =(|t|,|t],0).



Dynamic rescaling

» Originally, we work with u(t,x),z(t,x) but ngn)(s,y),s(s,y) where y = .
> f and b notations. Let A and 7y be given. For a function f(y), we convert
f to a function on x as

Fi(x) = %f(%) el”.

Similarly, we convert a function g(x) to a function on y as
g'(y)=2g(Ay)e .
» Dynamic rescaling. We introduce (s,y) variables as

s_ 1 .
dt — A2(t) YT A()

Then,

1 2 :
i s afa
aufi == [asf /l/\er:ysf] ,

A i b
058’ = A2 [8tg+ f/\g - l%g] :
» In this notation, the ansatz is

u(t,x) = (@ +e)f +2, ori(s,y)=(Q +e)+2



Profile Q(M)

Our profile QM will be obtained by perturbing the formal parameter ODEs

%—f—b:& % =0, bs+b?>=0.

> (NLS) case: Merle-Raphaél-Szeftel introduced the n-parameter only in
bs + b?> = —n. This is forbidden in (CSS), due to the spectral property of
Z0.

> Crucial observation: If we introduce 7 to the phase rotation instead, a
formal computation based on the Pohozaev identity yields that bs + b2
must have a nontrivial O(n?)-term:

As
P

Solving this ODE system, one obtains a rotational instability.

+b=0, 7.=1| = bs+b>x-cn?® c>0.



Profile Q(M)

Substituting the formal parameter law, we should solve

LowD QM 4 nQf + cn? 1 of" (1)

This is a second-order nonlocal PDE.

» Difficulty for the construction. It is customary to Taylor expand Q™) in
the n-variable, which loses r? decay at each step. This is especially
dangerous when m is small. Moreover, as Q(”) is expected to have an
exponential decay, the n-expansion will require a truncation and
complicate the argument.

» Nonlinear ansatz: it turns out that we can use self-duality to reduce (1)
to a first-order differential equation.

(@m) _ . () 2
DL plm =0, . LQ(mDSrQn 1QUD 46, Q" + 02 Qf
QM = ¢ 17 p(n) 6 =1 [1QM2rdr —(m+1)~m+1.

» Formal parameter law for Q("):

A
f+b:o, Ys=N6y, bs+b>4+n?

Hence,

t)=t2+n2, y(t)=6ptan!

t
—, b(t)=—t.
p (t)

)



Interaction between Ql()")ﬁ and z

> Effect Q/(Jn)u — z : There is a long-range interaction. A typical one is

(m+A9[Qg"”+z]>zm (m+A9[Q,§””]+A9[z]>z . <—(m+2))2z.

r r r
Thus z evolves under —(m+ 2)-equivariant (CSS) =:(zCSS).

» Effect z — Qt(f’)Ij : Correction in the phase.

0 Ql()ﬂ)ﬁ Q[()n)

zZ—r

that leads to the phase correction
t
Wl ()= [0, gt

> Case of (NLS): the nonlinearity |w|?y is local. Thus the interaction
between Rp, and £’ becomes small due to fast decay of R, and
degeneracy of £ at the origin. Thus it suffices to evolve ¢ under (NLS)
itself, without any forcing term.



Evolution of €

Now the equation for € becomes
ids€ — %, €+ ibAe — N6y e

. As v
= ’<7+b)/‘(0§,")+8)+(stn9n)02")+(Vs*’79n)£

e

2 2P A | B b
—(bs+b"+n )%Qf, )+Rog">,z7+VQ§"LQbZ +R,

> Here, w = Ql(?n) +2° and Vs =7+6

Z'*)Qﬁn) .

v

The effect from Ql(,n) to zis removed by z-evolution.
~ Rop,

1R sl < oA 3 log Al

O(£?).

» is the marginal interaction satisfying

R

v

W—wh =

> Vo om

o _q, arises from the difference of Ql()n) and Qp,
b



Choice of modulation parameters

We haven't specified the choice of b,A,y. We spend three degrees of freedom
by
> two (generic) orthogonality conditions = Coercivity (€, £p€) 2 Herz_,l

> one dynamical law = 2( +b) — (bs +b?+n?) =0. We are motivated to
this choice to delete terms having dangerous spatial decay:

(7;5 +b>[/\Q Mo+ [2(%+b) ~ (b b2 +12) | 1 Q"

=0
» The e-equation is now simplified:
i0s€ — Z,,,€+ ibAe —nOne
A _
= i( 52 +b) (INQM],+Ae) + (% —16y) Qs + (1 — 16y e

+ RQé”),zb + VQz(;n) 2+ Ry -

—Qp



Lyapunov/virial Functional

In order to close the bootstrap, we should be able to estimate ||| 5, and ||| ;2
by propagating smallness of ¢ at (¢(0) =0) to the past times. For 'g’his, we use
a Lyapunov method. Martel ('05 AJM) was the first to use energy method in
backward construction.
> In view of coercivity it is natural to start with the energy functional.
However, it does not suffice and we need to add a correction. The
correction term is motivated from the observation that € indeed evolves
under
idse — %, €+ ibAe —nOhe ~ 0.
The energy functional is only adapted to idse —.&,,€ =~ 0.

» Moreover, we also need an averaging argument. As a result, we use

g2 (plad)y g, M6y 2b A o dA
7 =2 <Ewb [e]+ 3 MIEL+ o7 [ ®ATE] A,>.
> Here, E[e] == E[w’ +2] - E[w’] - (§E|  e),,

> ®yle] is a localized virial functional. The localized virial correction b® 4[€]
was first introduced by Raphaél and Szeftel ('11 JAMS).



Final comments

» Long-range interaction between Ql()n)ﬁ and z requires two corrections: the

evolution of z(t,x) and phase correction of Ql()n).
m+1

> New instability mechanism: ™27 —angle spartial rotation near blow-up

time.

» Self-Duality plays a crucial role in several places: Informations on
linearized operator, construction of modified profile Q(™)

» The prescribed asymptotic profile z* require one additional condition (H).
(cf. Krieger-Schlag 10" 1D NLS)

> There should be a separate argument of L2 control, as the coercivity only
control H.



Thanks for your attention!
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