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Optimal transport and nonlinear elasticity.

Convexity condition for ‘deformed’ pressure.
[ Ghoussoub-Kim-Lavenant-P Hidden Convexity in a Problem of
Nonlinear Elasticity. SIAM J. Math. Anal. 2021]

Examples and counterexamples.

Measure-valued convex relaxation of nonlinear elasticity.
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Optimal Transport

Move mass from p to v, optimally!
(Monge 1781) Find a map

x — T(x)

to minimize the total mass distance
traveled: cost c(x,y) = |y — x|.
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Optimal Transport

Move mass from p to v, optimally!
(Monge 1781) Find a map

x — T(x)

to minimize the total mass distance
traveled: cost c(x,y) = |y — x|.

(Kantorovich 1942) Use a joint prob-
ability distribution

(X,Y)~m

with fixed marginals.
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Duality

Theorem (

The minimal value of the optimal transport problem with measures 1i(dx),

v(dy), and cost c(x, y) equals the maximal value of a dual problem for
potential functions ¢(x), ¥(y):

min [ [ ctxy)n(ax dy) = sup J wy)(dy) — [ G

with constraint ¥(y) — ¢(x) < c(x,y) (equality where w(dx, dy) > 0).
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Duality

Theorem (

The minimal value of the optimal transport problem with measures 1i(dx),

v(dy), and cost c(x, y) equals the maximal value of a dual problem for
potential functions ¢(x), ¥(y):

min [ [ ctxy)n(ax dy) = sup J wy)(dy) — [ G

with constraint ¥(y) — ¢(x) < c(x,y) (equality where w(dx, dy) > 0).

@ Linear programming took off with the help of the simplex algorithm
(Dantzig 1947)
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Contributions of Brenier

@ Polar factorization (Brenier 1991): Every (nondegenerate) vector field
fel? (Q,Rd) decomposes uniquely as f = V¢ o S where ¢ is convex
and S : Q — § is volume preserving.
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(Benamou-Brenier 2000) Minimize Lagrangian over velocity field v¢

JJ |vt| me(dx): O+ V-vemy =0, mo=p, w1 =v.
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Contributions of Brenier

@ Polar factorization (Brenier 1991): Every (nondegenerate) vector field
fel? (Q,Rd) decomposes uniquely as f = V¢ o S where ¢ is convex
and S : Q — § is volume preserving.
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(Benamou-Brenier 2000) Minimize Lagrangian over velocity field v¢

JJ |vt| me(dx): O+ V-vemy =0, mo=p, w1 =v.
Rd

@ [Brenier The initial value problem for the Euler equations of
incompressible fluids viewed as a concave maximization problem.

CMP 2018]
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Mathematical Elasticity

o Reference Configuration: Q c R3.
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Mathematical Elasticity

Reference Configuration: Q c R3.
Deformed Configuration: D — R3.

Deformations are maps u : Q — D.

Hyper-Elastic stored energy function:
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Mathematical Elasticity

Reference Configuration: Q c R3.
Deformed Configuration: D — R3.

Deformations are maps u : Q — D.

Hyper-Elastic stored energy function:

E(u) = JQ W(Vu)dLq

Dirichlet Boundary conditions: u = g on 09 (where g(02) = D)

Incompressibility: det(Vu) = 1 or, if u is injective,

U#,CQ = ['D~
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Incompressible Elasticity Known / Unkown

Known:
o Global Minimizers (Ball 1976)
@ Existence of pressure for small data.

@ Existence of pressure for regular deformations.
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Incompressible Elasticity Known / Unkown

Known:
o Global Minimizers (Ball 1976)
@ Existence of pressure for small data.
@ Existence of pressure for regular deformations.

Unknown:

Existence of pressure for global minimizers.

e Uniqueness of minimizers. (Some examples of nonuniqueness known.)
o Higher regularity.

@ A priori bounds.
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Elasticity equilibrium as a polar factorization

@ Euler-Lagrange equations: pressure, p: Q — R,

V-DW(Vu) = Vu~'Vp
det(Vu) = 1.
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Elasticity equilibrium as a polar factorization

@ Euler-Lagrange equations: pressure, p: Q — R,

V-DW(Vu) = Vu~'Vp
det(Vu) = 1.
e Change variables to the deformed configuration w(y) = p(u=1(y)).

Then
Vu 'Vp=Vwou.

o If wis convex then w and u give a polar factorization of the body
forces V- DW(Vu).
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Elasticity as convex minimization.

@ The constraint det(Vu) = 1 is non-convex.

Aaron Zeff Palmer March 22, 2021 9/14



Elasticity as convex minimization.

@ The constraint det(Vu) = 1 is non-convex.

@ The relaxation ux Lo = Lp is still non-convex.

Aaron Zeff Palmer March 22, 2021 9/14



Elasticity as convex minimization.

@ The constraint det(Vu) = 1 is non-convex.
@ The relaxation ux Lo = Lp is still non-convex.

o If w and W are convex then u is the unique minimizer of the convex
functional

L [ W(Vu) + ww)]dce. (1)

with Dirichlet boundary conditions but without incompressibility.
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Energy minimization

Suppose u is an elastic equilibrium with deformed pressure w = p o u™

If w and W are convex, then u is a global energy minimizer and minimizes
the convex functional (1).

@ u is a critical point of (1) so is a minimizer of (1) by convexity.

@ Let v be another admissible incompressible deformation. Then

Jﬂw(v)dﬁg = JDw dlp = JQ w(u)dLo

o It follows

L W(Vv)dLq = L [ W) +o(v) — w(w)]dLa > L W(Vu)dLao.

[]
Aaron Zeff Palmer March 22, 2021 10/ 14



Examples / Counter examples

o Ex: Affine boundary conditions, u = Ax + b on ¢€2. Then p =w = 0.
The affine map is the energy minimizer.

Aaron Zeff Palmer March 22, 2021 11/14



Examples / Counter examples

o Ex: Affine boundary conditions, u = Ax + b on ¢€2. Then p =w = 0.
The affine map is the energy minimizer.

o X Ex: Linearize around identity with W(Vu) = 3|Vu|? to get Stokes
equation. Pressure is harmonic, not convex.

Aaron Zeff Palmer March 22, 2021 11/14



Examples / Counter examples

o Ex: Affine boundary conditions, u = Ax + b on ¢€2. Then p =w = 0.
The affine map is the energy minimizer.

o X Ex: Linearize around identity with W(Vu) = 3|Vu|? to get Stokes
equation. Pressure is harmonic, not convex.

o Ex: Identity boundry conditions, v is convex, minimizing
W (Vu) — Vi(x) - u(x)

results in pressure w = p = .

Aaron Zeff Palmer March 22, 2021 11/14



Examples / Counter examples

o Ex: Affine boundary conditions, u = Ax + b on ¢€2. Then p =w = 0.
The affine map is the energy minimizer.

o X Ex: Linearize around identity with W(Vu) = 3|Vu|? to get Stokes
equation. Pressure is harmonic, not convex.

o Ex: Identity boundry conditions, v is convex, minimizing
W (Vu) — Vi(x) - u(x)

results in pressure w = p = .

@ Ex: If pressure, wp, is A-semiconvex at an equilibrium ug, then modify
the energy by W(Vu) — 2\ u - ug, and the pressure becomes

w(y) = woly) + Aly|*.
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Directions

@ How are regularity of w and u related (elliptic systems regularity / OT
regularity)
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Directions

@ How are regularity of w and u related (elliptic systems regularity / OT
regularity)

@ Maximum principle (Pogorelov) type arguments to control
semiconvexity of w?

@ Handling other boundary conditions? The deformed domain D is no
longer fixed.
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Compressible Elasticity

o Consider the problem of minimizing

W(VU) + ¢(u#£Q).
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Compressible Elasticity

o Consider the problem of minimizing
W(VU) + ¢(u#£Q).

@ The deformed pressure is given by w € 0.
e Example: If W(Vu) + h(det Vu) corresponds to

o(u) = fD¢(d‘fC‘;)ch

with ¢(s) = h(s™1)s.

@ Same energy minimization result when w is convex.
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Connection with Wasserstein Harmonic Maps

@ Direct convex relaxation of u: Q — D to m € M(Q x D) with fixed
marginals.
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Connection with Wasserstein Harmonic Maps

@ Direct convex relaxation of u: Q — D to m € M(Q x D) with fixed
marginals.

e Matrix-valued ‘momentum measure' J € M(Q x D)d2. Continuity
equation (plus b.c.'s):

Vaor+Vp-J=0.
@ Stored energy becomes
dJ
W(—) dm
JQ JD dm
@ When w is convex then it is a solution to the dual problem; this

measure-valued relaxed problem coincides with the original.
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