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Outline

Goal: Interacting particle system
−→

scaling limits
Nonlinear PDEs, Stochastic PDEs

(e.g., Independent RWs → Linear heat equation ∂tu = ∆u)

Microscopic system
(=Interacting Random Walks with Creation and Annihilation)

▶ Glauber-Zero range process on large d-dim periodic lattice of size N

←− N −→

d = 2

◦ = sites occupied by (several) particles

each particle jumps to neighboring sites

▶ Zero range part = Random walks interacting at same sites

▶ Glauber part = Creation and annihilation of particles
with interaction
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Micro → Macro: Scaling in Space and Time

▶ Zero range part (=Interacting RWs) produces nonlinear Laplacian

▶ Glauber part produces reaction term

▶ (A) (with Sethuraman, Hilhorst, El Kettani, Park)
Glauber-Zero range on Td

N → Motion by mean curvature on Td

Td
N = {1, 2, . . . ,N}d= d-dim discrete torus of size N: Micro

Td = [0, 1)d= continuous torus of size 1: Macro

▶ (B) (with Bernardin, Sethuraman) Nonlinear Fluctuation:
Multi-species Zero range process on T1

N (No Glauber part)
→ Coupled KPZ equation (ill-posed SPDE) on T1

▶ [Keywords]

▷ Hydrodynamic limit (local ensemble average via local ergodicity)

▷ (1st and 2nd order) Boltzmann-Gibbs principle
▷ nonlinear Allen-Cahn equation, sharp interface limit
▷ ill-posed SPDE, renormalization

3 / 26



Part A

▶ Derivation of interface motion (Motion by mean curvature)
directly from micro system called Glauber-Zero range process
(=Interacting RWs with creation and annihilation)

▶ Proof: Combination of techniques of
(1) Probabilistic method (called Hydrodynamic limit):

Relative entropy method + Boltzmann-Gibbs principle
(2) PDE method:

Sharp interface limit for nonlinear Allen-Cahn equation

▶ For (2):
Expansion up to 2nd order (corrector in homogenization theory)
+ Comparison theorem for discrete Allen-Cahn equation
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1 Glauber-Zero range process

▶ Particles move on Td
N = {1, 2, . . . ,N}d : discrete torus of size N

▶ Zero range process on Td
N :

▷ g(k) = Jump rate of one particle to one of neighboring
sites when k particles exist at the same site

▷ g(k) = k ⇔ independent RWs, i.e., each particle has
same jump rate 1. This produces linear Laplacian ∆ at
macroscopic level.

▷ nonlinear g(k) produces nonlinear Laplacian.

▶ Configuration: η = {ηx}x∈Td
N
∈ XN = ZTd

N
+

←− N −→

ηx =

{
k , k particles at x

0, no particle at x ∈ Td
N

= ♯{particles at x}
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▶ “Ensemble” for Zero range part,

i.e., Equilibrium (or Invariant) measures:

▷ Translation-invariant product measures νρ, ρ ∈ [0,∞)
with mean ρ (particle density) on configuration space

XN = ZTd
N

+ (or X = ZZd

+ ).

▶ Glauber part: When the configuration is η,

▷ c+x (η) = Creation rate of one particle at x
c−x (η) = Annihilation rate of one particle at x

▷ These rates are local functions and translation invariant:
c±x (η) = c±(τ−xη), where τ is shift operator.

▶ Given the rates g , c± and initial configuration η(0), we can
construct the time evolution of particles on Td

N :

η(t) = {ηx(t)}x∈Td
N
, t ≥ 0

called Glauber-Zero range process.

▶ We assume some conditions on g , c± and initial distribution of η(0).
(e.g., spectral gap for Zero range generator.)
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Scaling from Micro to Macro

▶ The macroscopic empirical measure (density of particles) on
Td(= [0, 1)d : macroscopic region) associated with configuration
η ∈ XN is defined by

αN(dv ; η) =
1

Nd

∑
x∈Td

N

ηxδ x
N
(dv), v ∈ Td .

▶ space 1
N , mass 1

Nd

←− N −→

−→
1
N ← 1 →

micro macro

▶ We also introduce time change for η(t) s.t. time N2 (for Zero range
part) and time K = K (N)↗∞ (for Glauber part)

→ ηN(t) = {ηNx (t)}x∈Td
N
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2 Allen-Cahn equation at intermediate level

HD limit

▶ (Goal) We derive the homogenized motion by mean curvature
(MMC) from our particle system.

▶ For K fixed, in the hydrodynamic limit, we have

αN(dv ; ηN(t))→ ρ(t, v)dv as N →∞

and obtain, by the local ergodicity leading to local ensemble
averages, reaction-diffusion equation for the limit density ρ = ρK :

∂tρ = ∆φ(ρ) + Kf (ρ) on Td , (1)

▶ Here

φ(ρ)= Eνρ [g(η0)],

f (ρ)= Eνρ
[
c+(η)− c−(η)

]
are averages under ensembles νρ of particle density ρ.
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Choice of c±(η)

▶ One can construct creation/annihilation rates c±(η) such that
the corresponding f is bistable:

f has exactly three zeros 0 < α1 < α∗ < α2

and f ′(α1) < 0, f ′(α∗) > 0, f ′(α2) < 0
and satisfies φ-balance condition:∫ α2

α1
f (ρ)φ′(ρ)dρ = 0.

▶ The equation (1) is called (nonlinear) Allen-Cahn equation.

▶ One can derive (homogenized) MMC from A-C eq (1) as K →∞.
(This PDE result looks new to the best of our knowledge.)

0 α1 α∗ α2

W : W ′ = −f · φ′

α1 α2

φ-Modified Potential
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Phase separation

▶ Microscopically, the model has two different phases:
Sparse region (roughly, density α1) and
Dense region (density α2).

Macroscopically, these two regions are separated
by an interface Γt .

▶ Creation/annihilation mechanism at microscopic level keeps
macroscopic density at each of these stable states under time
evolution.

−→
1
N

α1 α2

Γt
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3 Main result of Part A

▶ αN(t, dv) := αN(dv ; ηN(t)) is the corresponding macroscopic
empirical measure.

Theorem 1: Assume several conditions on rates g , c±, initial value
ηN(0) (e.g., αN(0)→ χΓ0 and entropy condition stated below) and
K (N)→∞,K (N) ≤ δ(log logN)1/2 with small δ = δT > 0.
Then, we have for t ∈ [0,T ]

αN(t)→ χΓt :=

{
α1, one side of Γt ,

α2, another side of Γt ,

in probability, where the sides are determined by Γ0 and the hyper-
surface Γt in Td moves according to the homogenized motion by
mean curvature: V = λ0κ.

▶ V = normal velocity of Γt

▶ κ = mean curvature ×(d − 1) of Γt

▶ λ0 = product of surface tension and mobility (next page)

▶ T > 0 is taken such that Γt is smooth for t ∈ [0,T ].
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▶ (Entropy condition) H(µN
0 |νN0 ) = O(Nd−δ0) for some δ0 > 0, where

µN
0 is distribution (=probability law) of ηN(0) and νN0 is product

measure with mean {uN(0, x)}x (i.e., νN0 = local equilibrium).

▶ H(µ|ν) is the relative entropy:

H(µ|ν) :=
∫

dµ

dν
log

dµ

dν
· dν.

▶ λ0, interpreted as the product of surface tension and mobility, is
determined by homogenization effect from nonlinear Laplacian:

λ0 =

∫
R{φ

′(U0(z))U
′
0(z)}2dz∫

R φ′(U0(z)){U ′
0(z)}2dz

where U0 is the traveling wave solution for (1) with K = 1
connecting α1 and α2.

▶ λ0 = 1 if φ(u) = u.
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4 Proof of Theorem 1 (i.e., αN(t)→ χΓt )

▶ Combination of probabilistic and PDE methods

4.1 Probabilistic part

▶ Let µN
t be the distribution (=probability law) of ηN(t) on XN .

Choice of local equilibrium sates νNt

▶ We choose νNt appropriately as follows.

▶ Let uN(t) = {uN(t, x
N )}x∈Td

N
be the solution of the

discrete hydrodynamic equation (discrete Allen-Cahn equation):

∂tu
N(t, x

N ) = ∆Nφ(uN(t, x
N )) + Kf (uN(t, x

N )). (2)

▶ Let νNt ≡ νuN (t) be the product measure on XN with mean

{uN(t, x
N )}x∈Td

N
. This is a local equilibrium state with density

determined by the discrete HD equation (2).
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Theorem 2 (Main result in probabilistic part):
If H(µN

0 |νN0 ) = O(Nd−δ0) for some δ0 > 0, and
if 1 ≤ K (N) ≤ δ(log logN)1/2 for small δ > 0, we have

H(µN
t |νNt ) = o(Nd).

▶ Once Theorem 2 is shown, by the entropy inequality + Large
deviation estimate for νNt , one can show that αN(t) is close to
uN(t), the solution of the discrete HD eq (2) with diverging factor
K (N). The limit of uN(t) is studied in PDE part.

Proof of Theorem 2

(i) H.-T. Yau’s relative entropy method (to compute ∂tH(µN
t |νNt ) and

see it is an average under µN
t of certain microscopic function of the

form h − h̃(uNt,x) with h̃(ρ) = Eνρ [h])
(ii) Boltzmann-Gibbs principle: replacement of h − h̃ (under space-time

average and µN
t ) by linear fts of ηx with entropy and o(Nd) errors.

(iii) Linear fts vanish if uN(t) is determined by discrete HD eq (2).
(iv) To control prefactor in h, we need the condition on K (N).
(v) We finally apply Gronwall’s inequality.
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4.2 PDE part (Homogenization +Comparison argument)

Theorem 3: Under our assumptions, as N →∞

uN(t)→ χΓt :=

{
α1, one side of Γt ,

α2, another side of Γt ,

where the hypersurface Γt in Td moves according to the
homogenized motion by mean curvature: V = λ0κ.

▶ Combining Theorems 2 and 3, Theorem 1: “αN(t)→ χΓt in
probability” is shown.

α2 α1

Γt

Proof of Theorem 3

▶ We use comparison theorem for discrete PDE:
If u± are super/sub solutions of (2) (i.e., they satisfy it in
inequalities ≥ / ≤) and u−(0) ≤ u+(0), then u−(t) ≤ u+(t).

▶ This follows from the non-decreasing property of φ.
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Construction of super/sub solutions (with correctors):
— Propagation of interface

▶ We define u±(t, v), v ∈ Td by

u±(t, v) =U0

(
K 1/2d(t, v)± p(t)

)
+ K−1/2U1

(
t, v ,K 1/2d(t, v)± p(t)

)
± q(t).

▶ Here U0 = U0(z), z ∈ R is a traveling wave solution connecting α1

and α2 for (1) with K = 1 on R and d(t, v) is defined from the
signed distance from Γt .

▶ Corrector: U1 = U1(t, v , z) is the second term in the asymptotic
expansion in K for the PDE (1):

∂tu = ∆φ(u) + Kf (u).

▶ p(t) = e−βtK − eM1t −M2, q(t) = σ
(
βe−βtK + M1

K eM1t
)
,

with properly chosen β, σ,M1,M2 > 0.
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▶ Applying the comparison theorem for discrete PDE, we have

Proposition 4: Assume Γt , t ∈ [0,T ] is smooth and K = o(N2/3)
for K = K (N)→∞. Then, there exists N0 ∈ N such that

u−(t, v) ≤ uN(t, v) ≤ u+(t, v), t ∈ [0,T ], v = x
N , x ∈ Td

N

holds for every N ≥ N0.

▶ Initial layer problem (generation of interface) is also solved.

▶ By Proposition 4, one can complete the proof of Theorem 3.

Related results (Kawasaki=RWs with hard core exclusion)

▶ MMC from Glauber-Kawasaki dynamics: F-Tsunoda (JSP, 2019)

▶ Stefan problem from two component Glauber-Kawasaki dynamics:
De Masi-F-Presutti-Vares (ALEA, 2019)
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Part B

1. Multi-component coupled KPZ equation

2. n-species zero-range processes on TN

3. Nonlinear fluctuation leading to coupled KPZ equation
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1. Multi-component coupled KPZ equation

▶ Rn-valued KPZ eq for h(t, u) = (hi (t, u))ni=1 on T = [0, 1) (or R):

∂th
i = 1

2∂
2
uh

i + 1
2Γ

i
jk∂uh

j∂uh
k + ξi , 1 ≤ i ≤ n.

▶ We use Einstein’s convention.

▶ ξ(t, u) = (ξi (t, u))ni=1

(
≡ Ẇ (t, u)

)
is an Rn-valued space-time

Gaussian white noise with covariance structure

E [ξi (t, u)ξj(s, v)] = δijδ(u − v)δ(t − s).

▶ We can generalize ∂2
uh

i → D i
j ∂

2
uh

j (cross diffusion system,

D: symmetric, D > 0) and ξi → σi
j ξ

j (with another diffusion
coefficient σ).

▶ The coupling constants Γijk always satisfy bilinear condition:

Γijk = Γikj for all i , j , k , and (sometimes) trilinear condition

Γijk = Γikj = Γjik for all i , j , k . (T)
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▶ Γ = 0⇒ h ∈ C
1
4−, 12−([0,∞)× T) a.s.

▶ In general with Γ, ∂uh
i ∈ C− 1

2−(T) so that KPZ equation is
ill-posed. → Hairer’s theory of regularity structure ’14

▶ Role of trilinear condition (T): drop noise and compute
∂t∥∂uh∥2L2(T), then we have the term

∑
i,j,k

Γijk

∫
T
∂uh

j∂uh
k∂2

uh
idu

and this = 0 under (T) by integration by parts. “Converse” is also
true, i.e., if this vanishes for wide class of h, then (T) holds.

▶ This property is similar to Euler/Navier-Stokes equations.
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Results on coupled KPZ equation (F-Hoshino JFA ’17 on T)

▶ Local solvability with renormalization by applying
paracontrolled calculus due to Gubinelli-Imkeller-Perkowski ’15.

▶ Under the trilinear condition (T),

▶ (unique) invariant measure = Wiener measure
▶ Global existence, uniqueness for all initial values in
Cα, α < 1

2
▶ cancellation in log-renormalization (for 4th order terms)
▶ two types of approximations, difference of two limits

(cf. F-Quastel ’15 when n = 1)

Motivation to study coupled KPZ eq:
Nonlinear fluctuating hydrodynamics (Spohn)

Our goal: Derivation of coupled KPZ equation from microscopic systems.

When n = 1 (single component scalar-valued case), this was done
by Bertini-Giacomin (Cole-Hopf solution), Goncalves-Jara,

Goncalves-Jara-Sethuraman.
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2. n-species zero-range processes on TN

▶ To derive n-component system in the limit, we need to consider a
system with n-conserved quantities (n-species) at microscopic level.

▶ TN = {1, 2, . . . ,N} with periodic boundary condition. This is a
microscopic space corresponding to macroscopic T = [0, 1).

▶ Configuration space of particles: η = (ηi )ni=1 ∈ Ωn, Ω = ZTN
+ .

▶ ηix ∈ Z+ = {0, 1, 2, . . .}, x ∈ TN , 1 ≤ i ≤ n:
number of ith species particles at x .

▶ (Grosskinsky-Spohn) Jump rate gi (ηx) of ith species particle
depends on ηx = (ηix)

n
i=1 (only on numbers of particles at x) and

satisfies the compatibility condition → Detailed balance w.r.t.
product measures (ensembles) {νa; a ∈ [0,∞)n}.

▶ Weak asymmetry: Once jump happens, the probability of jump to
right is 1

2 + c
Nγ and to left is 1

2 −
c
Nγ , c > 0.

▶ We introduce a diffusive time change t 7→ N2t for the microscopic
process. The process is denoted by ηN(t) = (ηN,i

x (t))x∈Td
N ,1≤i≤n.

▶ γ = 1 for HD limit

▶ γ = 1
2 for KPZ fluctuation.
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3. Nonlinear fluctuation leading to coupled KPZ equation

▶ We now take γ = 1
2 , i.e.,

1
2 + c√

N
to right and 1

2 −
c√
N

to left.

▶ We consider the fluctuation field under equilibrium, i.e. ηN0
law
= νa0 .

▶ To cancel some diverging factor (drift in HD limit), we introduce

the moving frame with speed 2cλN
3
2 at microscopic level with

suitably chosen λ = λ(a0).

Y N,i
t (du) :=

1√
N

∑
x

(
ηN,i
x (t)− ai0

)
δ x

N − 2cλN3/2t
N

(du)

▶ The frame should have common speed for all i .
→ This gives a restriction to the choice of a0.
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Main result of Part B

▶ We choose a0 and λ(a0) properly.

Theorem 5: The limit Yt = (Y i
t )

n
i=1 of Y N

t = (Y N,i
t )ni=1 is the equi-

librium (unique energy) solution of coupled KPZ-Burgers equation:

∂tY
i = 1

2Qi (a0)∂
2
uY

i + Γijk(a0)∂u(Y
jY k) + qi (a0)∂uξ

i

▶ Convergence is in law in the space D([0,T ],S ′(T)n).
▶ Here ξ = (ξi )ni=1 are n independent space-time white noises.

▶ Qi (a), Γ
i
jk(a) and qi (a) are given by

Qi (a) = ∂ai g̃i (a), Γijk(a) = c∂aj∂ak g̃i (a), qi (a) =
√
g̃i (a).

▶ g̃i (a) are ensemble averages of gi under Bernoulli measures with
mean a = (ai )ni=1.

▶ We can also derive additional linear drift term +ci∂uY
i by

considering i-dependent weak asymmetry.

▶ hi : coupled KPZ ⇐⇒ Y i := ∂uh
i : coupled KPZ-Burgers
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Proof

▶ For the proof, we need to establish the 2nd order Boltzmann-Gibbs
principle, i.e., replacement under space-time average of nonlinear
function f of η s.t. f̃ (a0) = ∂ai f̃ (a0) = 0 (∀i) by quadratic function
of ηi − ai . We use equivalence of ensembles and spectral gap.

▶ For the identification of the limit, we use the uniqueness of
stationary coupled energy solutions due to Gubinelli-Perkowski.

▶ stationary energy solution = martingale solution+Yaglom
reversibility + L2-energy condition (convergence of nonlinear term)

▶ At Burgers level, we don’t see the renormalization.

Trilinear condition

▶ Our Γ(a0) satisfies the trilinear condition (T) after rewriting it in a
canonical form by change of time and magnitude.

▶ At least heuristically,
(T)⇐⇒ “invariant measure of coupled KPZ=white noise”
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Summary of the talk

Part A (HD limit, LLN)

1. Derivation of interface motion from interacting particle systems
with additional large factors

2. Combination of relative entropy method, Boltzmann-Gibbs principle
and techniques of PDEs

3. Motion by mean curvature with homogenization effect from the
nonlinear Laplacian

Part B (Nonlinear fluctuation)

1. Ill-posed system of SPDE from particle system

2. Renormalization, trilinear condition, 2nd order Boltzmann-Gibbs
principle

Thank you for your attention!
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