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Brief introduction on continuum limits

◦ Domain hZd = {hm : m ∈ Zd}.

◦ Functions uh : hZd → (R or C).
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Brief introduction on continuum limits

◦ (Right) difference operator ∇+
h = (∇+

h,1, · · · ,∇
+
h,1)

(∇+
h,juh)(x) :=

uh(x + hej)− uh(x)

h
, x ∈ hZd

◦ Discrete Laplacian ∆h = ∇h · ∇∗h

(∆huh)(x) :=
d∑

j=1

uh(x + hej) + uh(x − hej)− 2uh(x)

h2

Difference equations (ODEs) on the lattice hZd

∂tuh = ∆huh (heat); i∂tuh = −∆huh (Schrödinger); ∂2
t uh = ∆huh (wave)

+ nonlinear variations...
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Brief introduction on continuum limits

Question: Can we show convergence from a solution uh(t) to a difference
equation to a solution u(t) to the corresponding PDE on Rd as h→ 0?

◦ (Linear interpolation) For a function uh on a lattice hZd , we define

(lhuh)(x) := uh(hm) + (∇huh) · (x − hm) ∀x ∈ hm + [0, h)d .

Then,
(lhuh)(t, x)→ u(t, x) as h→ 0? (continuum limit)
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Brief introduction on continuum limits

Motivations

(1) numerical analysis
- FDM (finite difference method)
- finite lattice, time discretization...

(2) solid state physics
- hoping electrons on a crystal
- small amplitude waves ↔

scaling
continuum limit setting.

- more geometric lattices: triangular, honeycomb ...

(3) a few others...
- KdV limit from FPUT (in this talk)
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Brief introduction on continuum limits

References (for a class of dispersive PDEs)

(1) Continuum limit of NLS1 on hZd

- Ignat-Zuazua 2005, 2009, 2012
- H’-Yang 2019

(2) Continuum limit of fractional NLS on hZd

- Kirkpatrick-Lenzmann-Staffilani 2013: general long range interactions
- H’-Yang 2019
- Grande 2019 (arXiv): fractional temporal differentiation is included.

(3) Continuum limit of NLS on a finite lattice
- H’-Kwak-Nakamura-Yang 2021: 2d periodic lattice
- H’-Kwak-Yang 2021 (arXiv): 3d bounded lattice with zero boundary condition

(4) Derivation of nonlinear Dirac equation from NLS on a hexagonal lattice
- Ablowitz-Nixon-Zhu 2009, Ablowitz-Zhu 2012, Arbunich-Sparber 2018.

1nonlinear Schrödinger equation
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Brief introduction on continuum limits

A key aspect for continuum limit of nonlinear dispersive PDEs.

• better estimates for linear flows ⇒ better estimates for nonlinear solutions ⇒
continuum limit

Ex (NLS)

(lhuh)(t)− u(t) = lh

{
e it∆huh,0 − i

∫ t

0
e i(t−s)∆h(|uh|2uh)(s)ds

}
−
{
e it∆(lhuh,0)− i

∫ t

0
e i(t−s)∆(|u|2u)(s)ds

}
= (small error)2 − i

∫ t

0
e i(t−s)∆(|lhuh|2lhuh − |u|2u)(s)ds.

If ‖uh‖Lpt ([0,T ];L∞x ) and ‖u‖Lpt ([0,T ];L∞x ) are bounded, Grönwall’s inequality yields
continuum limit (+rate of convergence).

2by commutator estimates
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Brief introduction on continuum limits

A tool for hZd

Definition (Discrete Fourier transform)

For u : hZd → C, we define

(Fhu)(ξ) = hd
∑

x∈hZd

u(x)e−ix ·ξ, ξ ∈ [−π
h ,

π
h )d .

For g : [−π
h ,

π
h )d → C, we define

(F−1
h g)(x) =

1

(2π)d

∫
[−π

h
,π
h

)d
g(ξ)e ix ·ξdξ, x ∈ hZ.

• functions on a lattice hZd ↔ functions on a periodic box [−π
h ,

π
h )d .

• Inverse Fourier transform on hZd = Fourier series.
• As h→ 0, Fh and F−1

h formally converge to the Fourier and the inverse Fourier
transform on Rd .
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Brief introduction on continuum limit

Different dispersion ⇒ different linear estimates

Ex) 1d linear Schrödinger equation

⇒ Fh(−∆hu)(ξ) = Fh

{
−u(·+ h) + u(· − h)− 2u

h2

}
(ξ)

=
2− e ihξ − e−ihξ

h2
(Fhu)(ξ) =

2− 2 cos hξ

h2
(Fhu)(ξ).

⇒ (e it∆huh,0)(x) =
1

2π

∫ π
h

−π
h

e−
2it
h2 (1−cos(hξ))(Fhuh,0)(ξ)dξ.

Since (1− cos(hξ))′′ = h2 cos(hξ) (= 0 if ξ = ± π
2h ) and (1− cos(hξ))′′′ = −h3 sin(hξ),

the standard van der Corput lemma yields a weaker dispersion

|e it∆huh,0(x)| . 1

|th|1/3
in hZ

(
↔ |e it∆u0(x)| . 1

|t|1/2
in R

)
.
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Brief introduction on continuum limit

Different dispersion ⇒ different linear estimates

• A key in our analysis is to find a suitable linear estimates on a discrete setting.
⇒ It generates an interesting set of problems in a harmonic analysis perspective.

Oscillatory integral with a degenerate phase

Ex (Borovyk-Goldberg 2017)

Klein-Gordon

∫∫
[−π,π)2

e±it
√

1+2(1−cos ξ1)+2(1−cos ξ2)dξ1dξ2.

Deep theory in harmonic analysis
- Varchenko 1976, decay ← Newton’s polyhedron.
- Karpushkin 1986, stability.
- Series of works of Phong and Stein....
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Summary

• Continuum limit problems are introduced.

• A core in analysis would be to obtain suitable linear estimates.

• For dispersive equations, we may have different estimates. ⇒ oscillatory integral
theory is needed.
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MANIAC

MANIAC (Mathematical Analyzer Numerical Integrator And Computer)

◦ an early computer built in Los Alamos National Laboratory (1952-58).

(https://www.computerhistory.org/revolution/supercomputers/10/28/46)
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FPUT system

FPUT (Fermi-Pasta-Ulam-Tsingou) system3

Physicists Fermi, Pasta, Ulam and Tsingou introduced a simple nonlinear system for
numerical simulations (1955).

◦ 1D chain of vibrating strings interacting only with nearest neighbors.

3Historically Mary Tsingou’s contributions were ignored, and it is formerly called the FPU system.
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FPUT system

FPUT system

• There are various settings. In this talk, we consider an infinite chain4.

x ∈ Z : the label of strings

(q(t, x), p(t, x)) : position and momentum of the x-th string at time t.

V (q) = q2

2 −
q3

6 : standard FPU potential.{
∂tq(t, x) = p(t, x),

∂tp(t, x) = V ′
(
q(t, x + 1)− q(t, x)

)
− V ′

(
q(t, x)− q(t, x − 1)

)
Force = V ′

(
q(t, x + 1)− q(t, x)

)
− V ′

(
q(t, x)− q(t, x − 1)

)︸ ︷︷ ︸
acting on the x-th string. It depends only on their nearest neighbors.

4finite chain with zero boundary or periodic chain can be considered
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FPUT paradox

They anticipated thermalization.

single mode ⇒
chaotic interactions

equally distributed modes

Surprisingly at that time, numerical simulations showed the opposite behavior.

quasi-periodic motions
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FPUT paradox

[Gallavotti, The Fermi-Pasta-Ulam Problem, p 157]

This phenomenon is known as the FPUT paradox “at that time.”
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Emergence of KdV

In 1965, physicists Zabusky and Kruskal solved this puzzle discovering the connection
to the Kortweg de Vries (KdV) equation.

Zabusky and Kruskal’s discovery

Consider the relative displacement q̃(t, x) := q(t, x + 1)− q(t, x).

∂2
t q̃(t, x) = V ′

(
q̃(t, x + 1)

)
+ V ′

(
q̃(t, x − 1)

)
− 2V ′

(
q̃(t, x)

)
(FPUT)

h2w+

(
h3t, h(x − t)

)
+ h2w−

(
h3t, h(x + t)

)︸ ︷︷ ︸
counter-propagating KdV flows

(0 < h� 1)

solves the equation up to small error in terms of h, where w+ and w− solves

∂tw± ±
1

24
∂3
xw± ∓

1

4
(w2
±)x = 0 (KdV)
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Emergence of KdV

Thus,
quasi-periodicity of KdV ⇒ quasi-periodicity of FPUT

Huge literature on the FPUT system
◦ dynamical system.
◦ integrable system.
...

Younghun Hong (Chung-Ang University) KdV limit for FPU June 28, 2021 18 / 44



Rigorous proof (by a dynamical system approach)

Theorem (Schneider-Wayne ‘00)

Suppose that for j = 1, 2,

‖ψj‖H14+ (R) <∞, ‖〈x〉7ψj‖H7(R) <∞,∥∥〈x〉2(q̃0(x)− h2ψ1(hx)
)∥∥
`2(Z)

≤ Ch4,
∥∥〈x〉2(q̃1(x)− h3ψ2(hx)

)∥∥
`2(Z)

≤ Ch5

∑
x

q̃1(x) = 0,

∫
R
ψ2(x)dx = 0.

Let w±(t, x) be solutions to KdVs with initial data w±,0(x) = 1
2 (ψ1(x)±

∫ x
−∞ ψ2dy).

Then, for sufficently small h > 0, a solution q̃(t, x) to FPU with initial data (q̃0, q̃1)
satisfies

sup
t∈[0, 1

h2 ]

∥∥q̃(t, x)− h2w+(h3t, h(x − t))− h2w−(h3t, h(x + t))
∥∥
`∞(Z)

. h
7
2 .
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Summary

• Fermi, Pasta, Ulam and Tsingou observed quasi-periodic motions of their numerical
model (1955).

• Zabusky and Kruskal discovered the connection between FPUT and KdV (1965). It
explains quasi-periodicity of the FPUT system.

• Mathematically, Schneider and Wayne proved the connection using a dynamical
system approach (2000).
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Reformulation of the problem

• We revisit the problem using the discrete Fourier transform and the dispersive PDE
approach.

⇒ Can we relax some assumptions in the previous result?
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Reformulation of the problem

Recall

∂2
t q̃(t, x) = V ′

(
q̃(t, x + 1)

)
+ V ′

(
q̃(t, x − 1)

)
− 2V ′

(
q̃(t, x)

)
q̃(t, x) ≈ h2w+(h3t, h(x − t)) + h2w−(h3t, h(x + t)) : I (⊂ R)× Z→ R

Scaling

Introduce q̃h(t, x) := 1
h2 q̃( t

h3 ,
x
h ) : R× hZ→ R.

⇒ h6∂2
t q̃h(t, x) = ∆h

(
V ′
(
h2q̃h(t, x)

))
where

(∆hu)(x) =
u(x + h) + u(x − h)− 2u(x)

h2
, ∀x ∈ hZ

is a discrete Laplacian on hZ.
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Reformulation of the problem

In particular, when V (r) = r2

2 + r3

6 (standard FPU potential),

V ′(r) = r +
r2

2
= linear + quadratic.

FPU is a discrete nonlinear wave equation
∂2
t q̃h −

1

h4
∆hq̃h =

1

2h2
∆h(q̃2

h),

q̃h(0) = q̃h,0,

∂t q̃h(0) = q̃h,1.

By Duhamel’s formula, we write

q̃h(t) = cos

(
t
√
−∆h

h2

)
q̃h,0 + sin

(
t
√
−∆h

h2

)
h2

√
−∆h

q̃h,1

− 1

2

∫ t

0
sin

(
(t − s)

√
−∆h

h2

)√
−∆h

{
q̃h(s)

}2
ds.
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Reformulation of the problem

• On Fourier side,

cos

(
t
√
−∆h

h2

)
↔ cos

(
2t

h3

∣∣∣∣sin
hξ

2

∣∣∣∣) , sin

(
t
√
−∆h

h2

)
↔ sin

(
2t

h3

∣∣∣∣sin
hξ

2

∣∣∣∣)

Direct calculations (on Fourier side) yield

cos

(
t
√
−∆h

h2

)
=

1

2
e

t
h2∇h +

1

2
e−

t
4h2∇h

sin

(√
−∆h

h2

)
h2

√
−∆h

=
h2

2
e

t
h2∇h∇−1

h −
h2

2
e−

t
4h2∇h∇−1

h ,

sin

(
(t − s)

√
−∆h

h2

)√
−∆h =

1

2
e

t−s
h2 ∇h∇h −

1

2
e−

t−s
h2 ∇h∇h,

where
∇h ↔ 2i

h sin(hξ2 ).
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Reformulation of the problem

Separate the operators e∓
t
h2∇h .

⇒ a system of ”two coupled” equations for q̃+
h and q̃−h ,

q̃±h (t) =
1

2
e∓

t
h2∇h q̃±h,0 ∓

1

4

∫ t

0
e∓

(t−s)

h2 ∇h∇h

{
q̃+
h (s) + q̃−h (s)

}2
ds

with initial data

q̃±h,0 =
1

2

{
q̃h,0 ∓ h2∇−1

h q̃h,1

}
and

q̃h(t, x) = q̃+
h (t, x) + q̃−h (t, x).
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Reformulation of the problem

Next, we introduce
u±h (t) := e±

t
h2 ∂h q̃±h (t),

where ∂h is the Fourier multiplier of symbol iξ.

• e±
t
h2 ∂h is an almost translation. If t = h3k with k ∈ Z,

e±
t
h2 ∂hu(t, x) = e±hk∂hu(t, x) = u∓h (t, x ± hk) = u(t, x ± t

h2 ).

• Recall the Zabusky and Kruskal ansatz

q̃(t, x) = h2w+(h3t, h(x − t)) + h2w−(h3t, h(x + t)).

After scaling, it makes sense to translate q̃±h (t) by ± t
h2 .
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Reformulation of the problem

Finally, ...
⇒ coupled FPU

u±h (t) = S±h (t)u±h,0 ∓
1

4

∫ t

0
S±h (t − s)∇h

{
u±h (s) + e±

2s
h2 ∂hu∓h (s)

}2
ds,

with initial data

u±h,0 =
1

2

{
q̃h,0 ∓ h2∂−1

h q̃h,1

}
,

where

S±h (t) = e∓
t
h2 (∇h−∂h) ↔ e±

it
h2 (ξ+ 2

h
sin( hξ

2
)).

• The coupled FPU is nothing but a reformulation of FPU following Zabusky and
Kruskal’s idea.

• However, it is easier to understand what is happening in a Fourier analysis
perspective.
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Reformulation of the problem: From coupled to decoupled FPU

Observation 1

If u±h (t) behaves linearly (this must be true locally in time),

e±
2s
h2 ∂hu∓h (s, x) ≈ e±

2s
h2 ∂hS∓h (s)u∓0 (x)

=
1

2π

∫ π
h

−π
h

e±
2is
h
ξe∓

is
h2 (ξ+ 2

h
sin( hξ

2
))(Fhu

∓
0 )(ξ)e ixξdξ

=
1

2π

∫ π
h

−π
h

e±
is
h2 (ξ− 2

h
sin( hξ

2
))+ixξ(Fhu

∓
0 )(ξ)dξ.

Its group velocity diverges

∓ 1
h2 (1 + cos(hξ2 ))→ ∓∞, ξ ∈ [−π

h ,
π
h ).

 Fast dispersion!

Remove the cross terms ⇒ decoupled FPU

v±h (t) = S±h (t)u±h,0 ∓
1

4

∫ t

0
S±h (t − s)∇h

{
v±h (s)

}2
ds,
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Reformulation of the problem: From decoupled FPU to KdV

Observation 2

The linear propagator S±h (t) formally converges to the Airy flow S±(t), because by
Taylor’s theorem,

∓ 1
h2 ( 2

h sin(hξ2 )− ξ) = ±( ξ
3

24 −
h2ξ5

1920 + · · · )→ ± ξ3

24 .

decoupled FPU ⇒ KdV

w±(t) = S±(t)u±0 ∓
1

4

∫ t

0
S±(t − t1)∂x

{
w±(t1)

}2
dt1

where
S±(t) = e∓

t
24
∂3
x .
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Summary

3 equations

(1) coupled FPU (=FPU)

u±h (t) = S±h (t)u±h,0 ∓
1

4

∫ t

0
S±h (t − s)∇h

{
u±h (s)+e±

2s
h2 ∂hu∓h (s)

}2
ds

• We expect that the coupled terms e±
2s
h2 ∂hu∓h (s) will disappear as h→ 0.

(2) decoupled FPU

v±h (t) = S±h (t)u±h,0 ∓
1

4

∫ t

0
S±h (t − s)∇h

{
v±h (s)

}2
ds

• We expect that S±h (t)→ S±(t) as h→ 0.

(3) KdV

w±(t) = S±(t)u±0 ∓
1

4

∫ t

0
S±(t − s)∂x

{
w±(s)

}2
ds
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Main results

Definition (Lp norm)

‖u‖Lp(hZ) :=


{
h
∑
x∈hZ

|u(x)|p
}1/p

if 1 ≤ p <∞,

sup
x∈hZ

|u(x)| if p =∞.

Definition (Sobolev norm)

‖u‖W s,p(hZ) : = ‖(1−∆h)
s
2 u‖Lp(hZ),

‖u‖Ẇ s,p(hZ) : = ‖(−∆h)
s
2 u‖Lp(hZ).
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Main results (1): Convergence to the decoupled FPU

Theorem (H.-Kwak-Yang 2021; from couple to decoupled FPU)

Suppose that
sup

h∈(0,1]
‖u±h,0‖Hs(hZ) <∞

for some s ∈ (0, 1]. Let(
u+
h (t), u−h (t)

) (
resp.

(
v+
h (t), v−h (t)

))
be the solution to the coupled FPU (resp. the decoupled FPU) with discretized initial
data (u+

h,0, u
−
h,0). Then, there exists T > 0, independent of h ∈ (0, 1], such that∥∥u±h (t)− v±h (t)

∥∥
Ct([−T ,T ];L2

x (hZ))
. hs‖u±0 ‖Hs(R).
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Main results: Linear interpolation

Definition (Linear interpolation operator)

For a function fh : hZ→ C on a lattice domain, we define

(lhfh)(x) := fh(xm) + (∂+
h fh)(xm) · (x − xm), ∀x ∈ xm + [0, h),
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Main results (2): Convergence to KdV

Theorem (H.-Kwak-Yang 2021; from decoupled FPU to KdV)

Suppose that
sup

h∈(0,1]
‖u±h,0‖Hs(hZ) <∞

for some s ∈ ( 3
4 , 1]. Let(

v+
h (t), v−h (t)

) (
resp.

(
w+(t),w−(t)

))
be the solution to the decoupled FPU (resp. the KdVs) with discretized initial data
(u+

h,0, u
−
h,0) (resp. with initial data (u+

0 , u
−
0 ) = (lhu

+
h,0, lhu

−
h,0)). Then, there exists

T > 0, independent of h ∈ (0, 1], such that∥∥lhv±h (t)− w±(t)
∥∥
Ct([−T ,T ];L2

x (R))
. h

2s
5 ‖u±h,0‖Hs(hZ).

Combining two theorems, we establish convergence from FPU to KdV as h→ 0 “for

H
3
4

+

data”.
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Dispersive PDE techniques

What do we need?

• Since we would like to prove convergence as h→ 0, we need

inequalities which hold uniformly in h ∈ (0, 1]

- On a lattice hZ, we have the embedding L1(hZ) ↪→ L∞(hZ), which is not true on R:

‖u‖L∞(hZ) = sup
x∈hZ

|u(x)| ≤
∑
x∈hZ

|u(x)| =
1

h
‖u‖L1(hZ).

For fixed h > 0, we have more inequalities, but we cannot use them if constant blows
up as h→ 0.

- uniform Sobolev inequalities, uniform Littlewood-Paley inequalties... (H.-Yang ‘19).
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Dispersive PDE techniques

What do we need? (continued)

• To handle low regularity data, we need

various uniform dispersive/smoothing estimates

- Fourier analysis, harmonic analysis, and dispersive PDE techniques must be useful!
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Example 1: local smoothing estimate

For the Airy flow
S±(t) ↔ e±i

t
24
ξ3
,

Theorem (Local smoothing estimate for Airy flow; Kenig-Ponce-Vega ’91)

‖∂xS±(t)u0‖L∞x (R;L2
t (R)) . ‖u0‖L2(R).

For the linear FPU flow

S±h (t) ↔ e∓
it
h2 ( 2

h
sin( hξ

2
)−ξ),

Theorem (Local smoothing estimate for linear FPU flow; H.-Kwak-Yang)

‖∂hS±h (t)uh,0‖L∞x (hZ;L2
t (R)) . ‖uh,0‖L2(hZ).
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Example 1: local smoothing estimate

More generally, we have

Lemma

If p : R→ R is a C 1 monotone function, then

∥∥∥e itp(−i∇)u0

∥∥∥
L∞x L2

t

.

∥∥∥∥∥ 1√
|p′(−i∇)|

u0

∥∥∥∥∥
L2

.

Sketch of the proof∥∥∥e itp(−i∇)
√
|p′(−i∇)|u0

∥∥∥
L2
t

=

∥∥∥∥∫
R
e itp(ξ)e ixξ

√
|p′(ξ)|û0(ξ)dξ

∥∥∥∥
L2
t

=

∥∥∥∥∥
∫
R
e itτe ixξ

1√
|p′(ξ)|

û0(ξ)dτ

∥∥∥∥∥
L2
t

(with τ = p(ξ))

∼

∥∥∥∥∥e ixξ 1√
|p′(ξ)|

û0(ξ)

∥∥∥∥∥
L2
τ

=

{∫
R

|û0(ξ)|2

|p′(ξ)|
dτ

}1/2

= ‖û0‖L2
ξ
∼ ‖u0‖L2 .
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Example 1: local smoothing estimate

Our setting √
p′(ξ) =

√
1

h2

(
1− cos

(
hξ

2

))
Good algebra by the double angle and the half-angle formulas

2
h | sin(hξ2 )|√

1
h2 (1− cos(hξ2 ))

=
2|2 sin(hξ4 ) cos(hξ4 )|
√

2| sin(hξ4 )|
= 2
√

2| cos(hξ4 )| . 1!

Thus,

‖S±h (t)uh,0‖L∞x (hZ;L2
t (R)) .

∥∥∥∥∥ 1√
|p′(−i∇)|

u0

∥∥∥∥∥
L2

. ‖∂−1
h uh,0‖L2(hZ).
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Example 1: local smoothing estimate

In general, we don’t expect smoothing in a discrete setting.

Failure of local smoothing for Schrödinger flow

For the linear Schrödinger flow e it∆h ,

p(ξ) =
2(1− cos(hξ))

h2
⇒ p′(ξ) =

2 sin(hξ)

h
≈ 0 near ± π

h
.

No local smoothing for the discrete Schrödinger equation [Ignat-Zuazua 09]
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Example 2: X s,b blinear estimates

Definition (X s,b space for KdV)

‖u‖
X s,b
±

:=

{∫ ∞
−∞

∫ ∞
−∞
〈ξ〉2s〈τ − ξ3〉2b|ũ(τ, ξ)|2dξdτ

} 1
2

.

Lemma (Kenig-Ponce-Vega ’93)

For s ≥ −3
4 , there exist b = b(s) > 1

2 and δ = δ(b) > 0 such that∥∥∇(uv)
∥∥
X s,b−1+δ . ‖u‖X s,b‖v‖X s,b .

• The bilinear estimates are a fundamental tool in dispersive PDEs to prove low
regularity well-posedness.
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Example 2: X s,b blinear estimates

Definition

‖uh‖X s,b
h,±

:=

{∫ ∞
−∞

∫ π
h

−π
h

〈ξ〉2s〈τ ∓ 1
h2 (ξ − 2

h sin(hξ2 ))〉2b|ũh(τ, ξ)|2dξdτ

} 1
2

.

Lemma (H.-Kwak-Yang)

For s ′ ≥ s ≥ 0, there exist b = b(s) > 1
2 and δ = δ(b) > 0 such that∥∥∇h(u±h · v

±
h )
∥∥
X s,b−1+δ
h,±

. ‖u±h ‖X s,b
h,±
‖v±h ‖X s,b

h,±
,∥∥∥∇h

(
e±

2t
h2 ∂hu∓h · e

± 2t
h2 ∂hv∓h

)∥∥∥
X s,b−1+δ
h,±

. hs
′−s‖u∓h ‖X s′,b

h,∓
‖v∓h ‖X s′,b

h,∓
,∥∥∥∇h

(
u±h · e

± 2t
h2 ∂hv∓h

)∥∥∥
X s,b−1+δ
h,±

. hs
′−s‖u±h ‖X s′,b

h,±
‖v∓h ‖X s′,b

h,∓
.

• The proof again heavily uses the good algebras.
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And more...

In the joint work with Chulkwang Kwak and Changhun Yang, we proved:

• maximal function estimates for the linear FPU flows,
• Strichartz estimates for the linear FPU flows,
• how the linear interpolation works in this setting.

Collecting all, we proved convergence from FPU to KdV.
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Thank you for your attention!
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