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Organization of the talk

Pictures

2D Euler, heuristics (stability/instability)

Well-posedness and Critical regularity

Proof
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I. Gallery
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2D flows

Large-scale atmosphere and ocean dynamics: essentially 2D
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2D flows

Figure: Saturn’s hexagon (2009)
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2D flows

Figure: Turbulence in 2D
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2D flows

Figure: Axisymmetric water jet at Re ∼ 2300
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2D flows

Figure: Hill’s smoke ring (1894) at Re ∼ 10000
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2D flows

Figure: Birth of a Kaden spiral (1931) at Re ∼ 1000
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2D flows

Figure: Kelvin-Helmholtz instability (1871, 1868)
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2D flows

Figure: Kelvin-Helmholtz in real life
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2D flows

Figure: Kármán vortex street (1963)
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2D flows

Figure: Karman vortex street behind Jeju island
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Absence of Turbulence in 2D

Kolmogorov conjecture (1940s)

Yudovich (1956)

Arnol’d (1960)

Meshalkin-Sinai (1961)

Figure: Kim-Okamoto (2010)
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Summary: 2D flows

Large-scale coherent structures at low viscosity

Stability/Instability coexistence

Some rigorous results exist
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II. Equations and Heuristics
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Incompressible Euler equations in 2D

2D Euler 
∂tu + u · ∇u +∇p = 0,

∇ · u = 0,

u(t = 0) = u0.

(Euler)

2D Euler in vorticity form: ω = ∇× u
∂tω + u · ∇ω = 0,

u = ∇×∆−1ω,

ω(t = 0) = ω0

(Euler-vorticity)

Here u : [0,∞)× Ω→ R2, p : [0,∞)× Ω→ R,
ω : [0,∞)× Ω→ R with a two-dimensional domain Ω.
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Vorticity formulation for Euler

Flow:

d

dt
Φ(t, x) = u(t,Φ(t, x)), Φ(0, x) = x .

For fixed t,

Φ(t, ·) : Ω→ Ω

is a diffeomorphism.

Along the flow:
ω(t,Φ(t, x)) = ω0(x).
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Mechanism of stability and instability

Stability

Kinetic energy conservation: ‖u‖L2 = ‖ω‖H−1 (low frequency
control)

Transport, incompressibility: ‖ω‖Lp for any p (distribution
function).

e.g. Constant vorticity in a domain, piecewise constant with
odd symmetry

Instability (quantify by growth of ‖ω‖H1 , ‖ω‖C1 , etc.)

Incompressibility implies vortex thinning

∂t∇ω + u · ∇ω = [∇u]T∇ω.
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Rigorous instability results

Well-posedness: “reasonable” function space X

global regularity based on the a priori estimate

d

dt
‖ω‖X . ‖ω‖X‖ω‖L∞ log(10 +

‖ω‖X
‖ω‖L∞

)

together with ‖ω‖L∞ = ‖ω0‖L∞ , we obtain

‖ω(t)‖X . exp(C exp(Ct)).

Question: Any lower bound on the solution norm? Strictly related
to dynamics at critical regularity.
Recent progress: Denissov, Kiselev-Sverak, Zlatos, ... Use
stability to prove instability.
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Turning stability into instability: general outline

There is NO absolutely stable 2D incompressible flow.

Given ω∗: nonlinearly stable steady state with velocity u∗.

Consider data ω0 = ω∗ + ω̃0: perturbation equation

∂t ω̃ + (ũ + u∗) · ∇ω̃ = 0.

Solve and deduce growth for the linear equation

∂t ω̃
lin + u∗ · ∇ω̃lin = 0.

From stability: ω̃ ' ω̃lin, in the Lagrangian sense.

Persists until |ω̃| ∼ |ω∗|: long time result.

Infinite time result requires a special argument: ingenuity.
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III. Mathematical Theory
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Notion of wellposedness

Fix some Banach space X . Given initial data ω0 ∈ X , we say
(Euler) is wellposed in X if:

(Existence) for some T > 0, there is a solution in
L∞([0,T ];X ).

(Uniqueness) the solution is unique in the class L∞([0,T ];X ).

Really the basic requirement! Transport system: expect the
regularity of the solution to be preserved in time. (Not even asking
for continuity of the solution map.)
In practice, want ‖ω‖L∞t X . ‖ω0‖X . Necessary for continuity of
the solution operator.
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Sobolev wellposedness and critical regularity

Theorem (classical)

2D Euler is well-posed with X = W s,p if sp > 2. In higher
dimensions, sp > n suffices.

Definition: critical Sobolev spaces

The space X = W s,p is called critical (with respect to Euler) if
sp = n in n spatial dimensions.

Theorem (Bourgain-Li ’15 ’19, Elgindi-J. ’17)

Euler is illposed in W s,p with sp = n if 0 < s < n.
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Sobolev wellposedness and critical regularity

Supercritical case sp < n.

Yudovich theory in 2D: Existence and uniqueness in L∞.

Precise illposedness statement (Bourgain-Li):

(norm inflation) for any ε, δ > 0, there exists ω0 ∈ C∞ s.t.

‖ω0‖W s,p < ε sup
t∈(0,δ)

‖ω(t)‖W s,p >
1

ε
.

(nonexistence–2D) there exists ω0 ∈W s,p ∩ L∞ such that the
Yudovich solution escapes W s,p instantaneously. That is,

‖ω(t)‖W s,p = +∞, t > 0.

Similar result in Cm spaces: (Misiolek-Yoneda ’16,
Elgindi-Masmoudi ’17, Bourgain-Li ’15)

Open problems.

In-Jee Jeong (Seoul National Univ.) Critical space illposedness for incompressible Euler



Sobolev wellposedness and critical regularity

Supercritical case sp < n.

Yudovich theory in 2D: Existence and uniqueness in L∞.

Precise illposedness statement (Bourgain-Li):

(norm inflation) for any ε, δ > 0, there exists ω0 ∈ C∞ s.t.

‖ω0‖W s,p < ε sup
t∈(0,δ)

‖ω(t)‖W s,p >
1

ε
.

(nonexistence–2D) there exists ω0 ∈W s,p ∩ L∞ such that the
Yudovich solution escapes W s,p instantaneously. That is,

‖ω(t)‖W s,p = +∞, t > 0.

Similar result in Cm spaces: (Misiolek-Yoneda ’16,
Elgindi-Masmoudi ’17, Bourgain-Li ’15)

Open problems.

In-Jee Jeong (Seoul National Univ.) Critical space illposedness for incompressible Euler



Understanding criticality

Try a priori estimate: e.g. H1 for ω,

1

2

d

dt
‖∇ω‖2

L2 = −
∫
∇u · ∇ω∇ω.

Recall ∇u = ∇∇× (−∆)−1ω.
ω ∈ H1 ⇐⇒ ∇u ∈ H1 6=⇒ ∇u ∈ L∞.
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Motivations

Strongest conservation, uniqueness class, scaling invariance

Nontrivial o(1) time dynamics (cf. singular vortex patches)

Slightly subcritical dynamics (cf. Elgindi ’21)

Slightly supercritical dynamics
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Failure is log
1
2 in H1.

Wellposedness in slightly regularized systems:

Critical Besov wellposedness

Logarithmically regularized Euler

Logarithmically dissipative Euler

Losing estimate

Enhanced dissipation in the Navier-Stokes case
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Failure is log
1
2 in H1.

Critical Besov wellposedness

n-dim’l Euler is LWP in B
n/p
p,1 , 1 ≤ p ≤ ∞.

Vishik (’98, ’99), Pak-Park (’04, ’13), Chae (’04).
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Failure is log
1
2 in H1.

Logarithmically regularized Euler

Replace u = ∇×∆−1 ln−γ(10−∆)ω (Chae-Constantin-Wu ’11).
Critical Sobolev Well-posed for γ > 1

2 (Chae-Wu ’12)
Critical Sobolev ill-posed for γ ≤ 1

2 (Kwon ’20)
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Failure is log
1
2 in H1.

Logarithmical dissipation

Consider ∂tω + u · ∇ω = − lnγ(10−∆)ω.
Critical Sobolev Well-posed for γ > 1

2
Critical Sobolev ill-posed for γ ≤ 1

2 ?

In-Jee Jeong (Seoul National Univ.) Critical space illposedness for incompressible Euler



Failure is log
1
2 in H1.

Losing estimate in 2D

(Elgindi-J. ’17, Brue-Nguyen ’20)
ω0 ∈ H1 ∩ L∞ → ω(t) ∈ H1−Ct ∩W 1,2−Ct .

Think about the “correct” proof of the CK theorem.
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The question of Yoneda

Question

2D Navier-Stokes is globally well-posed for ω0 ∈ H1 for any ν > 0:

∂tω
ν + uν · ∇ων = ν∆ων .

Then, what happens for ων as ν → 0?

Inviscid limit known to hold only when Euler is wellposed.

Theorem (J.-Yoneda ’20)

There exists H1 convergent sequence ων0 with solutions

‖ων(t)‖H1 & (ln
1

ν
)c(t)‖ω0‖H1

for any t > 0 and some c(t) > 0.
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SQG case

Modify the velocity as follows: u = ∇× (−∆)−
1
2ω. (Called SQG)

Theorem (J.-Kim ’21+)

SQG is illposed in the critical Sobolev space H2, in the same sense
as in Bourgain-Li.

The proof extends to many other related systems.
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IV. Proof
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The proof

Key points: choice of initial data, dynamic propagation of∫
∇u∇ω∇ω � 1.

Difficulty: strong non-locality, a regularization effect
‖∇u(t)‖L∞ . t−1 (Elgindi-J.)

Non-locality: “Key Lemma” (Kiselev-Sverak ’14)

∇u(x) '
∫
y≥x

ω(y)

|y |2
dy

Key Lemma + Yudovich estimates: EJ ’17 proof.

Key Lemma + dyadic bootstraping arguments: EY ’20 proof.
Without contradiction, quantitative local growth rate.

Extension to the SQG case: Key Lemma, dyadic bootstrap
with refined geometric control.
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Dynamics of Bourgain-Li bubbles

Define Bourgain-Li bubbles:

Fix some smooth ϕ ≥ 0 supported in a neighborhood of
( 1

2 ,
1
2 ).

For some bounded non-negative sequence {aj}j≥0, define

ω0 =
∑
j≥0

ajϕ(2jx).

Extend to R2 (or T2) using odd symmetry.

Observations:

ω0 ∈ L∞ =⇒ unique global solution ω ∈ L∞([0,∞); L∞)
(Yudovich theory).

ω0 ∈ H1 ⇐⇒ {aj} ∈ `2.
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Dynamics of Bourgain-Li bubbles

A stable vortex configuration for instability. Difficulty: inviscid
damping, inverse energy cascade (well-known in physics).
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Stability of the instability again!

Quantify small-scale creation in Bourgain-Li bubbles

The j-th bubble is almost invariant for the timescale

τj ∼
1

Sj
, Sj =

j−1∑
k=0

ak .

Improvement over any existing WP theory, using geometry of
the data (stability).

The j-th bubble is stretched as follows (instability):

‖ω(t)‖H1(Φ(t,Bj )) & aj(Sj)
ct .

Square summation in j gives the H1 norm.

Corollary: 2D Euler is illposed in H1, by taking initial data
with {aj} ∈ `2\`1. Application to turbulent flows?
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Thank you for listening!
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