Sobolev spaces revisited

Po-Lam Yung

Australian National University

November 29, 2021

Introduction

- ▶ We will work on \mathbb{R}^n with $n \ge 1$.
- For $1 \leq p < \infty$, the homogeneous Sobolev space $\dot{W}^{1,p}$ consists of all $u \in L^1_{\mathrm{loc}}$ modulo constants, whose distributional gradient $\nabla u \in L^p$. It is normed by

$$\|\nabla u\|_{L^p} = \left(\int_{\mathbb{R}^n} |\nabla u|^p dx\right)^{1/p}.$$

▶ The homogeneous BV space (BV = bounded variation) consists of all $u \in L^1_{\text{loc}}$ modulo constants, whose distributional gradient ∇u is a finite Radon measure (written $\nabla u \in \mathcal{M}$). In other words, it is the space of all $u \in L^1_{\text{loc}}$ such that

$$\sup \left\{ \left| \int_{\mathbb{R}^n} u(x) \operatorname{div} \phi(x) dx \right| \colon \phi \in C^1_c(\mathbb{R}^n; \mathbb{R}^n), \|\phi\|_{L^{\infty}(\mathbb{R}^n; \mathbb{R}^n)} \le 1 \right\}$$

is finite (which in particular contains $\dot{W}^{1,1}$). It is normed by

$$||u||_{\dot{\mathsf{RN}}} = ||\nabla u||_{\mathcal{M}}.$$

- ▶ In joint work with Haïm Brezis and Jean Van Schaftingen, we established a new formula for $\|\nabla u\|_{L^p(\mathbb{R}^n)}$ for $u \in C_c^\infty$ that involves only difference quotients and no gradients.
- ▶ Together with Andreas Seeger, this formula is extended to all $u \in \dot{W}^{1,p}$, or all $u \in \dot{BV}$, and in fact we found a natural one-parameter family of such formulae.
- Such one-parameter family of formulae can be used to recover certain Gagliardo-Nirenberg interpolation inequalities due to Cohen, Dahmen, Daubechies and DeVore.
- ▶ It also allows us to go beyond the standard range and prove some substitutes when such inequalities fail.
- Our formula for $\|\nabla u\|_{L^p(\mathbb{R}^n)}$ is given in terms of a weak- L^p (quasi)norm on the product space $\mathbb{R}^{2n}=\mathbb{R}^n\times\mathbb{R}^n$, so let's begin by reviewing the notion of weak- L^p .

L^p versus weak- L^p

▶ For $1 \le p < \infty$, if $f \in L^p(\nu)$ for some measure ν , then

$$||f||_{L^p(\nu)}^p = \int |f|^p d\nu \ge \lambda^p \nu \{x \colon |f(x)| > \lambda\} \quad \forall \lambda > 0.$$

In particular, if $f \in L^p(\nu)$, then

$$\sup_{\lambda > 0} \left(\lambda \nu \{x \colon |f(x)| > \lambda \}^{1/p} \right) < \infty$$

but the converse is not necessarily true.

- ▶ If f is measurable and the supremum above is finite, then f is said to be in weak- $L^p(\nu)$. Its weak- L^p (quasi)-norm is defined as the above supremum, and denoted by $[f]_{L^p,\infty(\nu)}$.
- **Example:** $f(x) = |x|^{-n/p}$ is in weak- $L^p(dx)$ on \mathbb{R}^n , because

$$\mathcal{L}^n\{x \in \mathbb{R}^n \colon |x|^{-n/p} > \lambda\} = \mathcal{L}^n(B(0, \lambda^{-p/n})) = \lambda^{-p} \mathcal{L}^n(B(0, 1)).$$

(Henceforth we write \mathcal{L}^n for Lebesgue measure on \mathbb{R}^n .) It is not in $L^p(dx)$, because $\int_{\mathbb{R}^n} |f|^p dx = \int_{\mathbb{R}^n} |x|^{-n} dx = +\infty$.

Modified difference quotients

- ightharpoonup Write $\Delta_h u(x) := u(x+h) u(x)$ for $x, h \in \mathbb{R}^n$.
- ► If we believe that

$$|\nabla u(x)| \simeq \frac{|\Delta_h u(x)|}{|h|},$$

then to express $\|\nabla u\|_{L^p(\mathbb{R}^n)}$ using a difference quotient instead of a gradient, a naive guess might be to try

$$\iint_{\mathbb{R}^{2n}} \frac{|\Delta_h u(x)|^p}{|h|^p} dh dx \quad \text{ in place of } \quad \int_{\mathbb{R}^n} |\nabla u(x)|^p dx.$$

- Not working, because it doesn't scale upon $u(x) \mapsto u(tx)$.
- A proper scaling will be achieved if we consider

$$\iint_{\mathbb{R}^{2n}} \frac{|\Delta_h u(x)|^p}{|h|^p} \frac{dhdx}{|h|^n}$$

instead, which is $\iint_{\mathbb{R}^{2n}} \mathcal{Q}_{1+\frac{n}{2}} u(x,h)^p dh dx$ if

$$Q_b u(x,h) := \frac{|\Delta_h u(x)|}{|h|^b}.$$

Fractional Sobolev spaces

$$Q_b u(x,h) := \frac{|\Delta_h u(x)|}{|h|^b} = \frac{|u(x+h) - u(x)|}{|h|^b}$$

▶ Indeed, for 0 < s < 1 and $1 \le p < \infty$, a fractional Sobolev space $\dot{W}^{s,p}$ can be defined as the space of all $u \in L^1_{\mathrm{loc}}(\mathbb{R}^n)$ such that

$$||u||_{\dot{W}^{s,p}}^p := \iint_{\mathbb{R}^{2n}} \mathcal{Q}_{s+\frac{n}{p}} u(x,h)^p dh dx < \infty.$$

When $1 , it is known to be equal to the diagonal Besov space <math>\dot{B}^s_{n,p}$ with comparable norms.

- So this suggests again that maybe $\|\nabla u\|_{L^p(\mathbb{R}^n)}$ should be compared to $\|\mathcal{Q}_{1+\frac{n}{n}}u\|_{L^p(\mathbb{R}^{2n},dxdh)}$?
- Not working; for $u \in C_c^{\infty}(\mathbb{R}^n)$, unless $u \equiv 0$, the L^p norm on \mathbb{R}^{2n} is always infinite! (Issue: $|h|^{-n/p}dh$ is not L^p on \mathbb{R}^n).

The BBM formula

- A famous formula by Bourgain, Brezis and Mironescu (BBM) explores what happens to $\|u\|_{\dot{W}^{s,p}}$ as $s \to 1^-$.
- ▶ On \mathbb{R}^n , it says for $1 \leq p < \infty$ and (say) $u \in C_c^2$, we have

$$\lim_{s \to 1^{-}} (1 - s) \|u\|_{\dot{W}^{s,p}}^{p} = \frac{k(p, n)}{p} \|\nabla u\|_{L^{p}}^{p}$$

where k(p,n) is some explicit constant depending on p and n, given by $k(p,n):=\int_{\mathbb{S}^{n-1}}|e\cdot\omega|^pd\omega$ and $e\in\mathbb{S}^{n-1}$. (A related result of Maz'ya and Shaposhnikova computed

 $\|u\|_{L^p}^p$ by considering $\lim_{s\to 0^+} s\|u\|_{\dot{W}_s,p}^p$.)

- ▶ In particular, $\|Q_{s+\frac{n}{p}}u\|_{L^p(\mathbb{R}^{2n},dxdh)}$ blows up like $(1-s)^{-1/p}$ as $s \to 1^-$ unless u is a constant, another indication that $\|Q_{1+\frac{n}{p}}u\|_{L^p(\mathbb{R}^{2n},dxdh)}$ is not good for computing $\|\nabla u\|_{L^p}$.
- Our first main result offers an alternative point of view, that does not involve varying s, but involves a weak- L^p norm instead of the L^p norm on \mathbb{R}^{2n} .
- ▶ Remember $|h|^{-n/p}$ is not in $L^p(dh)$, but it is in weak- $L^p(dh)$.

A formula for $\|\nabla u\|_{L^p}$

Theorem (Brezis, Van Schaftingen, Yung)

Let $n \geq 1$, $1 \leq p < \infty$ and $u \in C_c^{\infty}(\mathbb{R}^n)$. Then

$$\|\nabla u\|_{L^p} \simeq [\mathcal{Q}_{1+\frac{n}{p}}u]_{L^{p,\infty}(\mathbb{R}^{2n},dxdh)} = \left[\frac{\Delta_h u}{|h|^{1+\frac{n}{p}}}\right]_{L^{p,\infty}(\mathbb{R}^{2n},dxdh)}.$$

In other words, for $\lambda > 0$, denote by

$$E_{\lambda} := \left\{ (x, h) \in \mathbb{R}^{2n} \colon \mathcal{Q}_{1 + \frac{n}{p}} u(x, h) > \lambda \right\}$$

the superlevel set of $\mathcal{Q}_{1+\frac{n}{n}}u$ at height λ . Then

$$\|\nabla u\|_{L^p}^p \simeq \sup_{\lambda>0} \Big(\lambda^p \mathcal{L}^{2n}(E_\lambda)\Big).$$

In fact, we also have $\frac{k(p,n)}{n} \|\nabla u\|_{L^p}^p = \lim_{\lambda \to +\infty} \left(\lambda^p \mathcal{L}^{2n}(E_\lambda)\right)$.

Comments

- The power $1+\frac{n}{p}$ is dictated by dilation invariance: if $[\mathcal{Q}_b u]_{L^p,\infty}(\mathbb{R}^{2n},dxdh)$ scales like $\|\nabla u\|_{L^p}$ upon replacing u(x) by u(tx) for t>0, then $b=1+\frac{n}{p}$.
- In light of the limit equality

$$\frac{k(p,n)}{n} \|\nabla u\|_{L^p}^p = \lim_{\lambda \to +\infty} \left(\lambda^p \mathcal{L}^{2n}(E_\lambda) \right)$$

where $E_{\lambda}:=\left\{(x,h)\in\mathbb{R}^{2n}\colon \mathcal{Q}_{1+\frac{n}{p}}u(x,h)>\lambda\right\}$, we only need to prove an upper bound for a weak- L^p norm, namely

$$[\mathcal{Q}_{1+\frac{n}{p}}u]_{L^{p,\infty}(\mathbb{R}^{2n},dxdh)} \lesssim \|\nabla u\|_{L^p},$$

which can be done using a Vitali covering lemma (c.f. proof that the Hardy-Littlewood maximal function is bounded from L^1 to weak- L^1 ; see also work of Dai, Lin, Yang, Yuan and Zhang who extended our proof to metric-measure spaces).

► The limit equality can be proved using Taylor expansion, somewhat reminiscent to the proof of the BBM formula.

A family of formulae for $\|\nabla u\|_{L^p(\mathbb{R}^n)}$

- It turns out there is a natural one-parameter family of such formulae for $\|\nabla u\|_{L^p(\mathbb{R}^n)}$, for general $u \in \dot{W}^{1,p}$ or $u \in \dot{BV}$.
- Let $\gamma \in \mathbb{R}$. Define the measure $d\nu_{\gamma} = |h|^{\gamma n} dx dh$ on \mathbb{R}^{2n} . (The case $\gamma = n$ corresponds to the Lebesgue measure $dx dh = \mathcal{L}^{2n}$ we used earlier.)

Theorem (Brezis, Seeger, Van Schaftingen, Yung)

Let $n \geq 1$, $1 and <math>u \in \dot{W}^{1,p}(\mathbb{R}^n)$. Then for $\gamma \neq 0$,

$$\|\nabla u\|_{L^p} \simeq [\mathcal{Q}_{1+\frac{\gamma}{p}}u]_{L^{p,\infty}(\mathbb{R}^{2n},\nu_{\gamma})} = \left[\frac{\Delta_h u}{|h|^{1+\frac{\gamma}{p}}}\right]_{L^{p,\infty}(\mathbb{R}^{2n},\nu_{\gamma})}.$$

Furthermore, if $E_{\lambda}:=\left\{(x,h)\in\mathbb{R}^{2n}\colon \mathcal{Q}_{1+\frac{\gamma}{p}}u(x,h)>\lambda\right\}$, then

$$\frac{k(p,n)}{|\gamma|}\|\nabla u\|_{L^p}^p = \begin{cases} \lim_{\lambda \to +\infty} \left(\lambda^p \nu_\gamma(E_\lambda)\right) & \text{if } \gamma > 0 \\ \lim_{\lambda \to 0^+} \left(\lambda^p \nu_\gamma(E_\lambda)\right) & \text{if } \gamma < 0. \end{cases}$$

(The case $\gamma = -p$ of the limit equality is due to Nguyen.)

For p = 1 we have a similar theorem for $\dot{\text{BV}}$, but with a number of additional twists!

Theorem (Brezis, Seeger, Van Schaftingen, Yung)

Let $n \geq 1$, $u \in \dot{BV}(\mathbb{R}^n)$. Then for $\gamma \in \mathbb{R} \setminus [-1, 0]$,

$$||u||_{\dot{BV}} = ||\nabla u||_{\mathcal{M}} \simeq [\mathcal{Q}_{1+\gamma}u]_{L^{1,\infty}(\mathbb{R}^{2n},\nu_{\gamma})} = \left[\frac{\Delta_h u}{|h|^{1+\gamma}}\right]_{L^{1,\infty}(\mathbb{R}^{2n},\nu_{\gamma})}.$$

Furthermore, if $E_{\lambda}:=\left\{(x,h)\in\mathbb{R}^{2n}\colon \mathcal{Q}_{1+\gamma}u(x,h)>\lambda\right\}$, then the formula

$$\frac{k(1,n)}{|\gamma|} \|\nabla u\|_{\mathcal{M}} = \begin{cases} \lim_{\lambda \to +\infty} \left(\lambda \nu_{\gamma}(E_{\lambda})\right) & \text{if } \gamma > 0\\ \lim_{\lambda \to 0^{+}} \left(\lambda \nu_{\gamma}(E_{\lambda})\right) & \text{if } \gamma < -1 \end{cases}$$

holds for $u \in \dot{W}^{1,1}$ but can fail for $u \in \dot{BV}$ (e.g. if $u = \mathbf{1}_{\Omega}$ where $\Omega \subset \mathbb{R}^n$ is any bounded domain with smooth boundary, then the limits above exist but is equal instead to $\frac{k(1,n)}{|\gamma+1|} \|\nabla u\|_{\mathcal{M}}$).

Theorem (Brezis, Seeger, Van Schaftingen, Yung)

For $\gamma \in [-1,0)$,

$$\sup_{u \in C_c^\infty(\mathbb{R}^n), \|\nabla u\|_{L^1(\mathbb{R}^n)} = 1} [\mathcal{Q}_{1+\gamma} u]_{L^{1,\infty}(\mathbb{R}^{2n}, \nu_\gamma)} = +\infty;$$

furthermore, the formula

$$\frac{k(1,n)}{|\gamma|} \|u\|_{\dot{BV}} = \lim_{\lambda \to 0^+} \left(\lambda \nu_{\gamma}(E_{\lambda})\right)$$

remains true for all $u \in C_c^1(\mathbb{R}^n)$, but fails for $u \in \dot{W}^{1,1}(\mathbb{R}^n)$, and the failure is generic in the sense of Baire category.

- ▶ The case $\gamma = -1$ of the limiting formula has already been established by Brezis and Nguyen.
- ▶ The failure of the limiting formula in the case $-1 < \gamma < 0$ relies on the construction of a Cantor set of dimension $1 + \gamma$.
- ▶ The previous two theorems assumed $u \in \dot{W}^{1,p}$ or $u \in \dot{BV}$ to begin with. Using the BBM formula, we also proved a characterization of $\dot{W}^{1,p}$ $(1 and <math>\dot{BV}$:

Theorem (Brezis, Seeger, Van Schaftingen, Yung)

Let $n \geq 1$, $u \in L^1_{loc}(\mathbb{R}^n)$, $\gamma \in \mathbb{R}$. If $[\mathcal{Q}_{1+\frac{\gamma}{2}}u]_{L^{p,\infty}(\mathbb{R}^{2n},\nu_{\gamma})} < \infty$, then

$$u \in \begin{cases} \dot{W}^{1,p}(\mathbb{R}^n) & \text{if } 1$$

▶ In particular, for $u \in L^1_{loc}(\mathbb{R}^n)$, $1 and <math>\gamma \neq 0$,

$$u \in \dot{W}^{1,p} \iff \left[\frac{\Delta_h u}{|h|^{1+\frac{\gamma}{p}}}\right]_{L^{p,\infty}(\mathbb{R}^{2n},\nu_{\gamma})} < \infty.$$

▶ Similarly, for $u \in L^1_{loc}(\mathbb{R}^n)$ and $\gamma \in \mathbb{R} \setminus [-1,0]$,

$$u \in \dot{\mathsf{BV}} \iff \left[\frac{\Delta_h u}{|h|^{1+\gamma}}\right]_{L^{1,\infty}(\mathbb{R}^{2n},\nu_\gamma)} < \infty.$$

► The existence of a one-parameter family of characterizations is not just natural, but useful in applications.

Application towards Gagliardo-Nirenberg interpolation

 \blacktriangleright Cohen, Dahmen, Daubechies and DeVore proved that for any 0 < t < 1 and any $1 < q < \infty,$ if

$$t < \frac{1}{q}$$

and if $(\frac{1}{p},s)=(1-\theta)(\frac{1}{q},t)+\theta(1,1)$ for some $0<\theta<1$, then for any $u\in \dot{\mathrm{BV}}\cap \dot{W}^{t,q}$,

$$\|u\|_{\dot{W}^{s,p}}\lesssim \|u\|_{\dot{W}^{t,q}}^{1-\theta}\|u\|_{\mathsf{B}\mathsf{V}}^{\theta}.$$

- ▶ Their proof uses bounds for coefficients of wavelet expansions of a general function in $BV(\mathbb{R}^n)$.
- ► We can give an alternative proof based on our theorem for BV.

- ▶ Indeed, let γ be minus the slope, given by $\gamma := -\frac{1-t}{1-\frac{1}{2}} < -1$.
- Let $u \in \dot{\mathsf{BV}} \cap \dot{W}^{t,q}$. Our characterization for $\dot{\mathsf{BV}}$ shows that

$$||u||_{\mathsf{BV}} \simeq [\mathcal{Q}_{1+\gamma}u]_{L^{1,\infty}(\nu_{\gamma})}.$$

lackbox On the other hand, $\|u\|_{\dot{W}^{t,q}} = \|\mathcal{Q}_{t+\frac{\gamma}{a}}u\|_{L^q(\nu_\gamma)}$ because

$$\Big(\iint_{\mathbb{R}^{2n}}\frac{|\Delta_h u|^q}{|h|^{tq+n}}dxdh\Big)^{\frac{1}{q}}=\Big(\iint_{\mathbb{R}^{2n}}\frac{|\Delta_h u|^q}{|h|^{tq+\gamma}}d\nu_{\gamma}\Big)^{\frac{1}{q}}.$$

Similarly $||u||_{\dot{W}^{s,p}} = ||\mathcal{Q}_{s+\frac{\gamma}{n}}u||_{L^p(\nu_{\gamma})}.$

▶ But our choice of γ ensures $s + \frac{\gamma}{p} = t + \frac{\gamma}{q} = 1 + \gamma$. Using

$$||F||_{L^p(\nu_\gamma)} \lesssim ||F||_{L^q(\nu_\gamma)}^{1-\theta} [F]_{L^{1,\infty}(\nu_\gamma)}^{\theta}$$

for $F:=\mathcal{Q}_{s+\frac{\gamma}{n}}u=\mathcal{Q}_{t+\frac{\gamma}{n}}u=\mathcal{Q}_{1+\gamma}u$, we obtain

$$||u||_{\dot{W}^{s,p}} \lesssim ||u||_{\dot{W}^{t,q}}^{1-\theta} ||u||_{\dot{\mathsf{B}}\dot{\mathsf{V}}}^{\theta}.$$

- Let's revisit the result of Cohen-Dahmen-Daubechies-DeVore.
- ▶ Suppose 0 < t < 1, $1 < q < \infty$, and

$$(\frac{1}{p},s)=(1-\theta)(\frac{1}{q},t)+\theta(1,1)\quad\text{for some }0<\theta<1.$$

- ▶ We saw if $t < \frac{1}{q}$ then $||u||_{\dot{W}^{s,p}} \lesssim ||u||_{\dot{W}^{t,q}}^{1-\theta} ||u||_{\dot{B}\dot{V}}^{\theta}$.
- The previous proof made crucial use of $t < \frac{1}{q}$, because $\|u\|_{\dot{\mathsf{BV}}} \simeq [\mathcal{Q}_{1+\gamma}u]_{L^{1,\infty}(\nu_{\gamma})}$ only holds when $\gamma \notin \mathbb{R} \setminus [-1,0]$.
- ▶ In fact the result is false when $t \ge \frac{1}{a}$ (Brezis-Mironescu).

- Let's revisit the result of Cohen-Dahmen-Daubechies-DeVore.
- ▶ Suppose 0 < t < 1, $1 < q < \infty$, and

$$(\frac{1}{p},s)=(1-\theta)(\frac{1}{q},t)+\theta(1,1)\quad \text{for some } 0<\theta<1.$$

- ▶ We saw if $t < \frac{1}{a}$ then $||u||_{\dot{W}^{s,p}} \lesssim ||u||_{\dot{W}^{t,q}}^{1-\theta} ||u||_{\dot{W}^{t,q}}^{\theta}$
- The previous proof made crucial use of $t < \frac{1}{q}$, because $\|u\|_{\dot{\mathbf{R}^{\mathsf{i}}\mathsf{V}}} \simeq [\mathcal{Q}_{1+\gamma}u]_{L^{1,\infty}(\nu_{\gamma})}$ only holds when $\gamma \notin \mathbb{R} \setminus [-1,0]$.
- ▶ In fact the result is false when $t \ge \frac{1}{a}$ (Brezis-Mironescu).
- Nevertheless, the above proof can be easily adapted, to show that for any $\gamma' \in \mathbb{R} \setminus [-1, 0]$, we still have

$$[\mathcal{Q}_{s+\frac{\gamma'}{p}}u]_{L^{p,r}(\nu_{\gamma'})}\lesssim \|u\|_{\dot{W}^{t,q}}^{1-\theta}\|u\|_{\dot{\mathsf{BV}}}^{\theta},\quad r:=\frac{q}{1-\theta}$$

(See joint work with Brezis and Van Schaftingen.)

A formula for L^p norm

▶ In place of $\|\nabla u\|_{L^p(\mathbb{R}^n)}$, one can also obtain a similar formula for $\|u\|_{L^p(\mathbb{R}^n)}$. Recall the measure $\nu_{\gamma} = |h|^{\gamma-n} dx dh$ on \mathbb{R}^{2n} .

Theorem

Let n > 1, $1 and <math>u \in L^p(\mathbb{R}^n)$. Then for $\gamma \neq 0$,

$$||u||_{L^p} \simeq [\mathcal{Q}_{\frac{\gamma}{p}} u]_{L^{p,\infty}(\mathbb{R}^{2n},\nu_{\gamma})} = \left[\frac{\Delta_h u}{|h|^{\frac{\gamma}{p}}}\right]_{L^{p,\infty}(\mathbb{R}^{2n},\nu_{\gamma})}.$$

Furthermore, if $E_{\lambda}:=\left\{(x,h)\in\mathbb{R}^{2n}\colon \mathcal{Q}_{\frac{\gamma}{p}}u(x,h)>\lambda
ight\}$, then

$$\frac{2\sigma_{n-1}}{|\gamma|}\|u\|_{L^p}^p = \begin{cases} \lim_{\lambda \to \mathbf{0}^+} \left(\lambda^p \nu_\gamma(E_\lambda)\right) & \text{if } \gamma > 0 \\ \lim_{\lambda \to \infty} \left(\lambda^p \nu_\gamma(E_\lambda)\right) & \text{if } \gamma < 0. \end{cases}$$

where σ_{n-1} is the surface area of \mathbb{S}^{n-1} .

- ▶ The case $\gamma = n$ is joint work with Qingsong Gu.
- We do not obtain a characterization of $L^p(\mathbb{R}^n)$: the weak- L^p norms are finite when u is a non-zero constant.

Abstract extensions

- ▶ Recently, Óscar Domínguez and Mario Milman put some of the above results for $\dot{W}^{1,p}$ in an abstract framework.
- They proved that if X is a σ -finite measure space, $1 \leq p < \infty$ and $\{T_t\}_{t>0}$ is a family of sublinear operators on $L^p(X)$, then for all $f \in L^p(X)$ satisfying

$$||T_t f - f||_{L^{\infty}(X)} \lesssim_f t^{1/p}$$
 for all $t > 0$,

we have

$$\lim_{\lambda \to \infty} \left(\lambda |E_{\lambda}|^{1/p} \right) = ||f||_{L^{p}(X)},$$

where

$$E_{\lambda} := \left\{ (x, t) \in X \times (0, \infty) \colon \frac{|T_t f(x)|}{t^{1/p}} > \lambda \right\}.$$

▶ They found an impressive list of applications, from a computation of $\|\Delta u\|_{L^p(\mathbb{R}^n)}$ and $\|\partial_{x_1}\partial_{x_2}u\|_{L^p(\mathbb{R}^2)}$, to relations between $\|f\|_{L^p(\mathbb{R}^n)}$ with level set estimates for spherical averages of f for $p>\frac{n}{n-1}$, to ergodic theory, etc.

Some further questions

 $\qquad \qquad \text{We have seen that if } 1 \lambda \Big\},$

$$\frac{k(p,n)}{|\gamma|} \|\nabla u\|_{L^p}^p = \begin{cases} \lim_{\lambda \to +\infty} \left(\lambda^p \nu_\gamma(E_\lambda)\right) & \text{if } \gamma > 0 \\ \lim_{\lambda \to 0^+} \left(\lambda^p \nu_\gamma(E_\lambda)\right) & \text{if } \gamma < 0. \end{cases}$$

▶ What if $u \in L^1_{loc}$ but is not in $\dot{W}^{1,p}$? Is it true that

$$+\infty = \begin{cases} \liminf_{\lambda \to +\infty} \left(\lambda^p \nu_{\gamma}(E_{\lambda}) \right) & \text{if } \gamma > 0 \\ \liminf_{\lambda \to 0^+} \left(\lambda^p \nu_{\gamma}(E_{\lambda}) \right) & \text{if } \gamma < 0 \end{cases}$$

In other words, can we characterize $\dot{W}^{1,p}$ by the finiteness of the \liminf sabove? (We can if \liminf is replaced by $\sup_{\lambda>0}$.)

▶ Brezis and Nguyen showed that the answer to this question is positive if $\gamma = -p$.

 $\hbox{For $p=1$, we have been able to prove that if $u\in \dot W^{1,1}$, then for $\gamma\neq 0$ and $E_\lambda:=\Big\{(x,h)\in \mathbb{R}^{2n}\colon \mathcal{Q}_{1+\gamma}u(x,h)>\lambda\Big\}$,}$

$$\|\nabla u\|_{\mathcal{M}} \lesssim_{n,\gamma} \begin{cases} \liminf_{\lambda \to +\infty} \left(\lambda \nu_{\gamma}(E_{\lambda})\right) & \text{if } \gamma > 0 \\ \liminf_{\lambda \to 0^{+}} \left(\lambda \nu_{\gamma}(E_{\lambda})\right) & \text{if } \gamma < 0 \end{cases}$$

(even though the limit equality can fail when $-1 \le \gamma < 0$; see joint work with Brezis, Seeger and Van Schaftingen).

- ▶ Does the above \liminf inequalities remain true for $u \in \dot{BV}$?
- ▶ Would these \liminf be infinite if $u \in L^1_{loc} \setminus \dot{BV}$?
- Nguyen showed that the answers to these two questions are positive if $\gamma=-1$ (see also Brezis-Nguyen for extensions).
- Poliakovsky established positive results for the case $\gamma = n$ if $\lim \inf_{\lambda \to +\infty}$ is replaced by $\lim \sup_{\lambda \to +\infty}$.