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Introduction

» We will work on R™ with n > 1.

> For 1 < p < oo, the homogeneous Sobolev space TP
consists of all u € LIOC modulo constants, whose distributional
gradient Vu € LP. It is normed by

1/p
Ve = (/RH\VuPda:) .

» The homogeneous BV space (BV = bounded variation)
consists of all u € LIOC modulo constants, whose distributional
gradient Vu is a finite Radon measure (written Vu € M).

In other words, it is the space of all u € L|1OC such that

sup{’/ x)div(z)dz|: ¢ € CLR™R™), ||| poo @ rrn) < 1}

is finite (which in particular contains W'1). It is normed by

lullgy = Vel



In joint work with Haim Brezis and Jean Van Schaftingen, we
established a new formula for ||Vul[z»gn) for u € C2° that
involves only difference quotients and no gradients.

Together with Andreas Seeger, this formula is extended to all
u € WP, orall uw e BV, and in fact we found a natural
one-parameter family of such formulae.

Such one-parameter family of formulae can be used to recover
certain Gagliardo-Nirenberg interpolation inequalities due to
Cohen, Dahmen, Daubechies and DeVore.

It also allows us to go beyond the standard range and prove
some substitutes when such inequalities fail.

Our formula for ||[Vu||p»(gn) is given in terms of a weak-L?
(quasi)norm on the product space R?" = R" x R™, so let's
begin by reviewing the notion of weak-L?.



LP versus weak-LP

» For 1 <p< oo, if f e LP(v) for some measure v, then

sy = [ 1970 = 00 |f@)] > X} ¥A >0,
In particular, if f € LP(v), then
sup (/\I/{m: |f(z)| > A}l/p) < 00
A>0

but the converse is not necessarily true.

» If f is measurable and the supremum above is finite, then f is
said to be in weak-LP(v). Its weak-LP (quasi)-norm is defined
as the above supremum, and denoted by [f]7r.c(,)-

> Example: f(z) = |z|~™7 is in weak-LP(dx) on R", because
LMz e R™: |z| 7P > A} = L(B(0, \"P/™)) = A\PL™(B(0,1)).

(Henceforth we write L™ for Lebesgue measure on R™.)
It is not in LP(dx), because [, |f|Pde = [p. |2|"dx = +o0.



Modified difference quotients
» Write Aju(x) :=u(z + h) —u(z) for z, h € R™.
> If we believe that
|Apu(z)|
I
then to express ||Vu| r»(rny using a difference quotient
instead of a gradient a naive guess might be to try

A
// |Anu(z dhdaz in place of / |Vu(x)|Pdx.
R27 \h| R

» Not working, because it doesn't scale upon u(x) — u(tz).
» A proper scaling will be achieved if we consider

// |Apu(x)|P dhdz
ren AP |A|"
instead, which is [ [55, Q1+Qu(1‘, h)Pdhdz if

[Apu(z)|
JIC.

|[Vu(x)| ~

Qpu(z, h) :=



Fractional Sobolev spaces

Apu(z w(x +h) —u(x
Quutr ) = 2ell] _ Jute 20 2 ula)

» Indeed, for 0 < s < 1 and 1 < p < oo, a fractional Sobolev
space W*P can be defined as the space of all u € L] _(R™)
such that

fully, o= [ Qurzutantiyanas < .

When 1 < p < o0, it is known to be equal to the diagonal
Besov space B, ,, with comparable norms.

> So this suggests again that maybe ||Vul|pgny should be
compared to ”Ql-i-%uHLP(RQ”,dxdh)?

» Not working; for u € C°(R™), unless u = 0, the LP norm on
R2" is always infinite! (Issue: |h|~™/Pdh is not LP on R™).



The BBM formula

>

>

>

A famous formula by Bourgain, Brezis and Mironescu (BBM)
explores what happens to ||ul|};., as s = 17,

On R, it says for 1 < p < oo and (say) u € C?, we have
k(p,n)
: _ P _ ) P
Jim (L)l = R Val,

where k(p,n) is some explicit constant depending on p and n,
given by k(p,n) := [q._1 |- wPdw and e € S" 1.
(A related result of Maz'ya and Shaposhnikova computed

|lul|7, by considering lim o+ 3”“”%,5,1;-)

In particular, || Qus 2 ul| 1o (z2n azan) blows up like (1 — s)~1/p
as s — 17 unless u is a constant, another indication that
||Q1+%u||Lp(R2n7dzdh) is not good for computing ||Vu||z».
Our first main result offers an alternative point of view, that
does not involve varying s, but involves a weak-LP norm
instead of the L” norm on R?".

Remember |h|~™/P is not in LP(dh), but it is in weak-LP(dh).



A formula for ||Vul|»

Theorem (Brezis, Van Schaftingen, Yung)
Letn>1,1<p<ooanduecCXR"). Then

Apu

[Vl Ly ~ [Ql—&-%u]LPvOO(R?",dacdh) = [WHZ}LPW(RZ",dxdh).

In other words, for A > 0, denote by
E) = {(m,h) e R?": QH%U(:L‘, h) > )\}

the superlevel set of Q1 nu at height \. Then
p

IVuly, = sup (A£2(Ey)).
A>0

k:(p,n) P _ : D r2n
In fact, we also have - |Vull}, = )\EI—POO ()\ L (E)\)>



Comments
» The power 1 +% is dictated by dilation invariance: if
[Qbu] Lp.00 (R2n dzan) SCales like [[Vul Ly
upon replacing u(z) by u(tx) for t >0, then b=1+ 2.
» In light of the limit equality

k(p,n) p . pr2n
IVl = tim (e(E)

where F) := {(x, h) € R*™: Qq nu(x, h) > )\}, we only
P
need to prove an upper bound for a weak-LP norm, namely

[Qu 2 u]ppco®en dzany S IVullLr,

which can be done using a Vitali covering lemma (c.f. proof
that the Hardy-Littlewood maximal function is bounded from
L' to weak-L!; see also work of Dai, Lin, Yang, Yuan and
Zhang who extended our proof to metric-measure spaces).

» The limit equality can be proved using Taylor expansion,
somewhat reminiscent to the proof of the BBM formula.



A family of formulae for ||Vul|z»®n)
» It turns out there is a natural one-parameter family of such
formulae for ||Vul|p(rn), for general u € W or u € BV.

> Let v € R. Define the measure dv, = |h|"""dzdh on R*".
(The case v = n corresponds to the Lebesgue measure
dxdh = L* we used earlier.)

Theorem (Brezis, Seeger, Van Schaftingen, Yung)
Letn>1,1<p<ocoanduec W' (R™). Then for~ # 0,
Ahu :|

’h’H_% Lp,oo(RZnJ,A/)'

IVallzo = [Quy 3l pooeen ) = |

Furthermore, if Ey := {(w,h) e R Qi ru(z,h) > )\}, then
p

lim s soo (AP0 (En))  ify >0
limy_, o+ ()\pl/,y(E)\)) ify < 0.

k(p,
L) gz, =

ol

(The case v = —p of the limit equality is due to Nguyen.)



» For p = 1 we have a similar theorem for B\/, but with a
number of additional twists!

Theorem (Brezis, Seeger, Van Schaftingen, Yung)
Let n > 1, u € BV(R"). Then fory c R\ [-1,0],

Apu

[ull gy = [[Vulla = [Quiqul oo, = [‘h|1+7:|L1,00(R2n,1/7).

Furthermore, if Ey := {(x,h) € R?™: Qi u(x, h) > )\}, then the
formula

imy 400 ()\I/,Y(E)\)) ify>0

limy o+ ()\VW(E)\)) ify<—1

Vullpm =
1]

holds for u € W' but can fail for u € BV (e.g. if u = 1q where
Q C R" is any bounded domain with smooth boundary, then the

limits above exist but is equal instead to k(1+711|) IVul|m)-




Theorem (Brezis, Seeger, Van Schaftingen, Yung)
For v € [—1,0),

sup [Q1yu]p100m2n ) = +00;
UECgO(R”),HVu”Ll(Rn):1

furthermore, the formula

k(1,n)
ol

lull gy = Jim (A (E2))

remains true for all u € CL(R™), but fails for u € WHL(R™), and
the failure is generic in the sense of Baire category.

» The case v = —1 of the limiting formula has already been
established by Brezis and Nguyen.

P> The failure of the limiting formula in the case —1 < v <0
relies on the construction of a Cantor set of dimension 1 + 7.

» The previous two theorems assumed u € WP or u € BV to
begin with. Using the BBM formula, we also proved a
characterization of W' (1 < p < 00) and BV:



Theorem (Brezis, Seeger, Van Schaftingen, Yung)
letn>1,ue Lt (R™), v € R. If[Qqu]Lp,oo(Rzn,yy) < 00, then
P

loc

WlP(R™) ifl<p<oo
BV(R™) ifp=1.

» In particular, for u € LL _(R"), 1 < p < oo and 7 # 0,

loc

ue Whr [Aihuw] < 0.
‘h‘1+; Lp,oo(]RQn7V,y)
> Similarly, for u € L _(R") and vy € R\ [-1,0],
. Ahu
ueBV <« [’h‘l""y}Ll’w(R?”,w) < 00.

» The existence of a one-parameter family of characterizations
is not just natural, but useful in applications.



Application towards Gagliardo-Nirenberg interpolation
» Cohen, Dahmen, Daubechies and DeVore proved that for any
0<t<landanyl<gqg< oo, if
t< g,
and if (%,s) =(1- 9)(%,15) +6(1,1) for some 0 < 6 < 1,
then for any u € BV N W,

—0 0
lallyiren < el NGy

s

» Their proof uses bounds for coefficients of wavelet expansions
of a general function in BV(R").
» We can give an alternative proof based on our theorem for BV.



1-t
1—1
q

» Let u € BVN W, Qur characterization for BV shows that

P Indeed, let v be minus the slope, given by v := — < —1.

[ullgy =~ [Quirulrroop,)-

> On the other hand, ||ullj, = [|Q;12u[/14(,,) because
q

|Apul? // \Ahu\q 7
dx dh .
(//R2n |h|tatn R2n \h\tq‘w )

Similarly {[ullyic, = | Qs 2 ullLr()-

» But our choice of 7y ensures s + % =t+ % =1++. Using

VFllo) < IFILE, F Ty

for Fli=Q, yu= Q; »u = Qi4yu, we obtain
p q

lullyiren S lull e, luligy



v

v

Let’s revisit the result of Cohen-Dahmen-Daubechies-DeVore.

Suppose 0 <t <1, 1< g < o0, and

1 1
(Z;, s)=(1- 0)(5,15) +6(1,1) for some 0 < 0 < 1.

We saw if ¢t < % then [Jul|jiep S (] ||u||

Wta
The previous proof made crucial use of ¢t < 1, because
|ullgy = [Qi4+u]p1.00(,,) only holds when v & R\ [-1,0].
In fact the result is false when ¢ > 1 (Bre2|s—|\/||ronescu)

s
wiil

wtae”
0 <slope < 1,ie. v €[-1,0)

1/p



> Wesaw if t < Lthen [lullyep < llul

Let’s revisit the result of Cohen-Dahmen-Daubechies-DeVore.
Suppose 0 <t <1, 1< g < o0, and

1 1
(=,s)=(1— 0)(6,75) +6(1,1) for some 0 <6 < 1.
p

Wtqnun

» The previous proof made crucial use of t < 1, because

[ullgy =~ [Q14~u]L1.000,.,) Only holds when v ¢ R\ [-1,0].

In fact the result is false when ¢ > _ (Brezis-Mironescu).
Nevertheless, the above proof can be easily adapted, to show
that for any 7/ € R\ [—1, 0], we still have

4
[Qs+’y ]LPT(V ’) < Hu||WtqHuH|3v7 ri= 17_9

(See joint work with Brezis and Van Schaftingen.)



A formula for LP norm

> In place of |[Vul|rrrn), one can also obtain a similar formula
for |lul[zp(rn). Recall the measure v, = |h|7""dzdh on R2",

Theorem
Letn>1,1<p<oocandue LP(R™). Then for v # 0,

Ahu}
|h’ Lp:oo(R2n l/»y)

lullzr = [Qztlpperzn ) = |

Furthermore, if Ey := {(w h) € R?": Qw u(z, h) > )\} then

20n 1

lim;_,q+ ()\puy(E/\)) ify >0
limy,_q ()\pVV(EA)> if v < 0.

where o,,_1 is the surface area of S 1.

» The case v = n is joint work with Qingsong Gu.
» We do not obtain a characterization of LP(R™): the weak-LP
norms are finite when v is a non-zero constant.



Abstract extensions

>

>

Recently, Oscar Dominguez and Mario Milman put some of
the above results for W17 in an abstract framework.

They proved that if X is a o-finite measure space, 1 < p < ©
and {T}}+~0 is a family of sublinear operators on LP(X), then
for all f € LP(X) satisfying

ITef — fllzeex) St /P forall t > 0,

we have
. 1 _
Jim (ABAM) = (1 £llox),
where
T,
E\ = {(a:,t) € X x (0,00): ‘;{/(;E” > )\}.

They found an impressive list of applications, from a
computation of [|Aul| ey and ||z, Oz, ul| 1r(r2), to relations
between | f| z»mn) with level set estimates for spherical
averages of f for p > "5, to ergodic theory, etc.



Some further questions

> We have seen that if 1 < p < 0o and u € W12, then for
v# 0 and E) := {(a:,h) e R?™: Q; ~u(z,h) > )\},
p

k(p,n)
ol

limy_s + oo ()\pVW(EA)> if v >0
limy o+ (APU,Y(EA)) if v < 0.

Hqugp =

» What if u € L1 but is not in WP? Is it true that

loc

lim infy_s 4 o0 ()\pV,Y(E)\)> if v >0

o0 =
liminf, o+ ()\pVW(E)\)> if v < 07

In other words, can we characterize WP by the finiteness of
the liminfs above? (We can if liminf is replaced by sup,~.)

» Brezis and Nguyen showed that the answer to this question is
positive if v = —p.



v

For p = 1, we have been able to prove that if u € Wl’l, then
for v # 0 and E) := {(:U, h) € R?": Qqu(x, h) > )\},

liminfy ()\VW(E,\)> ifv>0

IVullm Sn,
"7 ) liminf, o+ ()\VW(E)\)) if v < 0

(even though the limit equality can fail when —1 <~ < 0;

see joint work with Brezis, Seeger and Van Schaftingen).

Does the above liminf inequalities remain true for u € BV?
Would these lim infs be infinite if u € L. _\ BV?

loc
Nguyen showed that the answers to these two questions are
positive if ¥ = —1 (see also Brezis-Nguyen for extensions).

Poliakovsky established positive results for the case v = n if
liminfy_, o is replaced by limsup, ., ..



