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I K 7→ µK

I For example, surface area or cone volume.

I Can we characterize geometric measures µK?
(Equivalently, what is the image of the mapping K 7→ µK )



Surface area measure

I Let K be a convex body in Rn+1 (compact convex set with nonempty
interior), and let νK : ∂K → Sn be the outward unit normal vector.

I Any convex body defines the so called surface area measure on Sn: The
surface area measure S(K , ·) of K is defined on a Borel set ω ⊂ Sn by

S(K , ω) = |ν−1K (ω)|,

where | · | denotes the surface area.

I Total measure: S(K ,Sn) = |ν−1K (Sn)| = |∂K |.



I Observation: if µ is a surface area measure, then

1. Surface area measure has centroid at origin:∫
Sn
z dµ(z) =

∫
∂K

ν(x)dHn(x) = o.

2. Surface area measure is not concentrated on a great subsphere:

µ(E) 6= µ(Sn) for all great subsphere E ⊂ Sn.

I Can we characterize the surface area measure?

I Minkowski problem: For a given nonzero finite Borel measure µ on Sn,
what are the necessary and sufficient conditions for µ = S(K , ·) for some
convex body K? (Minkowski, 1903)

I Minkowski problem is completely solved by Minkowski (discrete case) and
Alexandrov (general case).

I µ = S(K , ·) for a convex body K ⇐⇒ 1. and 2. hold for µ.
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I In smooth category (µ = f dσSn), the Minkowski problem becomes solving
the following Monge–Ampère type PDE on Sn:

det(∇i∇ju + uδij) =
1

K
= f on Sn,

where K is the Gauss curvature and u is the support function of K .

I Uniqueness: The convex body is unique up to translation.

I Regularity: If f ∈ Cα, then ∂K ∈ C 2,α. (C∞ regularity by Pogorelov,
Nirenberg, Cheng–Yau, and C 2,α regularity by Caffarelli)

I Therefore, the surface area measures are characterized by 1. and 2. In
which case, the solution convex body is well understood.
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Variational point of view

I Let hL : Sn → R be the support function of L defined by

hL(z) = max{z · x : x ∈ L},

and let K + L = {x + y : x ∈ K , y ∈ L} be the Minkowski sum.

I Aleksandrov variational formula:

d Vol(K + tL)

dt

∣∣∣∣
t=0+

=

∫
Sn
hL(z) dS(K , z)

I Firey’s p-linear combination K +p L of K and L (p ≥ 1):

hK+pL = (hpK + hpL)1/p, ht·pL = t1/phK

I There exists a Borel measure Sp(K , ·) on Sn such that

d Vol(K +p t ·p L)

dt

∣∣∣∣
t=0+

=
1

p

∫
Sn−1

hpL(z) dSp(K , z).



Lp surface area measure

I The measure Sp(K , ·) is called as the Lp surface area measure.

I It turns out that for p ≥ 1,

dSp(K , ·) = h1−pK dS(K , ·).

I The Lp surface area measure can be defined for all p ∈ R through the
relation above.

I Lp Minkowski problem: For a given nonzero finite Borel measure µ on Sn,
what are the necessary and sufficient conditions for µ = Sp(K , ·) for some
convex body K? (Lutwak ‘93)

I PDE: for a density function f ,

det(∇i∇ju + uδij) =
1

K
= up−1f on Sn.

I Examples: classical case (p = 1), logarithmic case (p = 0), affine case
(p = −n − 1),



Dual curvature measure

I Let rK be the radial function of K defined by

rK (ξ) = max{λ : λξ ∈ K}.

I The q-th dual volume of K is

Ṽolq(K ) =
1

n + 1

∫
Sn
rqK (ξ)dξ.

I The q-th dual curvature measure is determined by (q 6= 0)

dṼolq(K + tL)

dt

∣∣∣∣∣
t=0+

= q

∫
Sn−1

hLh
−1
K dC̃q(K , ·).

I For any ω ⊂ Sn,

C̃q(K , ω) =

∫
A∗(ω)

rqK (ξ)dσSn(ξ),

where A∗ is the reverse radial Gauss mapping defined as

A∗(ω) = {ξ ∈ Sn : νK (rK (ξ)ξ) ∈ ω}.



Dual Minkowski problem

I Dual Minkowski problem: For a given nonzero finite Borel measure µ on
Sn, what are the necessary and sufficient conditions for µ = C̃q(K , ·) for
some convex body K? (Huang–Lutwak–Yang–Zhang ‘16).

I PDE: for r =
√

u2 + |∇u|2,

det(∇i∇ju + uδij) =
rn+1−q

u
f on Sn,

I Examples: the logarithmic Minkowski problem (q = n + 1) and the
Alexandrov problem (q = 0)

I The logarithmic case appears not only in the Lp Minkowski problem but
also in the dual Minkowski problem.

I What is next?



Lp Dual Minkowski problem

I The Lp dual curvature measure C̃p,q(K , ·) is produced by

dṼolq(K +p t ·p L)

dt

∣∣∣∣∣
t=0+

= q

∫
Sn
hpL(z) dC̃p,q(K , z).

I Lp Dual Minkowski problem: For a given nonzero finite Borel measure µ

on Sn, what are the necessary and sufficient conditions for µ = C̃p,q(K , ·)
for some convex body K? (Lutwak–Yang–Zhang ‘18).

I Relation with the dual curvature measure is given by

C̃p,q(K , ·) = h−pK C̃q(K , ·)

I PDE: for r =
√
u2 + |∇u|2,

det(∇i∇ju + uδij) =
rn+1−q

u1−p
f on Sn

I Examples: the Lp Minkowski problem (q = n + 1), the dual Minkowski
problem (p = 0).



Logarithmic Minkowski problem (p = 0, q = n + 1)

I We first consider Lp Minkowski problem.

I In particular, p = 0, corresponds to the logarithmic Minkowski problem.
This is related to the cone volume:

1

n + 1
dS0(K , ·) =

1

n + 1
hKdS(K , ·), 1

n + 1
S0(K ,Sn) = Vol(K )

I In 2013, Böröczky–Lutwak–Yang–Zhang solved the logarithmic case under
even assumption (µ(E ) = µ(−E )):

µ = S0(K , ·) ⇐⇒ 1.
µ(ξ ∩ Sn)

µ(Sn)
≤ dim(ξ)

n + 1
, ξ ≤ Rn+1

2. some extra condition when equality holds

I Non-symmetric case is open.

I For other p 6= 0, 1, some sufficient conditions have been provided, but the
Lp Minkowski problem is still open for symmetric or non-symmetric, except
for the lower dimensional case (n = 1).

I Finding necessary and sufficient conditions are widely open.



Measure with density

I Recall the PDE: for a density function f ,

u1−p det(∇i∇ju + uδij) =
u1−p

K
= f on Sn

I Existence of solutions is guaranteed for sufficiently smooth, positive f . We
mainly focus on the uniqueness and regularity (or existence of regular
solutions).

I Soliton of (anisotropic) α-Gauss curvature flow through the relation
α = 1/(1− p).

I C 0 estimate or diameter estimate is important.
Blaschke selection theorem (compactness): Let {Kn} be a sequence of
convex bodies contained in fixed bounded set. Then there is convex body
K such that (up to subsequence)

Ki → K in Hausdorff distance.

I Positive lower bound on u is crucial for regularity. (whether the origin lies in
the interior or not)



Overview for various range of p

I p > n + 1: Existence, uniqueness, regularity
At the maximum point of u, it follows from the PDE that

u1−p+n
max ≥ fmin, umax ≤

1

f
1/(p−n−1)
min

, umin ≥
1

f
1/(p−n−1)
max

.

I 1 < p < n + 1: Example of a convex body with the origin on its boundary.
Weak solution and uniqueness. Regularity for even case.

I −n − 1 < p < 0: No diameter estimate, but existence of weak solutions.
No uniqueness. If −n − 1 < p ≤ −n + 1, then solution is positive.

I p < −n − 1: Existence (Guang–Li–Wang 22, arxiv) and ...?

I p = 0: If n = 1, then diameter estimate and positiveness of solutions hold
(Chen–Li 18). Therefore existence, uniqueness, regularity follows when
n = 1. If n = 2, then diameter estimate holds (Chen–Feng–Liu 22, arxiv).
Diameter estimate for n ≥ 3 is open.

I 0 < p < 1: Does the diameter estimate hold?



Result 1. Diameter estimate when n = 1

Theorem (Kim–L. 22, arxiv)
Let p ∈ (0, 1), and let f be a bounded, positive function on S1. If K is a convex
body such that

h1−pK ((hK )θθ + hK ) = f on S1, (*)

then ‖hK‖L∞ ≤ C for some C = C (p,Λ).

Remark 1. Diameter estimate for n ≥ 2 is open.
Remark 2. If p = 0 or p = 1, then the LHS of (*) is cone volume or surface
area measure, respectively. In these case, one can use monotone property of
volume or surface area (of convex bodies). However, Sp(K , ·) does not have
such monotone properties.



Idea of proof.
1. Key estimate on the Lp surface area:

Sp(K ,S1) ' Vol(K )1−p|∂K |p(' C )

2. Consider a sequence of convex bodies {Ki} with diam(Ki )→∞.
3. Case I: The origin lies near the tip. Near the tip (denoted by ω),∫

ω

f ' C , Sp(K , ω) ≤ Vol1−p Areap . εVol1−p(K )|∂K |p . εSp(K ,S1) . ε.

4. Case II: the origin lies far from tips. On the complement of neighborhoods of
tips (denoted by ω),∫

ω

f ' 0, but Sp(K , ω) & Sp(K ,S1) & 1.



Uniqueness

I The Lp Brunn–Minkowski inequality holds for p ≥ 1:

Vol((1− t) ·p K +p t ·p L) ≥ Vol(K )1−t Vol(L)t

This will give the uniqueness for p ≥ 1.

I For p < 1, there exists f that admits more than two solutions.

I When f ≡ 1, the uniqueness for −n − 1 < p < 1 has been established by
Chow ‘85 (p = −n + 1), Andrews ‘99 (p = 0, n = 2),
Brendle–Choi–Daskalopoulos ‘17
c.f. Guan–Ni, Andrews–Guan–Ni, Kim–Lee for convergence of flow.

I More generally, the uniqueness holds when f is even (Bryan–Ivaki–Scheuer
‘19).

Corollary
Let p ∈ (0, 1) and f ∈ Cα(S1). Then there exists a constant ε0 = ε0(p) > 0
such that if ‖f − 1‖Cα(S1) ≤ ε0, then the equation (*) has a unique solution.

Moreover, the solution is positive and of C 2,α(S1).



Return to the logarithmic case

I Existence of weak solution is known, but the origin may lie on the boundary.

I There are examples of f such that the origin touches the boundary of the
solution convex bodies: for n = 2, parts of the body is described by
(r =

√
x2 + y2)

z = r4 or z = (r − 1)2+ (at most C 1,1).

I Can we find a regular solution for any f > 0?



Result 2. Existence of regular solution

Theorem (Choi–Kim–L. in preperation)
Let f > 0 be a function in C 2(Sn). Then the logarithmic Minkowski problem
admits a regular (C 1,1) solution.

Sketch of proof.
1. Consider the following normalized anisotropic Gauss curvature flow

Xt = X − f (ν)Kαν.

2. Prove diameter estimate |X | ≤ C and existence of inner ball
3. Principal curvature estimate 0 < λ1 ≤ λ2 ≤ C .



Dual Minkowski problem

I Rewrite the PDE with q̃ = n + 1− q: In Sn, (r =
√
u2 + |∇u|2)

det(∇i∇ju + uδij) =
r q̃

u
f .

I q̃ > n + 1: Existence, uniqueness, regularity (Li–Sheng–Wang ‘20)

I q̃ < n + 1: When f (z) = f (−z), existence, uniqueness, and regularity
follows.

I If n = 1 and 0 < q̃ < n + 1 = 2, then smooth, positive solution exists for
general f (Chen–Li ‘18).



Lp dual Minkowski problem

I Recall the PDE: In Sn, (r =
√
u2 + |∇u|2)

det(∇i∇ju + uδij) =
r q̃

u1−p
f .

I p > q (p + q̃ > n + 1): Existence, uniqueness, regularity (Huang–Zhao ‘18)

I Results for even case when p > 0, q > 0; p < 0, q < 0; p > 0, q < 0.

I Results for general case when p < q?

Theorem (Kim–L. 22, arxiv)
Let p ∈ (0, 1), q ≥ 2 and let f be a bounded, positive function on S1. If K is a
convex body such that

rq−2K h1−pK ((hK )θθ + hK ) = f on S1, (*)

then ‖hK‖L∞ ≤ C for some C = C (p, q,Λ).



Thank you!


