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» For example, surface area or cone volume.

» Can we characterize geometric measures (k7
(Equivalently, what is the image of the mapping K — pk)



Surface area measure

> Let K be a convex body in R"*! (compact convex set with nonempty
interior), and let vk : 9K — S" be the outward unit normal vector.

» Any convex body defines the so called surface area measure on S": The
surface area measure S(K,-) of K is defined on a Borel set w C S" by

S(K.w) = vt (@),

where | - | denotes the surface area.
> Total measure: S(K,S") = v 1(S")| = |0K|.



» Observation: if y is a surface area measure, then
1. Surface area measure has centroid at origin:

/ zdp(z) = / v(x)dH"(x) = o.

" oK

2. Surface area measure is not concentrated on a great subsphere:
wu(E) # p(S™) for all great subsphere E C S".

» Can we characterize the surface area measure?
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» Minkowski problem: For a given nonzero finite Borel measure p on S”,
what are the necessary and sufficient conditions for u = S(K,-) for some
convex body K? (Minkowski, 1903)

> Minkowski problem is completely solved by Minkowski (discrete case) and
Alexandrov (general case).
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what are the necessary and sufficient conditions for u = S(K,-) for some
convex body K? (Minkowski, 1903)

> Minkowski problem is completely solved by Minkowski (discrete case) and
Alexandrov (general case).

> 1= S(K,-) for a convex body K <= 1. and 2. hold for p.



» In smooth category (u = fdogn), the Minkowski problem becomes solving
the following Monge—Ampere type PDE on S":

l:7" on S",

det(V,;Vju + udy) = i

where K is the Gauss curvature and v is the support function of K.
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Uniqueness: The convex body is unique up to translation.



In smooth category (u = fdogn), the Minkowski problem becomes solving
the following Monge—Ampere type PDE on S":

l:7" on S",

det(V,;Vju + udy) = i

where K is the Gauss curvature and v is the support function of K.

Uniqueness: The convex body is unique up to translation.
Regularity: If f € C®, then 9K € C>“. (C™ regularity by Pogorelov,
Nirenberg, Cheng—Yau, and C>< regularity by Caffarelli)

Therefore, the surface area measures are characterized by 1. and 2. In
which case, the solution convex body is well understood.



Variational point of view

> Let hy : S” — R be the support function of L defined by
hi(z) = max{z-x:x € L},

andlet K+ L={x+y:x€ K,y € L} be the Minkowski sum.
» Aleksandrov variational formula:

d Vol(K + tL)
dt

= / hi(z)dS(K, z)
t=0+ Sn
» Firey's p-linear combination K +, L of K and L (p > 1):
hics,r = (B + BOYP, e = tY/Phy
» There exists a Borel measure S,(K,-) on S” such that

_! /S H(2) dS, (K, 2).

t=0+ P

dVol(K 4+, t -, L)
dt




Lp surface area measure

v

The measure S,(K,-) is called as the L, surface area measure.
It turns out that for p > 1,

dSP(Kv ) - hkipdS(Kv )
The L, surface area measure can be defined for all p € R through the

relation above.

L, Minkowski problem: For a given nonzero finite Borel measure ; on S,
what are the necessary and sufficient conditions for i = S,(K, ) for some
convex body K7 (Lutwak '93)

PDE: for a density function f,
1
dmmwmwmzﬁzwﬂfmy.

Examples: classical case (p = 1), logarithmic case (p = 0), affine case
(p=—n-1),



Dual curvature measure

» Let rk be the radial function of K defined by
rk(€) = max{\ : X{ € K}.

» The g-th dual volume of K is
~ 1
Volo(K) = = [ (e
» The g-th dual curvature measure is determined by (g # 0)

dVolg(K + tL)
dt

= q/ hiht dCo(K, ).
Sn—l

t=0"

» For any w C S",
ColK.w) = / 9(€)dosn (©),
A ()

where A* is the reverse radial Gauss mapping defined as

A" (w) = {§ € 8" : vk (rk(§)E) € w}.



Dual Minkowski problem

» Dual Minkowski problem: For a given nonzero finite Borel measure y on
S”, what are the necessary and sufficient conditions for © = C4(K, -) for
some convex body K? (Huang—Lutwak—Yang—Zhang ‘16).

» PDE: for r = \/u? + |Vul?,

rn+17q
det(V,-Vju + u5;j) =

f onS§",

» Examples: the logarithmic Minkowski problem (g = n+ 1) and the
Alexandrov problem (g = 0)

» The logarithmic case appears not only in the L, Minkowski problem but
also in the dual Minkowski problem.

» What is next?



L, Dual Minkowski problem

> The L, dual curvature measure C, 4(K, ) is produced by

dVolg(K 45 t - L)
dt

= q/n h(2)dCoq(K, 2).

t=0+

» L, Dual Minkowski problem: For a given nonzero finite Borel measure p

on S", what are the necessary and sufficient conditions for 1 = C, 4(K, )
for some convex body K? (Lutwak—Yang—Zhang '18).

> Relation with the dual curvature measure is given by
Co.q

» PDE: for r = \/u? + |Vul?,
n+l—q

det(v,'vj'u + U5U) = ruli—pf on S"

(K,) = hPCo(K, ")

» Examples: the L, Minkowski problem (g = n+ 1), the dual Minkowski
problem (p = 0).



Logarithmic Minkowski problem (p =0,qg = n+ 1)

We first consider L, Minkowski problem.

In particular, p = 0, corresponds to the logarithmic Minkowski problem.
This is related to the cone volume:

dSe(K,) = hkdS(K, "), So(K,S") = Vol(K)

n+1 —|-1 +1

In 2013, Boroczky—Lutwak—Yang—Zhang solved the logarithmic case under

even assumption (p(E) = p(—E)):

u(ENS) _ dim(¢)
CH RS

2. some extra condition when equality holds

pw=S5(K,) <1 ¢ <R

Non-symmetric case is open.

For other p #£ 0, 1, some sufficient conditions have been provided, but the
L, Minkowski problem is still open for symmetric or non-symmetric, except
for the lower dimensional case (n = 1).

Finding necessary and sufficient conditions are widely open.



Measure with density

» Recall the PDE: for a density function f,

1-p
ut=r det(V,-Vju + LI(S,J) = UT =f on¥S”

» Existence of solutions is guaranteed for sufficiently smooth, positive f. We
mainly focus on the uniqueness and regularity (or existence of regular
solutions).

» Soliton of (anisotropic) a-Gauss curvature flow through the relation
a=1/(1-p).

» (O estimate or diameter estimate is important.

Blaschke selection theorem (compactness): Let {K),} be a sequence of
convex bodies contained in fixed bounded set. Then there is convex body
K such that (up to subsequence)

K; — K in Hausdorff distance.

> Positive lower bound on u is crucial for regularity. (whether the origin lies in
the interior or not)



Overview for various range of p

» p > n+ 1: Existence, uniqueness, regularity
At the maximum point of v, it follows from the PDE that

1 1
u17p+n Z

max fniny  Umax = —7 ooy Umin = A1)
min max

> 1 < p < n+ 1: Example of a convex body with the origin on its boundary.
Weak solution and uniqueness. Regularity for even case.

» —n—1< p < 0: No diameter estimate, but existence of weak solutions.
No uniqueness. If —n — 1 < p < —n+ 1, then solution is positive.

» p < —n— 1: Existence (Guang-Li-Wang 22, arxiv) and ...7

» p=20:If n=1, then diameter estimate and positiveness of solutions hold
(Chen—Li 18). Therefore existence, uniqueness, regularity follows when
n=1.If n =2, then diameter estimate holds (Chen—Feng—Liu 22, arxiv).
Diameter estimate for n > 3 is open.

» 0 < p < 1: Does the diameter estimate hold?



Result 1. Diameter estimate when n =1

Theorem (Kim-L. 22, arxiv)

Let p € (0,1), and let f be a bounded, positive function on S. If K is a convex
body such that

h};p((hK)ee +hg)="1F on Sl, *

then ||hk||,« < C for some C = C(p, ).

Remark 1. Diameter estimate for n > 2 is open.

Remark 2. If p =0 or p =1, then the LHS of (*) is cone volume or surface
area measure, respectively. In these case, one can use monotone property of
volume or surface area (of convex bodies). However, S,(K,-) does not have
such monotone properties.



Idea of proof.
1. Key estimate on the L, surface area:

Sp(K,Sh) ~ Vol(K)'P|oK|P(~ C)

2. Consider a sequence of convex bodies {K;} with diam(K;) — oo.
3. Case I: The origin lies near the tip. Near the tip (denoted by w),

/ fo~C, S,(K,w)<Vol'™PArea® < eVol' P(K)|OK|P < Sy(K,SY) S e

4. Case llI: the origin lies far from tips. On the complement of neighborhoods of
tips (denoted by w),

/f:o, but  S,(K,w) > Sy(K,S!) > 1.



Uniqueness

» The L, Brunn—Minkowski inequality holds for p > 1:
Vol((1 —t) -p K+, t - L) > Vol(K)'~* Vol(L)*

This will give the uniqueness for p > 1.

» For p < 1, there exists f that admits more than two solutions.

» When f =1, the uniqueness for —n — 1 < p < 1 has been established by
Chow ‘85 (p = —n+ 1), Andrews ‘99 (p =0, n = 2),
Brendle—Choi—Daskalopoulos ‘17
c.f. Guan—Ni, Andrews—Guan—Ni, Kim-Lee for convergence of flow.

» More generally, the uniqueness holds when f is even (Bryan—Ivaki-Scheuer
‘19).
Corollary

Let p € (0,1) and f € C*(S*). Then there exists a constant g = go(p) > 0
such that if [|[f — 1| ca(s1) < €0, then the equation (*) has a unique solution.
Moreover, the solution is positive and of C><(St).



Return to the logarithmic case

» Existence of weak solution is known, but the origin may lie on the boundary.

» There are examples of f such that the origin touches the boundary of the
solution convex bodies: for n = 2, parts of the body is described by

(r = 32+ y?)

z=r* o z=(r— 1)1 (at most Ch1).

» Can we find a regular solution for any f > 07



Result 2. Existence of regular solution

Theorem (Choi-Kim-L. in preperation)
Let f > 0 be a function in C*(S™). Then the logarithmic Minkowski problem
admits a regular (C1'!) solution.

Sketch of proof.

1. Consider the following normalized anisotropic Gauss curvature flow
Xe=X—f(r)K%v.

2. Prove diameter estimate |X| < C and existence of inner ball
3. Principal curvature estimate 0 < A\; < X\, < C. O



Dual Minkowski problem

> Rewrite the PDE with § =n+1—q: In S", (r = \/u? + |Vu|?)

g
det(V,-Vju + u5,~j) = %f.

» G > n+ 1: Existence, uniqueness, regularity (Li—-Sheng—Wang ‘20)
» § < n+ 1: When f(z) = f(—2z), existence, uniqueness, and regularity
follows.

» If n=1and 0 < § < n+ 1 =2, then smooth, positive solution exists for
general f (Chen-Li ‘18).



L, dual Minkowski problem

» Recall the PDE: In S, (r = \/u? + |Vu|?)
g

det(V,-Vju + U(s,'j) = ﬁf

» p>q (p+§> n+1): Existence, uniqueness, regularity (Huang—Zhao ‘18)
» Results for even case when p > 0,9 >0; p<0,9<0; p>0,g<0.
» Results for general case when p < g7

Theorem (Kim-L. 22, arxiv)

Let p € (0,1), g > 2 and let f be a bounded, positive function on St. If K is a
convex body such that

rA2hP((hi)oo + h) = f on St (*)

then || hk||,« < C for some C = C(p, q, ).



Thank you!



