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In order to do analysis on M, one would like to estimate p;(x, y) from above
and below

No curvature assumptions, rather direct geometric properties of M
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is equivalent to:
- the Sobolev inequality:

I fllap/(D-ap) < CIIL*?f|lp,  Vf € Dp(L/?),

for p > 1 and 0 < ap < D [Varopoulos 1984, C. 1990 ].
- the Nash inequality:

IFI5YP) < C|f|y/Pe(r), vfeF.

[Carlen-Kusuoka-Stroock 1987]
-the Gagliardo-Nirenberg type inequalities for instance

115 < C||f||2 S(f)TqD, Vf € F,
for g > 2 such that 92D < 1 [C. 1992].



Extrapolation

In the Sobolev and in the Gagliardo-Nirenberg case (not in the Nash case),
one needs:

Lemma (C., 1990)

Assume (e~ )0 is uniformly bounded on L' (M, 1) and there exist
1 <p<qg<+oo, a>0 such that

||e_tL||p—>q <Ct > Vt>D0.
Then

e 1500 < CtP, VE>0,
where f = +<

I
Ql=




Real life heat kernel estimates are not uniform !

To do analysis on (M, 1), one needs estimates of p:(x, x) and even of ps(x, y):
SUp, yem Pr(X; y) is not enough



Real life heat kernel estimates are not uniform !

To do analysis on (M, 1), one needs estimates of p:(x, x) and even of ps(x, y):
SUp, yem Pr(X; y) is not enough

Indeed, for instance on manifolds with non-negative Ricci curvature,
pi(x, x) ~ W where V(x,r) = u(B(x,r)), and V(x, r) does vary with r



Real life heat kernel estimates are not uniform !

To do analysis on (M, 1), one needs estimates of p:(x, x) and even of ps(x, y):
SUp, yem Pr(X; y) is not enough

Indeed, for instance on manifolds with non-negative Ricci curvature,
pi(x, x) ~ W where V(x,r) = u(B(x,r)), and V(x, r) does vary with r

We have to assume doubling (D) :

V(x,2r) < CV(x,r), Yxe M, r>0 (1)



Real life heat kernel estimates are not uniform !

To do analysis on (M, 1), one needs estimates of p:(x, x) and even of ps(x, y):
SUp, yem Pr(X; y) is not enough

Indeed, for instance on manifolds with non-negative Ricci curvature,
pi(x, x) ~ W where V(x,r) = u(B(x,r)), and V(x, r) does vary with r

We have to assume doubling (D) :

V(x,2r) < CV(x,r), Yxe M, r>0 (1)

It follows easily that there exists v > 0 such that

<(£)V, VxeM, r>s>0. (VD,)



Real life heat kernel estimates are not uniform !

To do analysis on (M, 1), one needs estimates of p:(x, x) and even of ps(x, y):
SUp, yem Pr(X; y) is not enough

Indeed, for instance on manifolds with non-negative Ricci curvature,
pi(x, x) ~ W where V(x,r) = u(B(x,r)), and V(x, r) does vary with r

We have to assume doubling (D) :

V(x,2r) < CV(x,r), Yxe M, r>0 (1)

It follows easily that there exists v > 0 such that

<(£)V, VxeM, r>s>0. (VD)

It is known that if M is connected, non-compact, and satisfies (1), then the
following reverse doubling condition holds: there exist 0 < v/ < v such that, for
alr>s>0and x € M,

(0) s ven)
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The basic upper on-diagonal estimate

(DUE) pr(x, x) < NViEt>0,xeM

C
V(x,V1)

Self-improves into

(UE) pi(x,y) <

2
exp(—d (g;y)),Vt>O, X,y eM

C
V(x,V1)

which implies the on-diagonal lower Gaussian estimate

(DLE) pr(x, x) >

c
,VxeM, t>0
V(x, V)
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Heat kernel estimates under volume doubling 2

Full Gaussian lower estimate

c d?(x y))
LE Xx,y) > exp|-C . VX, yeM, t>0
(LE) pi(x,y) = Vx V) p( ; y
Gradient upper estimate
C
G Vepi(X, y)| < ————— Vx,y e M, t >0
(G) IVxpi(X, Y IV VD y

All this is true on manifolds with non-negative Ricci curvature



Heat kernel estimates under volume doubling 3

(DUE) < (UE) = (DLE) # (LE) % (G)
(G) = (LE) = (DUE)

Davies, Grigor'yan, [Coulhon-Sikora, Proc. London Math. Soc. 2008 and
Collog. Math. 2010] [Grigory’an-Hu-Lau, CPAM, 2008], [Boutayeb, Tbilissi

Math. J. 2009]

Three levels:
e (UE)
@ (UE) + (LE) = (LY) = parabolic Harnack
° (G)



Application: Riesz transform

Theorem

Let M be a complete non-compact Riemannian manifold satisfying (D) and
(DUE). Then

(Ro) V£l < CIAY2f|p, ¥ € C3°(M),

for1t <p<2.

[Coulhon, Duong, T.A.M.S. 1999]

Theorem

Let M be a complete non-compact Riemannian manifold satisfying (D) and
(G). Then the equivalence

(Ep) 1Vl llp = |AY2f|lp, Vf € C5°(M),

holds for1 < p < cc.

A\

[Auscher, Coulhon, Duong, Hofmann, Ann. Sc. E.N.S. 2004]
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Joint work with Salahaddine Boutayeb and Adam Sikora, 2013.

(M, d, ) a metric measure space satisfying the doubling volume property (D)
Dirichlet form £(f, f)

Markov semigroup (€~ '2);5 on L2(M, ;1)

v:MxR; — R, satisfying

(D) v(x,2r) < Cv(x,r),Vr>0,u—aexeM
and
(Dy) v(y,r) < Cv(x,r),vx,y e M,r>0,d(x,y) <r

v may NOT be the volume function V; in fact v > V, slow decays allowed



Pointwise heat kernel upper estimates revisited 2

(DUE"): (e~'2)¢~0 has a measurable kernel p;, that is
e "2 f(x / p(x, y)f(y)du(y), t >0, fe LB((M,pu), n—ae. xeM

and

pi(x,y) < c ,forallt >0, p—aex,yeM.

vV, Vi)
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Denote

vi(x) :=v(x,r), r>0,xeM.
Introduce
(NY) 1713 < Ilfv, /213 + r2E(F), ¥Yr>0, VfelF.

(equivalent to Nash if v(x, r) ~ rP) and for g > 2 (not too big)

1_1
(GNg) 1fve 715 < IFIE + r?€(f), ¥r>0, VfeF,

(equivalent to Gagliardo-Nirenberg if v(x, r) ~ rP)

Assume that (M, d, ., L) satisfies (D) and Davies-Gaffney and that v satisfies
(Dv) and (Dy). Then (DUE") is equivalent to (N¥) and to (GNy) for q > 2
small enough.
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Introduce weighted LP — L7 inequalities: 1 < p < g < +o9, 7, ¢ real numbers

such thaty + 6 = ‘a

1
p

DI g < o (o)
>
(DUEY) = v!/2(x)pi(x, y)V!Z(y) < C s equivalent to (VEV); 12 OF

1
(VE2,00) SUP1g [[VE6 2 |ac < 00

(GNy) is equivalent to

1_1
(VE2,q) SUP¢~.o ”V\zﬂ qeitAH2—>q < 400

Finite propagation speed of the associated wave equation=- commutation
between the semigroup and the volume: for p, g fixed, equivalence between
(VEVp,q,4)= extrapolation: pass from g to oo.

Conclusion: (GNy) = (DUE")
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d,d

A =ds+dd

Bochner’s formula: .
A =V*V + Ric.

. 1 ad?(x y)) -
X)) < —exp | — . , Vt>0,ae. x,yeM, UE
1Pr(x, ¥)| < Vx VD) p ( i y (UE)

for some C > 0. Here py(x, y) is a linear operator from T;M to T; M, endowed
with the Riemannian metrics at y and x, and | - | is its norm.

Implies (G)

Manifolds with non-negative Ricci:

1B (x, y)| < pe(x,y)

|e—t5w‘ S e—tAlwl
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Heat kernel on one-forms 1

In general, problem: no positivity, no maximum principle, no Dirichlet form,
e~ !A is a priori not bounded on L' or L>®

Joint work with Baptiste Devyver and Adam Sikora, in preparation.

A potential V € Ly, is said to belong to the Kato class at infinity K> (M) if

lim sup G(x, y)V(y)l du(y) =0, (2)

R—00 xem J M\B(x,R)

for some (all) xp € M.

Let M be a complete non-compact connected manifold satisfying (D) and
(DUE) and such that |Ric_| € K°(M). Let v’ be the reverse doubling

exponent. IfV' > 4, the heat kernel of A satisfies (JE) if and only if
Ker;2(&) = {0}.




Consequences

Recall the Gaussian lower bound

1 (12(X y)
> 9
pi(x,y) = Vix VD) exp (_t ) , Vt>0, ae.x,yeM (LE)

Under the above assumptions, (LE) holds.

Under the above assumptions, (E,) holds for all p € (1, +00).
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Sketch of proof 1

Since Ric_ € K*°(M), there is a compact subset Ky of M such that

1
sup G(x, y)Ric_|(y) du(y) < 5 (3)
xeM J M\Ky

Let R be the section of the vector bundle £(T*M) given by

x — R(x) = Ric_(x)1x,(x).
We shall also denote by R the associated operator on one-forms. Set
H=V*V + Ric; — (RiC_)1M\K0,

so that

—

A=H-R.



Sketch of proof 2

(e~ satisfies Gaussian estimates.




Sketch of proof 2

(e~ satisfies Gaussian estimates.

It follows that .
sup |(/+ tH) " VIPllpsoo < +00 (4)



Sketch of proof 2

(e~ satisfies Gaussian estimates.

It follows that .
Sp (1 tH) "V P llpoos < o0 (4)

We would like a similar estimate for A



Sketch of proof 2

(e~ satisfies Gaussian estimates.

It follows that .
sup |(/+ tH) " VIPllpsoo < +00 (4)

We would like a similar estimate for A

A+tA) " == +tH) R +tH) ",



Sketch of proof 2

(e~ satisfies Gaussian estimates.

It follows that .
Sp (1 tH) "V P llpoos < o0 (4)

We would like a similar estimate for A

A+tA) " == +tH) R +tH) ",
Want

(= (H+X) "R M|oosoe < C.



Sketch of proof 2

(e~ satisfies Gaussian estimates.

It follows that .
sup |(/+ tH) " VIPllpsoo < +00 (4)

We would like a similar estimate for A

A+tA) " == +tH) R +tH) ",
Want

(1= (H+X)""R) M|osoe < C.
For A > 0, we introduce the two operators

A)\ _ R1/2(H+)\)_1 R1/2
and

By =(H+\'R.



Spectral theory

For any X € [0, 00), By is compact on L=, sup,~ ||Bxl/cc—c < 00, and the
map \ — By € L(L*>, L*) is continuous on [0, co).

Lemma

For every A > 0, the operator A, is self-adjoint and compact on e
Furthermore, Ker;2(A) = {0} if and only if there is n € (0, 1) such that for all
A >0,

|Axll2m2 <1 —=17.

| A

Lemma

Assume that Ker;2(A) = {0}. Ify € (0,1) is as above then the spectral radius
of By on L satisfies

I’OO(B)\) < 1 -, VA > 0.

A\




Weighted LP — L9 inequalities again

Start from

sup [[(/+ t8) VP gy oo < +o00
t>0

By duality and interpolation,
sup IV + tA) " Viilposg < 400
>

for any p, g such that 1 gpgpo,%—%:7+5:%,7:

—1_1
THi=5 -5

1

(po—1)q°

(RVp,s)

(VRVp,q.~)

and



Weighted LP — L9 inequalities again

Start from

sup |(/+ tA) VP |y o0 < 400 (RVp.x)
t>0

By duality and interpolation,

STUEHV\%(H' tA) "' Voilpsg < +o0 (VRVp,q.+)
>
forany p,gsuchthat1 <p<po, § - 5 =740 = 1,7 = Grng and

THE=1 -4
Use the finite propagation speed to iterate (instead of extrapolating)



