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The setting

Let M be a connected, complete, non-compact Riemannian manifold

d the geodesic distance, µ the Riemannian measure
∇ the gradient, ∆ the (nonnegative) Laplace-Beltrami operator∫

M
∇f · ∇g dµ =

∫
M

f ∆g dµ

E(f ) :=< ∆f , f > the Dirichlet form
(e−t∆)t>0 is a Markov semigroup, acts on Lp(M, µ), 1 ≤ p ≤ +∞

e−t∆ has a smooth kernel pt (x , y) = pt (y , x) > 0:

e−t∆f (x) =

∫
M

pt (x , y)f (y) dµ(y), f ∈ L2(M, µ), ∀ x ∈ M

In order to do analysis on M, one would like to estimate pt (x , y) from above
and below

No curvature assumptions, rather direct geometric properties of M
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Uniform bounds of the heat kernel: the polynomial
case
Assume (e−tL)t>0 is uniformly bounded on L1(M, µ) (L∞(M, µ))

sup
x,y∈M

pt (x , y) ≤ Ct−D/2, ∀ t > 0, x ∈ M, some D > 0,

is equivalent to:

- the Sobolev inequality:

‖f‖αD/(D−αp) ≤ C‖Lα/2f‖p, ∀f ∈ Dp(Lα/2),

for p > 1 and 0 < αp < D [Varopoulos 1984, C. 1990 ].
- the Nash inequality:

‖f‖2+(4/D)
2 ≤ C‖f‖4/D

1 E(f ), ∀f ∈ F .

[Carlen-Kusuoka-Stroock 1987]
-the Gagliardo-Nirenberg type inequalities, for instance

‖f‖2
q ≤ C‖f‖

2− q−2
q D

2 E(f )
q−2
2q D, ∀f ∈ F ,

for q > 2 such that q−2
2q D < 1 [C. 1992].
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Extrapolation

In the Sobolev and in the Gagliardo-Nirenberg case (not in the Nash case),
one needs:

Lemma (C., 1990)
Assume (e−tL)t>0 is uniformly bounded on L1(M, µ) and there exist
1 ≤ p < q ≤ +∞, α > 0 such that

‖e−tL‖p→q ≤ Ct−α, ∀ t > 0.

Then
‖e−tL‖1→∞ ≤ Ct−β , ∀ t > 0,

where β = α
1
p−

1
q
.



Real life heat kernel estimates are not uniform !
To do analysis on (M, µ), one needs estimates of pt (x , x) and even of pt (x , y):
supx,y∈M pt (x , y) is not enough

Indeed, for instance on manifolds with non-negative Ricci curvature,
pt (x , x) ' 1

V (x,
√

t)
, where V (x , r) = µ(B(x , r)), and V (x , r) does vary with r

We have to assume doubling (D) :

V (x ,2r) ≤ CV (x , r), ∀ x ∈ M, r > 0 (1)

It follows easily that there exists ν > 0 such that

V (x , r)

V (x , s)
.
( r

s

)ν
, ∀ x ∈ M, r ≥ s > 0. (VDν)

It is known that if M is connected, non-compact, and satisfies (1), then the
following reverse doubling condition holds: there exist 0 < ν′ ≤ ν such that, for
all r ≥ s > 0 and x ∈ M, ( r

s

)ν′
.

V (x , r)

V (x , s)
.
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Heat kernel estimates under volume doubling 1

The basic upper on-diagonal estimate

(DUE) pt (x , x) ≤ C
V (x ,

√
t)
,∀ t > 0, x ∈ M

Self-improves into

(UE) pt (x , y) ≤ C
V (x ,

√
t)

exp
(
−d2(x , y)

Ct

)
,∀ t > 0, x , y ∈ M

which implies the on-diagonal lower Gaussian estimate

(DLE) pt (x , x) ≥ c
V (x ,

√
t)
, ∀ x ∈ M, t > 0
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Heat kernel estimates under volume doubling 2

Full Gaussian lower estimate

(LE) pt (x , y) ≥ c
V (x ,

√
t)

exp
(
−C

d2(x , y)

t

)
, ∀ x , y ∈ M, t > 0

Gradient upper estimate

(G) |∇xpt (x , y)| ≤ C√
tV (y ,

√
t)
, ∀ x , y ∈ M, t > 0

All this is true on manifolds with non-negative Ricci curvature
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Heat kernel estimates under volume doubling 3

Theorem

(DUE)⇔ (UE)⇒ (DLE) 6⇒ (LE) 6⇒ (G)

(G)⇒ (LE)⇒ (DUE)

Davies, Grigor’yan, [Coulhon-Sikora, Proc. London Math. Soc. 2008 and
Colloq. Math. 2010] [Grigory’an-Hu-Lau, CPAM, 2008], [Boutayeb, Tbilissi
Math. J. 2009]

Three levels:

(UE)

(UE) + (LE) = (LY ) = parabolic Harnack
(G)



Application: Riesz transform

Theorem
Let M be a complete non-compact Riemannian manifold satisfying (D) and
(DUE). Then

(Rp) ‖ |∇f | ‖p ≤ C‖∆1/2f‖p, ∀ f ∈ C∞0 (M),

for 1 < p < 2.

[Coulhon, Duong, T.A.M.S. 1999]

Theorem
Let M be a complete non-compact Riemannian manifold satisfying (D) and
(G). Then the equivalence

(Ep) ‖ |∇f | ‖p ' ‖∆1/2f‖p, ∀ f ∈ C∞0 (M),

holds for 1 < p <∞.

[Auscher, Coulhon, Duong, Hofmann, Ann. Sc. E.N.S. 2004]



Pointwise heat kernel upper estimates revisited 1

Joint work with Salahaddine Boutayeb and Adam Sikora, 2013.

(M,d , µ) a metric measure space satisfying the doubling volume property (D)
Dirichlet form E(f , f )
Markov semigroup (e−t∆)t>0 on L2(M, µ)
v : M × R+ → R+ satisfying

(Dv ) v(x ,2r) ≤ Cv(x , r),∀ r > 0, µ− a.e. x ∈ M

and

(D′v ) v(y , r) ≤ Cv(x , r),∀ x , y ∈ M, r > 0, d(x , y) ≤ r

v may NOT be the volume function V ; in fact v & V , slow decays allowed
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Pointwise heat kernel upper estimates revisited 2

(DUEv ): (e−t∆)t>0 has a measurable kernel pt , that is

e−t∆f (x) =

∫
M

pt (x , y)f (y)dµ(y), t > 0, f ∈ L2(M, µ), µ− a.e. x ∈ M

and

pt (x , y) ≤ C√
v(x ,

√
t)v(y ,

√
t)
, for all t > 0, µ− a.e. x , y ∈ M.



Pointwise heat kernel upper estimates revisited 3

Denote
vr (x) := v(x , r), r > 0, x ∈ M.

Introduce

(Nv ) ‖f‖2
2 . ‖fv−1/2

r ‖2
1 + r2E(f ), ∀ r > 0, ∀f ∈ F .

(equivalent to Nash if v(x , r) ' rD) and for q > 2 (not too big)

(GNv
q ) ‖fv

1
2−

1
q

r ‖2
q . ‖f‖2

2 + r2E(f ), ∀ r > 0, ∀f ∈ F ,

(equivalent to Gagliardo-Nirenberg if v(x , r) ' rD)

Theorem

Assume that (M,d , µ,L) satisfies (D) and Davies-Gaffney and that v satisfies
(Dv ) and (D′v ). Then (DUEv ) is equivalent to (Nv ) and to (GNv

q ) for q > 2
small enough.
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Idea of the proof

Introduce weighted Lp − Lq inequalities: 1 ≤ p ≤ q ≤ +∞, γ, δ real numbers
such that γ + δ = 1

p −
1
q

sup
t>0
‖vγ√

t
e−t∆ vδ√t‖p→q < +∞. (vEvp,q,γ)

(DUEv ) = v1/2√
t

(x)pt (x , y)v1/2√
t

(y) ≤ C is equivalent to (vEv)1,∞,1/2 or

(vE2,∞) supt>0 ‖v
1
2√

t
e−t∆‖2→∞ < +∞

(GNv
q ) is equivalent to

(vE2,q) supt>0 ‖v
1
2−

1
q√

t
e−t∆‖2→q < +∞

Finite propagation speed of the associated wave equation⇒ commutation
between the semigroup and the volume: for p,q fixed, equivalence between
(vEvp,q,γ)⇒ extrapolation: pass from q to∞.
Conclusion: (GNv

q )⇒ (DUEv )
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Heat kernel on one-forms 1
d , δ

~∆ = dδ + δd

Bochner’s formula:
~∆ = ∇∗∇+ Ric.

|~pt (x , y)| . 1
V (x ,

√
t)

exp
(
−d2(x , y)

Ct

)
, ∀ t > 0, a.e. x , y ∈ M, ( ~UE)

for some C > 0. Here ~pt (x , y) is a linear operator from T ∗y M to T ∗x M, endowed
with the Riemannian metrics at y and x , and | · | is its norm.
Implies (G)
Manifolds with non-negative Ricci:

|~pt (x , y)| ≤ pt (x , y)

|e−t~∆ω| ≤ e−t∆|ω|
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Heat kernel on one-forms 1

In general, problem: no positivity, no maximum principle, no Dirichlet form,
e−t~∆ is a priori not bounded on L1 or L∞

Joint work with Baptiste Devyver and Adam Sikora, in preparation.
A potential V ∈ L∞loc is said to belong to the Kato class at infinity K∞(M) if

lim
R→∞

sup
x∈M

∫
M\B(x0,R)

G(x , y)|V(y)|dµ(y) = 0, (2)

for some (all) x0 ∈ M.

Theorem

Let M be a complete non-compact connected manifold satisfying (D) and
(DUE) and such that |Ric−| ∈ K∞(M). Let ν′ be the reverse doubling
exponent. If ν′ > 4, the heat kernel of ~∆ satisfies ( ~UE) if and only if
KerL2 (~∆) = {0}.
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Consequences

Recall the Gaussian lower bound

pt (x , y) &
1

V (x ,
√

t)
exp

(
−d2(x , y)

ct

)
, ∀ t > 0, a.e. x , y ∈ M (LE)

Corollary
Under the above assumptions, (LE) holds.

Corollary
Under the above assumptions, (Ep) holds for all p ∈ (1,+∞).



Sketch of proof 1

Since Ric− ∈ K∞(M), there is a compact subset K0 of M such that

sup
x∈M

∫
M\K0

G(x , y)|Ric−|(y) dµ(y) <
1
2
. (3)

Let R be the section of the vector bundle L(T ∗M) given by

x → R(x) = Ric−(x)1K0 (x).

We shall also denote by R the associated operator on one-forms. Set

H = ∇∗∇+ Ric+ − (Ric−)1M\K0 ,

so that
~∆ = H − R.
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Sketch of proof 2

Lemma

(e−tH)t>0 satisfies Gaussian estimates.

It follows that
sup
t>0
‖(I + tH)−1V 1/p√

t
‖p→∞ < +∞ (4)

We would like a similar estimate for ~∆

(1 + t ~∆)−1 = (I − (1 + tH)−1tR)−1(1 + tH)−1,

Want

‖(I − (H + λ)−1R)−1‖∞→∞ ≤ C.
For λ > 0, we introduce the two operators

Aλ = R1/2(H + λ)−1R1/2

and

Bλ = (H + λ)−1R.
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Spectral theory

Lemma

For any λ ∈ [0,∞), Bλ is compact on L∞, supλ≥0 ‖Bλ‖∞→∞ <∞, and the
map λ 7→ Bλ ∈ L(L∞,L∞) is continuous on [0,∞).

Lemma

For every λ ≥ 0, the operator Aλ is self-adjoint and compact on L2.
Furthermore, KerL2 (~∆) = {0} if and only if there is η ∈ (0,1) such that for all
λ ≥ 0,

‖Aλ‖2→2 ≤ 1− η.

Lemma

Assume that KerL2 (~∆) = {0}. If η ∈ (0,1) is as above then the spectral radius
of Bλ on L∞ satisfies

r∞(Bλ) ≤ 1− η, ∀λ ≥ 0.



Weighted Lp − Lq inequalities again

Start from
sup
t>0
‖(I + t ~∆)−1V 1/p0√

t
‖p0→∞ < +∞ (RVp,∞)

By duality and interpolation,

sup
t>0
‖V γ√

t
(I + t ~∆)−1V δ√

t‖p→q < +∞ (VRVp,q,γ)

for any p,q such that 1 ≤ p ≤ p0, 1
p −

1
q = γ + δ = 1

p0
, γ = 1

(p0−1)q , and
γ + δ = 1

p −
1
q .

Use the finite propagation speed to iterate (instead of extrapolating)
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