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The Bieri-Neumann—Strebel-Renz invariants

@ Let G be a finitely generated group. Let
@ n= bl(G) > 0.

e S(G) = S"™1, the unit sphere in
Hom(G,R) = R".

e Cay(G), the Cayley graph of G.

o (Bieri-Neumann-Strebel 1987)
Y1(G) ={xe S(G) | Cay, (G) is connected},

where Cay, (G) is the induced subgraph of Cay(G) on vertex set
Gy =1{ge Gl x(g) =0}
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o (Bieri-Renz 1988)
Y9(G,Z) = {x € S(G) | the monoid G, is of type FP,},

i.e., there is a projective ZG,-resolution P, — Z, with P; finitely
generated for all i < g. Moreover, ¥1(G,Z) = —¥1(G).

@ The BNSR-invariants of form a descending chain of open subsets,

S(G)2X4G,2) 2%%(G,Z2) 2 - .

@ The X-invariants control the finiteness properties of normal subgroups
N < G for which G/N is free abelian:

N is of type FPy < S(G,N) < ¥9(G,Z)
where S(G, N) = {x € S(G) | x(N) = 0}.

o In particular: ker(y: G — Z) is f.g. == {£x} < X1(G).
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Novikov—Sikorav homology

@ For each x € S(G), the Novikov—Sikorav completion of ZG,
iEX = {)\ € Z° | {g e supp \ | x(g) = c} is finite, Vc e R}
is a ring containing ZG as a subring.

o Alternatively, let Uy, be the additive subgroup of ZG (freely)
generated by {g € G | x(g) = m}.

@ Requiring the decreasing filtration {Uy,} mez to form a basis of open
neighborhoods of 0 defines a topology on ZG, compatible with the
ring structure. Then

ZG_y =lim 7G/Upn.
EXAMPLE
Let G =Z = (t) and x(t) = 1. Then
ZEX = Z[[t7Y][t] = { Z nit' | nj € Z, for some k € Z}.

i<k
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@ Now let X be a connected CW-complex with finite g-skeleton, for
some g > 1. Write G = 71(X) and S(X) = 5(G).

o (Farber-Geoghegan—Schiitz 2010)

Y9(X,Z) = {x € S(X) | HiI(X;ZG_,) =0, Vi < q}.

o (Bieri 2007) If G is FPy, then £9(G,Z) = Y9(K(G,1),7), Vq < k.

@ In particular, if G is finitely generated, the BNS set
Y1(G) = —X%(G,Z) consists of those characters x € S(G) for which
both Hy(G;ZG,) and Hi(G;ZG,) vanish.
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Characteristic varieties

o Let Tg := Hom(G,C*) be the character group of G = m1(X),
identified with Char(X) := H(X;C*).

@ The characteristic varieties of X are the sets

Vi(X) = {pe T | Hi(X;C,) # 0}.

o If X has finite g-skeleton, then V/(X) is Zariski closed for all i < gq.
o We may define similarly V/(X,k) = H(X;k*) for any field k.

@ These constructions are compatible with restriction and extension of
the base field. Namely, if k < I is a field extension, then

Vi(X,k) = VI(X,L) n H}(X;k*),
VI(X,L) = V(X,k) xx L.
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o Let X? — X be the maximal abelian cover. View H,(X?P;C) as a
module over C[G,p]. Then

JVix) = V(ann (Hi(X**;C))).

iI<q iI<q

o Let exp: C" — (C*)". Given a subvariety W < (C*)", define its
exponential tangent cone at 1 (the identity of (C*)") as

1 (W) ={zeC"|exp(Az) e W, VA e C}.

e 71 (W) depends only on the germ W(,); it is non-empty iff 1 € W.
o If T = (C*)"is an algebraic subtorus, then 7 (T) = T1(T) = C".

o (Dimca—Papadima-S. 2009) 71 (W) is a finite union of rationally
defined linear subspaces.

o For any subfield k = C, set 7(W) = 71 (W) n k".

ALEX Sucru GROUPS AND TROPICAL GEOMETRY SYpNEY 9 FEB 2023 8 /32



Resonance varieties

o Let A= H*(X;C). For each a € A!, we have that a> = 0. Thus,
there is a cochain complex

(A, -a): AD—Z- Al 2. A2

@ The resonance varieties of X are the homogeneous algebraic sets
RI(X) ={ae Al | H'(A, a) # 0}.
o Identify Al = H1(X;C) with C", where n = b;(X). The map
exp: HY(X;C) — HY(X;C*) has image T = (C*)".
o (Dimca—Papadima-S. 2009)
(VX)) € R (X).

o (DPS-2009, DP-2014) If X is a g-formal space, then, for all i < g,
n(VI(X)) = RI(X).
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Bounding the X-invariants
o Let y € S(X), and set ' = im(); then [ =~ Z", for some r > 1.

@ A Laurent polynomial p = Zﬁ/ nyy € ZI is x-monic if the greatest
element in x(supp(p)) is 0, and ng = 1.

o Let RIy be the Novikov ring, i.e., the localization of ZI" at the
multiplicative subset of all x-monic polynomials; then Rl is a PID.

o Let b;(X,x) = rankgr, H;(X;Rly) be the Novikov-Betti numbers.

THEOREM (PAPADIMA-S. 2010)

Let X be a connected CW-complex with finite q-skeleton and let
x: m(X) — R be a non-zero homomorphism. Then,

o —xeXIX,Z) = bi(X,x)=0, Vi<gq.
o x ¢ T(VSI(X)) = bi(X,x) =0, ¥i<gq.

COROLLARY

TIX,Z) S S <T11R< VWX)))C

v
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@ Thus, X9(X,Z) is contained in the complement of a finite union of
rationally defined great subspheres.

o If X is g-formal, then £/(X,Z) € S (R</(X)) for all i < q.
EXAMPLE

Let X be a nilmanifold. Then T/(X, Z) = S(X), while Vi(X) = {1}, Vi.
Thus, £9(X,Z) = S(Tf(VSI(X)))S, for all q.

EXAMPLE
o let G=Gr={(veV |vw=wvif {v,w} € E) be the right-angled
Artin group associated to a finite simple graph I = (V, E).

@ There is a finite K(G, 1) which is formal.
e Y9(G,R) = S(RSY(G,R))¢ holds for all g.

e Y9(G,Z) = S(RS9(G,R)), provided the homology groups of certain
subcomplexes in the flag complex of I are torsion-free.

o This condition is always satisfied in degree g = 1, giving
Y1(G) = S(RY(G,R)).
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Tropical varieties

o Let K= C{t}} = Up=1 C((tY™) be the field of Puiseux series over C.

@ A non-zero element of K has the form c(t) = c;t%* + pt® + - -,
¢ci € C* and a; < ap < --- rationals with a common denominator.

@ The (algebraically closed) field K admits a valuation v: K* — Q,
given by v(c(t)) = a.

o Let v: (K*)” — Q" < R" be the n-fold product of the valuation.

@ The tropicalization of a subvariety W < (K*)", denoted Trop(W), is
the closure (in the Euclidean topology) of v(W) in R".

@ This is a rational polyhedral complex in R”. For instance, if W is a
curve, then Trop(W) is a graph with rational edge directions.
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If T is an algebraic subtorus of (K*)", then Trop(T) is the linear
subspace Hom(K*, T) ® R < Hom(K*, (K*)") ® R = R".

@ Moreover, if z € (K*)", then Trop(z- T) = Trop(T) + v(z).

@ For a variety W < (C*)", we may define its tropicalization by setting
Trop(W) = Trop(W x¢ K).

@ In this case, the tropicalization is a polyhedral fan in R".
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@ For a polytope P c R", let P° = {y € (R")Y : x -y < 1,Vx € P} be
its polar dual, and set
@ F(P) the face fan (the set of cones spanned by the faces of P);

e N(P) the (inner) normal fan.
e If 0 €int(P), then N'(P) = F(P°).

o If W = V(f) is a hypersurface defined by f = Y _, a,t" € C[t*1],
and Newt(f) = conv{u | a, # 0} < R”, then

Trop(V/(f)) = N (Newt(f))<dim=0,

EXAMPLE

Let f = t1 + to + 1. Then Newt(f) = conv{(1,0), (0,1),(0,0)} is a
triangle, and so Trop(V/(f)) is a tripod.
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Tropicalizing the characteristic varieties

@ Recall K = C{{t}} comes with a valuation map, v: K* — Q.

Let vx: Charg(X) — Q" < R” be the composite

HY(X K*) — HY(X; Q) —= HY(X;R).

e., if p: m(X) — K* is a K-valued character, then the morphism
vop: m(X) — Q defines vx(p) € HY(X; Q) = Q" < R".

e Given an algebraic subvariety W = H'(X;C*) we define its
tropicalization as the closure in H1(X;R) =~ R" of the image of
W xc K c HY(X;K*) under vy,

Trop(W) := vx (W x¢ K).

Applying this definition to the characteristic varieties V'(X), and
recalling that V/(X,K) = V/(X) x¢c K, we have that

Trop(V'(X)) = vx (Vi(X,K)).
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LEMMA
Let W = (C*)" be an algebraic variety. Then (W) < Trop(W). J

Sketch of proof.

e Every irreducible component of 71*(W) is of the form L ®g R, for
some linear subspace L < Q".

@ The complex torus T := exp(L ®q C) lies inside W.
@ Thus, Trop(T) = L®g R lies inside Trop(W). ]

PROPOSITION
o T(VI(X)) € Trop(VI(X)), for all i < q.

o If there is a subtorus T < Char®(X) such that T¢ Vi(X), yet
pT < Vi(X) for some p € Char(X), then 7 (V(X)) & Trop(V/(X)).
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A tropical bound for the X-invariants

THEOREM (PS-2010, S-2021)

Let p: m1(X) — k* be a character such that p € VS9(X,k). Let
v: k* — R be the homomorphism defined by a valuation on k. If the
homomorphism x = v o p: m1(X) — R is non-zero, then x ¢ Y9(X,Z).

Sketch of proof.

o Let kk be the topological completion of k with respect to the absolute
value |c| = exp(—v(c)). Get a field extension, ¢: k — k.

o Let G = m(X). Extend p: G — k* to a ring map, p: ZG — k.

° Smce ce X = v o p, we can extend p to a morphism of topologlcal rings,
ZG — Ik, making k into a ZG_X—module denoted kA

@ Restricting scalars via the inclusion ZG — ZG_X yields the
Z.G-module k., defined by the character 1o p: G — k*.
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@ For a ring R, a bounded below chain complex of flat right R-modules
K., and a left R-module M, there is a (right half-plane, boundedly
converging) Kiinneth spectral sequence,

E; = Torf (Hj(K), M) = Hi\ j(K ®g M) .
e Usering R = ZE_X, chain complex of free R-modules
K. = Cq ()N(,Z) ®z6 ZG_y, and R-module M = HAgﬁ.
@ Now let p € VS9(X, k), and suppose x = vope L9(X,Z).

@ This is equivalent to HJ-(X;ZE_X) =0 for all j < g; that is,
H;j(K) = 0 for j < gq. Therefore, Ei? =0forj<q.

@ Hence, H,-+J-(X;]1:§Lop) =0 for j < q, and so Hj(X;ﬂ%Lop) =0 for j < q.

e This is equivalent to 1 0 p ¢ V<9(X, k). Hence, p ¢ V<9(X, k),
contradicting our hypothesis on p.

@ Therefore, x ¢ X9(X,Z). O
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THEOREM (S-2021)

Y9(X,Z) < S(Trop(VSI(X)))*

Sketch of proof.
°

Let p: m1(X) — K* and set x = vop: m1(X) — Q, a rational point
on HY(X;R).

Suppose p € VSI(X,K) = VS9(X) x¢ K.

Then y is a rational point on Trop(VS9(X)) = vx(V<9(X; K)).
Conversely, all rational points on Trop(V<9(X)) are of the form
vx(p) = v op, for some p e VSI(X,K).

Finally, assume that y # 0, so that x represents an (arbitrary) rational
point in S(Trop(VS9(X)).

By the previous theorem, y € (X, Z)°.

But the rational points are dense in S(Trop(VS9(X))), and £9(X,Z)°

is closed in S(X), and so we're done. O
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COROLLARY
Y9(X,Z) < S(Trop(VSI(X)))¢ < SR (VSI(X))).
Y1(G) = =S(Trop(V!(G)))® = S(m*(V*(G)))°.

COROLLARY
If VS9(X) contains a component of Char(X), then ¥9(X,Z) = &.

THEOREM

Let f,: G — G, be a finite collection of epimorphisms. If each V! (G,)
contains a component of Tg, , then

(Us (H(GaiR))) -
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The Alexander polynomial

Let H = G,p/tors(G,p) be the maximal torsion-free abelian quotient
of G = m1(X) and g: X" — X the respective cover.

Set Ax = H1(X"; g7 (x0),Z), viewed as a Z[H]-module.

Let E1(Ax) < Z[H] be the ideal of codimension 1 minors in a
presentation for Ax.

Ax = gcd(E1(Ax)) € Z[H] is the Alexander polynomial of X. It only
depends on G, so also write it as Ag.

Suppose 1} - (Ag) < Ei(Ag), for some p = 0. Then
VHX) n T = {1} U V(Ag).
This condition is satisfied if G is a 1-relator group, or G = w1 (M),

where M is a closed, orientable 3-manifold with empty or toroidal
boundary (C. McMullen, D. Eisenbud-W. Neumann).
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Let Newt(Ag) < H1(G; R) be the Newton polytope of Ag.

Given ¢ € HY(G;Z) = Hom(H,Z), its Alexander norm, |¢| , is the

length of ¢(Newt(Ag)).

This defines a semi-norm on H(G;R), with unit ball

Ba={oeH(GR)|[d|a<1}.

If Ag is symmetric (i.e., invariant under t; — tl-_l), then By is, up to
a scale factor of 1/2, the polar dual of the Newton polytope of Ag,

2Ba = Newt(Ag)°.

PROPOSITION

If A is symmetric and If} - (Ag) < E1(Ag), for some p = 0, then

YHG) < g S(F).

F an open facet of By
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Two-generator, one-relator groups
o Let G ={x,y | r), with b;(G) = 2. In 1987, K. Brown gave a
combinatorial algorithm for computing ¥1(G); see Friedl-Tillmann
(2020) for a modern approach.

EXAMPLE

@ Let G ={(a,b| b*(ab™1)2a72).

@ Then T}(G) = S"\{(J5, 75), (0, ~1), (=1,0)}.

@ On the other hand, Ag = a+ b+ 1.

@ Thus, ¥1(G) = —S(Trop(V(Ag)))¢, though 7V (G) = {0}. )
EXAMPLE

@ Let G ={a,b| a’ba~tba’batb3a 'ba’balba
b=la=2p=tab la=2p~labdabla2b labla"lb).

@ Then Ag = (a—1)(ab—1), and so S(Trop(V(Ag))) consists
of two pairs of points.

@ Yet ¥!(G) consists of two open arcs joining those points.
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Compact 3-manifolds

@ Let M be a compact, connected, orientable 3-manifold with
b1(/\/]> > 0.

@ A non-zero class ¢ € H'(M;7Z) = Hom(m1(M),Z) is fibered if there
exists a fibration p: M — S' such that the induced map
ps: T (M) — m1(S) = Z coincides with ¢.

e The Thurston norm |¢||T of a class ¢ € H*(M;Z) is the infimum of
—x(S5), where S runs though i\ll the properly embedded, oriented
surfaces in M dual to ¢, and S denotes the result of discarding all

components of S which are disks or spheres.

e Thurston showed that | — |+ defines a seminorm on H(M;Z), which
can be extended to a continuous seminorm on H(M;R).

@ The unit norm ball, By = {¢ € HY(M;R) | |¢| T < 1}, is a rational
polyhedron with finitely many sides and symmetric in the origin.
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There are facets of B, called the fibered faces Fibmdms,\
(coming in antipodal pairs), so that a class ¢ € k‘

HY(M;Z) fibers if and only if it lies in the cone
over the interior of a fibered face. HYM)

@ Bieri, Neumann, and Strebel showed that the BNS invariant of
G = 71(M) is the projection onto S(G) of the open fibered faces of
the Thurston norm ball Br; in particular, ¥1(G) = —X1(G).

@ Under some mild assumptions, McMullen showed that ||¢[a < |¢] T,
leading to an upper bound for ¥1(G) in terms of Ba, explained by
Dunfield, as follows:
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THEOREM

Let M be a compact, connected, orientable, 3-manifold with empty or
toroidal boundary. Set G = w1 (M) and assume by(M) = 2. Then

(1) Trop (VX(G) n T%) is the positive-codimension skeleton of F(Ba),

the face fan of the unit ball in the Alexander norm.

(2) (Partly recovers McMullen's theorem) ¥*(G) is contained in the union

of the open cones on the facets of By.

V.

Example: Let M be Seifert manifold with
@ Orientable base surface of genus g.

o Exceptional fibers (a1, 1), ..., (ar, Br).
@ Orbifold Euler number e = — 377, 3i/a;.

o fa)=ay-a/lem(ag, ..., a).
PROPOSITION
Suppose e # 0 and either g > 1, or g =1 and 6(«) > 1. Then
YI(M) =&,
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Kahler manifolds

@ Let M be a compact Kihler manifold. Then M is formal.

o (Beauville, Catanese, Green—Lazarsfeld, Simpson, Arapura, B. Wang)

V'(M) are finite unions of torsion translates of algebraic subtori of
HY(M, C*).

THEOREM (DELZANT 2010)

£H(M) = S(M\ |, S(fx (H (Cai R))),

where the union is taken over those orbifold fibrations f,,: M — C,, with

the property that either x(C,) < 0, or x(C,) = 0 and f,, has some multiple
fiber.

o

In degree 1, we may recast this result in the tropical setting, as follows.

COROLLARY

Y1(M) = S(Trop(V*(M))C.

v
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EXAMPLE (THE CATANESE-CILIBERTO-MENDES LOPES SURFACE)

Let C; be a smooth curve of genus /\\ //\\\

2 with an elliptic involution o1, ,«/ ' \\ [ = \\
@ and G, a curve of genus 3 with 4 A iE‘
a free involution o». \ < /‘ " \ = |7

S A Ly

@ Then X; = Gy /o7 is a curve of genus 1, X5 = C,/07 is a curve of
genus 2, and M = (C; x ()/o1 x 07 is a smooth, complex projective
surface with Hy(M; Z) = 7Z°.

@ Projection onto the first coordinate yields an orbifold fibration
fi: M — ¥ with two multiple fibers, each of multiplicity 2. The other
projection defines a smooth fibration f,: M — ¥,.

o Wehave VIIM) ={t|ti=th=1}u{ta=ts =ts = 1, t3 = —1},
with the two components obtained by pullback along f; and f.

o Thus, Z}(M) = S\S({x3 = -+ = x6 = 0} U {x1 = xo = 0}).
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Hyperplane arrangements

o Let A= {Hi,...,H,} be an (essential, central) arrangement of
hyperplanes in C.

o Its complement, M(A) c (C*)?, is a smooth, quasi-projective Stein
manifold; thus, it has the homotopy type of a finite, d-dimensional
CW-complex.

o H*(M(A);Z) is the Orlik—-Solomon algebra of L(.A).

o (Arapura) The characteristic varieties V'(A) := V/(M(A)) < (C*)".
are unions of translated subtori.

o Consequently, Trop(V/(A)) = — Trop(V/(A)).

o (Denham-S.—Yuzvinsky 2016/17) M(.A) is an “abelian duality space";
thus, its jump loci propagate: V1(A) < --- < VI~1(A).

o (Arnol'd, Brieskorn) M(.A) is formal. Thus, 71(V/(A)) = R/(A).
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THEOREM

Let M be the complement of an arrangement of n hyperplanes in C.

Then, foreach1 < g <d —1:
e Trop(V9(M)) is the union of a subspace arrangement in R".

o Y9(M,Z) = S(Trop(VI(M)))°.

QUESTION (MFO MINIWORKSHOP 2007)

Given an arrangement A, do we have

Y1(M(A)) = S(RY(A,R))?
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EXAMPLE (KoBAN-McCAMMOND-MEIER 2013)
o Let A be the braid arrangement in C”, defined by
H1<i<j<n(zi —2;) = 0. Then M(A) = Conf(n,C) ~ K(Py,1).

o Answer to (%) is yes: ¥1(M(A)) is the complement of the union of
(3) + (7) planes in C(3), intersected with the unit sphere.

EXAMPLE
o Let A be the "deleted B3" arrangement, defined by

212)(27 — 25) (28 — 23)(23 — 23) = 0.

o (S.2002) V'(A) contains a (1-dimensional) translated torus p- T.
o Thus, Trop(p- T) = Trop(T) is a line in C® which is not contained in
RY(A,R). Hence, the answer to (x) is no.

v

QUESTION (REVISED)

T (M(A)) = S(Trop(V'(A))? (x+)

v
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