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The Bieri–Neumann–Strebel–Renz invariants

Let G be a finitely generated group. Let
n “ b1pG q ą 0.

SpG q “ Sn´1, the unit sphere in
HompG ,Rq “ Rn.

CaypG q, the Cayley graph of G .

(Bieri–Neumann–Strebel 1987)

Σ1pG q “ tχ P SpG q | CayχpG q is connectedu,

where CayχpG q is the induced subgraph of CaypG q on vertex set
Gχ “ tg P G | χpgq ě 0u.

Alex Suciu Groups and tropical geometry Sydney 9 Feb 2023 3 / 32



(Bieri–Renz 1988)

ΣqpG ,Zq “ tχ P SpG q | the monoid Gχ is of type FPqu,

i.e., there is a projective ZGχ-resolution P‚ Ñ Z, with Pi finitely
generated for all i ď q. Moreover, Σ1pG ,Zq “ ´Σ1pG q.

The BNSR-invariants of form a descending chain of open subsets,

SpG q Ě Σ1pG ,Zq Ě Σ2pG ,Zq Ě ¨ ¨ ¨ .

The Σ-invariants control the finiteness properties of normal subgroups
N Ÿ G for which G{N is free abelian:

N is of type FPq ðñ SpG ,Nq Ď ΣqpG ,Zq

where SpG ,Nq “ tχ P SpG q | χpNq “ 0u.

In particular: kerpχ : G ↠ Zq is f.g. ðñ t˘χu Ď Σ1pG q.
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Novikov–Sikorav homology

For each χ P SpG q, the Novikov–Sikorav completion of ZG ,

yZGχ “

!

λ P ZG | tg P suppλ | χpgq ě cu is finite, @c P R
)

is a ring containing ZG as a subring.

Alternatively, let Um be the additive subgroup of ZG (freely)
generated by tg P G | χpgq ě mu.

Requiring the decreasing filtration tUmumPZ to form a basis of open
neighborhoods of 0 defines a topology on ZG , compatible with the
ring structure. Then

yZG´χ “ lim
ÐÝm

ZG{Um .

Example
Let G “ Z “ xty and χptq “ 1. Then

yZGχ “ Zrrt´1ssrts “

!

ÿ

iďk

ni t
i | ni P Z, for some k P Z

)

.
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Now let X be a connected CW-complex with finite q-skeleton, for
some q ě 1. Write G :“ π1pX q and SpX q :“ SpG q.

(Farber–Geoghegan–Schütz 2010)

ΣqpX ,Zq “ tχ P SpX q | Hi pX ;yZG´χq “ 0, @ i ď qu.

(Bieri 2007) If G is FPk , then ΣqpG ,Zq “ ΣqpK pG , 1q,Zq, @q ď k .

In particular, if G is finitely generated, the BNS set
Σ1pG q “ ´Σ1pG ,Zq consists of those characters χ P SpG q for which
both H0pG ;yZGχq and H1pG ;yZGχq vanish.
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Characteristic varieties

Let TG :“ HompG ,C˚q be the character group of G “ π1pX q,
identified with CharpX q :“ H1pX ;C˚q.

The characteristic varieties of X are the sets

V i pX q “ tρ P TG | Hi pX ;Cρq ‰ 0u.

If X has finite q-skeleton, then V i pX q is Zariski closed for all i ď q.

We may define similarly V i pX , kq Ă H1pX ; k˚q for any field k.

These constructions are compatible with restriction and extension of
the base field. Namely, if k Ă L is a field extension, then

V i pX , kq “ V i pX ,Lq X H1pX ; k˚q ,

V i pX ,Lq “ V i pX , kq ˆk L .
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Let X ab Ñ X be the maximal abelian cover. View H˚pX ab;Cq as a
module over CrGabs. Then

ď

iďq

V i pX q “
ď

iďq

V
`

ann
`

Hi

`

X ab;C
˘̆ ˘

.

Let exp: Cn Ñ pC˚qn. Given a subvariety W Ă pC˚qn, define its
exponential tangent cone at 1 (the identity of pC˚qn) as

τ1pW q “ tz P Cn | exppλzq P W , @λ P Cu.

τ1pW q depends only on the germ Wp1q; it is non-empty iff 1 P W .

If T – pC˚qr is an algebraic subtorus, then τ1pT q “ T1pT q – Cr .

(Dimca–Papadima–S. 2009) τ1pW q is a finite union of rationally
defined linear subspaces.

For any subfield k Ă C, set τk1 pW q “ τ1pW q X kn.
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Resonance varieties

Let A “ H˚pX ;Cq. For each a P A1, we have that a2 “ 0. Thus,
there is a cochain complex

pA, ¨aq : A0 a // A1 a // A2 // ¨ ¨ ¨ .

The resonance varieties of X are the homogeneous algebraic sets

Ri pX q “ ta P A1 | H i pA, aq ‰ 0u.

Identify A1 “ H1pX ;Cq with Cn, where n “ b1pX q. The map
exp: H1pX ;Cq Ñ H1pX ;C˚q has image T0

G “ pC˚qn.

(Dimca–Papadima–S. 2009)

τ1pV i pX qq Ď Ri pX q.

(DPS-2009, DP-2014) If X is a q-formal space, then, for all i ď q,

τ1pV i pX qq “ Ri pX q.
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Bounding the Σ-invariants

Let χ P SpX q, and set Γ “ impχq; then Γ – Zr , for some r ě 1.

A Laurent polynomial p “
ř

γ nγγ P ZΓ is χ-monic if the greatest
element in χpsuppppqq is 0, and n0 “ 1.

Let RΓχ be the Novikov ring, i.e., the localization of ZΓ at the
multiplicative subset of all χ-monic polynomials; then RΓχ is a PID.

Let bi pX , χq “ rankRΓχ Hi pX ;RΓχq be the Novikov–Betti numbers.

Theorem (Papadima–S. 2010)

Let X be a connected CW-complex with finite q-skeleton and let
χ : π1pX q Ñ R be a non-zero homomorphism. Then,

´χ P ΣqpX ,Zq ùñ bi pX , χq “ 0, @i ď q.
χ R τR1

`

VďqpX q
˘

ðñ bi pX , χq “ 0, @i ď q.

Corollary

ΣqpX ,Zq Ď S
´

τR1

´

VďqpX q

¯¯c
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Thus, ΣqpX ,Zq is contained in the complement of a finite union of
rationally defined great subspheres.

If X is q-formal, then Σi pX ,Zq Ď S
`

Rďi pX q
˘c for all i ď q.

Example
Let X be a nilmanifold. Then Σi pX ,Zq “ SpX q, while V i pX q “ t1u, @i .
Thus, ΣqpX ,Zq “ SpτR1 pVďqpX qqqc, for all q.

Example
Let G “ GΓ “ xv P V | vw “ wv if tv ,wu P Ey be the right-angled
Artin group associated to a finite simple graph Γ “ pV ,E q.

There is a finite K pG , 1q which is formal.

ΣqpG ,Rq “ SpRďqpG ,Rqqc holds for all q.

ΣqpG ,Zq “ SpRďqpG ,Rqqc, provided the homology groups of certain
subcomplexes in the flag complex of Γ are torsion-free.

This condition is always satisfied in degree q “ 1, giving
Σ1pG q “ SpR1pG ,Rqqc.
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Tropical varieties

Let K “ Ctttuu “
Ť

ně1 Cppt1{nqq be the field of Puiseux series over C.

A non-zero element of K has the form cptq “ c1t
a1 ` c2t

a2 ` ¨ ¨ ¨ ,
ci P C˚ and a1 ă a2 ă ¨ ¨ ¨ rationals with a common denominator.

The (algebraically closed) field K admits a valuation v : K˚ Ñ Q,
given by vpcptqq “ a1.

Let v : pK˚qn Ñ Qn Ă Rn be the n-fold product of the valuation.

The tropicalization of a subvariety W Ă pK˚qn, denoted TroppW q, is
the closure (in the Euclidean topology) of vpW q in Rn.

This is a rational polyhedral complex in Rn. For instance, if W is a
curve, then TroppW q is a graph with rational edge directions.
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If T is an algebraic subtorus of pK˚qn, then TroppT q is the linear
subspace HompK˚,T q b R Ă HompK˚, pK˚qnq b R “ Rn.

Moreover, if z P pK˚qn, then Troppz ¨ T q “ TroppT q ` vpzq.

For a variety W Ă pC˚qn, we may define its tropicalization by setting
TroppW q “ TroppW ˆC Kq.

In this case, the tropicalization is a polyhedral fan in Rn.
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For a polytope P Ă Rn, let P˝ “ ty P pRnq_ : x ¨ y ď 1,@x P Pu be
its polar dual, and set

FpPq the face fan (the set of cones spanned by the faces of P);

N pPq the (inner) normal fan.

If 0 P intpPq, then N pPq “ FpP˝q.

If W “ V pf q is a hypersurface defined by f “
ř

uPA autu P Crt˘1s,
and Newtpf q “ convtu | au ‰ 0u Ă Rn, then

TroppV pf qq “ N pNewtpf qqcodimą0.

Example
Let f “ t1 ` t2 ` 1. Then Newtpf q “ convtp1, 0q, p0, 1q, p0, 0qu is a
triangle, and so TroppV pf qq is a tripod.
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Tropicalizing the characteristic varieties

Recall K “ Ctttuu comes with a valuation map, v : K˚ Ñ Q.

Let νX : CharKpX q Ñ Qn Ă Rn be the composite

H1pX ;K˚q
v˚ // H1pX ;Qq // H1pX ;Rq.

I.e., if ρ : π1pX q Ñ K˚ is a K-valued character, then the morphism
v ˝ ρ : π1pX q Ñ Q defines νX pρq P H1pX ;Qq “ Qn Ă Rn.

Given an algebraic subvariety W Ă H1pX ;C˚q we define its
tropicalization as the closure in H1pX ;Rq – Rn of the image of
W ˆC K Ă H1pX ;K˚q under νX ,

TroppW q :“ νX pW ˆC Kq.

Applying this definition to the characteristic varieties V i pX q, and
recalling that V i pX ,Kq “ V i pX q ˆC K, we have that

TroppV i pX qq “ νX
`

V i pX ,Kq
˘

.
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Lemma
Let W Ă pC˚qn be an algebraic variety. Then τR1 pW q Ď TroppW q.

Sketch of proof.
Every irreducible component of τR1 pW q is of the form L bQ R, for
some linear subspace L Ă Qn.

The complex torus T :“ exppL bQ Cq lies inside W .

Thus, TroppT q “ L bQ R lies inside TroppW q.

Proposition
τR1 pV i pX qq Ď TroppV i pX qq, for all i ď q.

If there is a subtorus T Ă Char0pX q such that T Ć V i pX q, yet
ρT Ă V i pX q for some ρ P CharpX q, then τR1 pV i pX qq Ř TroppV i pX qq.
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A tropical bound for the Σ-invariants

Theorem (PS-2010, S-2021)

Let ρ : π1pX q Ñ k˚ be a character such that ρ P VďqpX , kq. Let
υ : k˚ Ñ R be the homomorphism defined by a valuation on k. If the
homomorphism χ :“ υ ˝ ρ : π1pX q Ñ R is non-zero, then χ R ΣqpX ,Zq.

Sketch of proof.
Let k̂ be the topological completion of k with respect to the absolute
value |c | “ expp´υpcqq. Get a field extension, ι : k ãÑ k̂.

Let G “ π1pX q. Extend ρ : G Ñ k˚ to a ring map, ρ̄ : ZG Ñ k.

Since χ “ υ ˝ ρ, we can extend ρ̄ to a morphism of topological rings,
ρ̂ : yZG´χ Ñ k̂, making k̂ into a yZG´χ-module, denoted k̂ρ̂.

Restricting scalars via the inclusion ZG ãÑ yZG´χ yields the
ZG -module k̂ι˝ρ, defined by the character ι ˝ ρ : G Ñ k̂˚.
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For a ring R , a bounded below chain complex of flat right R-modules
K˚, and a left R-module M, there is a (right half-plane, boundedly
converging) Künneth spectral sequence,

E 2
ij “ TorRi pHjpK q,Mq ñ Hi`jpK bR Mq .

Use ring R “ yZG´χ, chain complex of free R-modules
K˚ “ C˚

`

rX ,Z
˘

bZG yZG´χ, and R-module M “ k̂ρ̂.

Now let ρ P VďqpX ,kq, and suppose χ “ υ ˝ ρ P ΣqpX ,Zq.

This is equivalent to HjpX ;yZG´χq “ 0 for all j ď q; that is,
HjpK q “ 0 for j ď q. Therefore, E 2

ij “ 0 for j ď q.

Hence, Hi`jpX ; k̂ι˝ρq “ 0 for j ď q, and so HjpX ; k̂ι˝ρq “ 0 for j ď q.

This is equivalent to ι ˝ ρ R VďqpX , k̂q. Hence, ρ R VďqpX ,kq,
contradicting our hypothesis on ρ.

Therefore, χ R ΣqpX ,Zq.
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Theorem (S-2021)

ΣqpX ,Zq Ď SpTroppVďqpX qqqc

Sketch of proof.
Let ρ : π1pX q Ñ K˚ and set χ “ v ˝ ρ : π1pX q Ñ Q, a rational point
on H1pX ;Rq.

Suppose ρ P VďqpX ,Kq “ VďqpX q ˆC K.

Then χ is a rational point on TroppVďqpX qq “ νX pVďqpX ;Kqq.

Conversely, all rational points on TroppVďqpX qq are of the form
νX pρq “ v ˝ ρ, for some ρ P VďqpX ,Kq.

Finally, assume that χ ‰ 0, so that χ represents an (arbitrary) rational
point in SpTroppVďqpX qq.

By the previous theorem, χ P ΣqpX ,Zqc.

But the rational points are dense in SpTroppVďqpX qqq, and ΣqpX ,Zqc

is closed in SpX q, and so we’re done.
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Corollary

ΣqpX ,Zq Ď SpTroppVďqpX qqqc Ď SpτR1 pVďqpX qqqc.

Σ1pG q Ď ´SpTroppV1pG qqqc Ď SpτR1 pV1pG qqqc.

Corollary
If VďqpX q contains a component of CharpX q, then ΣqpX ,Zq “ H.

Theorem
Let fα : G Ñ Gα be a finite collection of epimorphisms. If each V1pGαq

contains a component of TGα , then

Σ1pG q Ď

´

ď

α

S
`

f ˚
α pH1pGα;Rqq

˘

¯c
.
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The Alexander polynomial

Let H “ Gab{ torspGabq be the maximal torsion-free abelian quotient
of G “ π1pX q and q : XH Ñ X the respective cover.

Set AX :“ H1pXH ; q´1px0q,Zq, viewed as a ZrHs-module.

Let E1pAX q Ď ZrHs be the ideal of codimension 1 minors in a
presentation for AX .

∆X :“ gcdpE1pAX qq P ZrHs is the Alexander polynomial of X . It only
depends on G , so also write it as ∆G .

Suppose I pH ¨ p∆G q Ď E1pAG q, for some p ě 0. Then

V1pX q X T0
G “ t1u Y V p∆G q.

This condition is satisfied if G is a 1-relator group, or G “ π1pMq,
where M is a closed, orientable 3-manifold with empty or toroidal
boundary (C. McMullen, D. Eisenbud–W. Neumann).
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Let Newtp∆G q Ă H1pG ;Rq be the Newton polytope of ∆G .

Given ϕ P H1pG ;Zq – HompH,Zq, its Alexander norm, }ϕ}A, is the
length of ϕpNewtp∆G qq.

This defines a semi-norm on H1pG ;Rq, with unit ball

BA “ tϕ P H1pG ;Rq | }ϕ}A ď 1u.

If ∆G is symmetric (i.e., invariant under ti ÞÑ t´1
i ), then BA is, up to

a scale factor of 1{2, the polar dual of the Newton polytope of ∆G ,

2BA “ Newtp∆G q˝.

Proposition

If ∆G is symmetric and I pH ¨ p∆G q Ď E1pAG q, for some p ě 0, then

Σ1pG q Ď
ď

F an open facet of BA

SpF q.
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Two-generator, one-relator groups

Let G “ xx , y | ry, with b1pG q “ 2. In 1987, K. Brown gave a
combinatorial algorithm for computing Σ1pG q; see Friedl–Tillmann
(2020) for a modern approach.

Example

Let G “ xa, b | b2pab´1q2a´2y.

Then Σ1pG q “ S1ztp 1?
2
, 1?

2
q, p0,´1q, p´1, 0qu.

On the other hand, ∆G “ a ` b ` 1.

Thus, Σ1pG q “ ´SpTroppV p∆G qqqc, though τ1V1pG q “ t0u.

Example

Let G “ xa, b | a2ba´1ba2ba´1b´3a´1ba2ba´1ba
b´1a´2b´1ab´1a´2b´1ab3ab´1a´2b´1ab´1a´1by.

Then ∆G “ pa´1qpab´1q, and so SpTroppV p∆G qqq consists
of two pairs of points.

Yet Σ1pG q consists of two open arcs joining those points.
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Compact 3-manifolds

Let M be a compact, connected, orientable 3-manifold with
b1pMq ą 0.

A non-zero class ϕ P H1pM;Zq “ Hompπ1pMq,Zq is fibered if there
exists a fibration p : M Ñ S1 such that the induced map
p˚ : π1pMq Ñ π1pS1q “ Z coincides with ϕ.

The Thurston norm }ϕ}T of a class ϕ P H1pM;Zq is the infimum of
´χpŜq, where S runs though all the properly embedded, oriented
surfaces in M dual to ϕ, and Ŝ denotes the result of discarding all
components of S which are disks or spheres.

Thurston showed that } ´ }T defines a seminorm on H1pM;Zq, which
can be extended to a continuous seminorm on H1pM;Rq.

The unit norm ball, BT “ tϕ P H1pM;Rq | }ϕ}T ď 1u, is a rational
polyhedron with finitely many sides and symmetric in the origin.
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There are facets of BT , called the fibered faces
(coming in antipodal pairs), so that a class ϕ P

H1pM;Zq fibers if and only if it lies in the cone
over the interior of a fibered face.

Bieri, Neumann, and Strebel showed that the BNS invariant of
G “ π1pMq is the projection onto SpG q of the open fibered faces of
the Thurston norm ball BT ; in particular, Σ1pG q “ ´Σ1pG q.

Under some mild assumptions, McMullen showed that }ϕ}A ď }ϕ}T ,
leading to an upper bound for Σ1pG q in terms of BA, explained by
Dunfield, as follows:
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Theorem
Let M be a compact, connected, orientable, 3-manifold with empty or
toroidal boundary. Set G “ π1pMq and assume b1pMq ě 2. Then
(1) Trop

`

V1pG q X T0
G

˘

is the positive-codimension skeleton of FpBAq,
the face fan of the unit ball in the Alexander norm.

(2) (Partly recovers McMullen’s theorem) Σ1pG q is contained in the union
of the open cones on the facets of BA.

Example: Let M be Seifert manifold with
Orientable base surface of genus g .

Exceptional fibers pα1, β1q, . . . , pαr , βr q.

Orbifold Euler number e “ ´
řr

i“1 βi{αi .

θpαq “ α1 ¨ ¨ ¨αr{ lcmpα1, . . . , αr q.

Proposition
Suppose e ‰ 0 and either g ą 1, or g “ 1 and θpαq ą 1. Then
Σ1pMq “ H.
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Kähler manifolds

Let M be a compact Kähler manifold. Then M is formal.

(Beauville, Catanese, Green–Lazarsfeld, Simpson, Arapura, B. Wang)
V i pMq are finite unions of torsion translates of algebraic subtori of
H1pM,C˚q.

Theorem (Delzant 2010)

Σ1pMq “ SpMqz
ď

α
Spf ˚

α pH1pCα;Rqqq,

where the union is taken over those orbifold fibrations fα : M Ñ Cα with
the property that either χpCαq ă 0, or χpCαq “ 0 and fα has some multiple
fiber.

In degree 1, we may recast this result in the tropical setting, as follows.

Corollary

Σ1pMq “ SpTroppV1pMqqc.
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Example (The Catanese–Ciliberto–Mendes Lopes surface)

Let C1 be a smooth curve of genus
2 with an elliptic involution σ1,
and C2 a curve of genus 3 with
a free involution σ2.

Then Σ1 “ C1{σ1 is a curve of genus 1, Σ2 “ C2{σ2 is a curve of
genus 2, and M “ pC1 ˆ C2q{σ1 ˆ σ2 is a smooth, complex projective
surface with H1pM;Zq “ Z6.

Projection onto the first coordinate yields an orbifold fibration
f1 : M Ñ Σ1 with two multiple fibers, each of multiplicity 2. The other
projection defines a smooth fibration f2 : M Ñ Σ2.

We have V1pMq “ tt | t1 “ t2 “ 1u Y tt4 “ t5 “ t6 “ 1, t3 “ ´1u,
with the two components obtained by pullback along f1 and f2.

Thus, Σ1pMq “ S5zS
`

tx3 “ ¨ ¨ ¨ “ x6 “ 0u Y tx1 “ x2 “ 0u
˘

.
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Hyperplane arrangements

Let A “ tH1, . . . ,Hnu be an (essential, central) arrangement of
hyperplanes in Cd .

Its complement, MpAq Ă pC˚qd , is a smooth, quasi-projective Stein
manifold; thus, it has the homotopy type of a finite, d-dimensional
CW-complex.

H˚pMpAq;Zq is the Orlik–Solomon algebra of LpAq.

(Arapura) The characteristic varieties V i pAq :“ V i pMpAqq Ă pC˚qn.
are unions of translated subtori.

Consequently, TroppV i pAqq “ ´TroppV i pAqq.

(Denham–S.–Yuzvinsky 2016/17) MpAq is an “abelian duality space";
thus, its jump loci propagate: V1pAq Ď ¨ ¨ ¨ Ď Vd´1pAq.

(Arnol’d, Brieskorn) MpAq is formal. Thus, τ1pV i pAqq “ Ri pAq.
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Theorem
Let M be the complement of an arrangement of n hyperplanes in Cd .
Then, for each 1 ď q ď d ´ 1:

TroppVqpMqq is the union of a subspace arrangement in Rn.

ΣqpM,Zq Ď SpTroppVqpMqqqc.

Question (MFO Miniworkshop 2007)

Given an arrangement A, do we have

Σ1pMpAqq “ SpR1pA,Rqqc? (‹)
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Example (Koban–McCammond–Meier 2013)

Let A be the braid arrangement in Cn, defined by
ś

1ďiăjďnpzi ´ zjq “ 0. Then MpAq “ Confpn,Cq » K pPn, 1q.

Answer to (‹) is yes: Σ1pMpAqq is the complement of the union of
`

n
3

˘

`
`

n
4

˘

planes in Cpn2q, intersected with the unit sphere.

Example
Let A be the “deleted B3" arrangement, defined by
z1z2pz2

1 ´ z2
2 qpz2

1 ´ z2
2 qpz2

2 ´ z2
3 q “ 0.

(S. 2002) V1pAq contains a (1-dimensional) translated torus ρ ¨ T .

Thus, Troppρ ¨ T q “ TroppT q is a line in C8 which is not contained in
R1pA,Rq. Hence, the answer to (‹) is no.

Question (Revised)

Σ1pMpAqq “ SpTroppV1pAqqc? (‹‹)
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