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1 General Information

Honours in Applied Mathematics is a one-year program consisting of four 6 credit point units
of study and 24 credit points of research project. For more details about the structure and
completion requirements of Applied Mathematics honours program see Table A. You should
start with a very useful general overview of honours in the School of Mathematics and Statis-
tics and the Faculty of Science web page honours in Science.

1. Honours pathways
The Faculty of Science offers two main honours pathways:

– Combined Bachelor of Science/Bachelor of Advanced Studies (Honours) is an option,
which allows completing honours as an embedded pathway in the final year of the
program. The BSc/BAS (Honours) option requires completion of two majors before
honours year. If you are enrolled into combined BSc/BAS program then you can
apply for Advanced Studies honours through Sydney Student (go to Course details
and apply for Advanced Studies honours).

– The Bachelor of Science (Honours) is a standalone (appended) honours requiring
an additional year of study. Preliminary entrance into BSc (Honours) program is
through the Faculty of Science application portal (BSc (Honours). BSc (Honours) is
for students who:
∗ are not on track to complete two majors in the Bachelor of Science, or
∗ are external students, or
∗ commenced before 2018 and did not choose to transfer to the new curriculum

version of their degree.

2. Entry requirements
The Faculty requirements which must be met include:

– qualifying for a degree in a major which is cognate to the proposed honours stream
(a major which provides a suitable background for the honours stream; in borderline
cases the decision of whether a major is cognate is in the hands of the relevant
Honours coordinator and the faculty);

– having a WAM of at least 65;
– securing the agreement of a supervisor.

In addition, the School of Mathematics and Statistics may require that the student has a
total of at least 18 or 24 credit points (depending on their major requirement) of relevant
3000-level units of study in which:

– the average mark of advanced level units of study is at least 65;
– the average mark of mainstream level units of study is at least 75.

If you have completed a mix of advanced and mainstream units where some are above
and some below the thresholds, if you are not sure which of your courses are relevant,
or if your average is just on the wrong side of the threshold, you can seek further advice
from the relevant Honours coordinator.
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3. Application deadline

– The Faculty of Science application deadline for honours commencing in Semester
1, 2024 is 15 January 2024 and for Semester 2, 2024 it is 25 June 2024.

– All acceptances into honours (including in cases where the schools requirements
are not met) are ultimately at the discretion of the School. However, a student
meeting all of the above criteria (or the equivalent from another institution) should
be confident of acceptance.

4. Entry requirements to honours programs
Honours is available to students who have a completed major in an area relevant to
their project and have met the entry requirement to honours programs in the Faculty of
Science. Notice that entry requirements to the honours program in Applied Mathemat-
ics vary slightly depending on whether a candidate intends to complete a Bachelor of
Advanced Studies (Honours) degree or a Bachelor of Science (Honours) degree. There-
fore, it is necessary to check whether you satisfy all entry requirements before applying
for admission to honours in Applied Mathematics. See also more detailed guidelines for
students at the University of Sydney willing to complete an honours year.

5. Project supervision
The candidate is required to find a prospective supervisor from among the Applied Math-
ematics staff, who is agreeable to supervise the candidate’s project in the candidate’s
chosen topic. Students are required to submit the Expression of Interest form to the
Honours Coordinator before submitting the honours application to the Faculty of Sci-
ence.

6. Students from other institutions
Students from institutions other than the University of Sydney must possess qualifi-
cations which are deemed equivalent to the above and may apply for admission into
standalone Bachelor of Science (Honours).

7. Online honours applications to the Faculty of Science
Application and enrolment information should be obtained from the Faculty of Science
from their website. For online applications to honours programs, see here. Application
deadline for commencement in Semester 1 is 15 January 2024 and for commencement
in Semester 2 is 25 June 2024.

8. Honours scholarships
For scholarships available to honours students, see the website.

For further details, contact the Applied Mathematics honours coordinator
Prof Marek Rutkowski: Carslaw 814; marek.rutkowski@sydney.edu.au
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2 Applied Mathematics Honours

Independent research can be a life changing experience. In this honours program you will
complete a research project in the discipline of Applied Mathematics. Together with your su-
pervisor, you will identify a novel research question and develop a model, or propose some
mathematical or computational analysis. You will then carry out this program of work to pro-
duce results that can be interpreted in terms of the underlying real-world problem. Your work
will be assessed by a twenty minute presentation towards the end of your honours year and a
40 to 60 page honours thesis. Successful completion of your honours will clearly demonstrate
that you have mastered significant research and professional skills for either undertaking a
PhD or any variety of future careers.

2.1 Honours structure

Honours in Applied Mathematics consists of four 6-credit point coursework units including
two core units in Applied Computational Mathematics and Advanced Methods in Applied
Mathematics. Students will also complete 24-credit points of research project.

2.2 Coursework (24 credit points)

1. Core units (12 credit points)
Students are required to complete the following core units of study:

– Semester 1: MATH 4411 Applied Computational Mathematics

– Semester 2: MATH 4412 Advanced Methods in Applied Mathematics

2. Selective units (12 credit points)
In addition to the core units, students should choose their two selective units from units
offered by the School of Mathematics and Statistics listed as 4000 level or higher, which
have not already been taken for credit with the proviso that at most one unit labelled
5000 or higher may be taken. For the full list of selective units available to students
enrolled in Applied Mathematics honours, see Table A.

2.3 Honours project AMAT4103–4106 (24 credit points)

Each student is required to complete an honours project (composed of a written thesis and a
seminar presentation) on an Applied Mathematics topic, under the supervision of a member
of staff of the School of Mathematics and Statistics. Students should enrol in two project units
in each semester: AMAT4103–4104 in Semester 1 and AMAT4105–4106 in Semester 2.

2.4 Applied Mathematics honours coordinator in 2024

Prof Marek Rutkowski
Room 814, Carslaw Building
Email: marek.rutkowski@sydney.edu.au

3

https://www.maths.usyd.edu.au/u/PG/
https://rp.sydney.edu.au/handbooks/science/subject_areas_fm/mathematics_applied_honours_table.shtml


3 Core Units of Study

MATH4411 Applied Computational Mathematics (Semester 1)

Computational mathematics fulfils two distinct purposes within Mathematics. On
the one hand the computer is a mathematicians laboratory in which to model prob-
lems too hard for analytical treatment and to test existing theories; on the other
hand, computational needs both require and inspire the development of new math-
ematics. Computational methods are an essential part of the tool box of any math-
ematician. This unit will introduce you to a suite of computational methods and
highlight the fruitful interplay between analytical understanding and computa-
tional practice.

In particular, you will learn both the theory and use of numerical methods to simu-
late partial differential equations, how numerical schemes determine the stability
of your method and how to assure stability when simulating Hamiltonian systems,
how to simulate stochastic differential equations, as well as modern approaches to
distilling relevant information from data using machine learning. By doing this
unit you will develop a broad knowledge of advanced methods and techniques in
computational applied mathematics and know how to use these in practice. This
will provide a strong foundation for research or further study.

Assessments: In this unit you will have to write reports for 3 computer assign-
ments, each worth 20%. A final exam (worth 40%) will be on the mathematical
theory behind the numerical algorithms you learn.

MATH4412 Advanced Methods in Applied Mathematics (Semester 2)

Much of our physical world is nonlinear. If you take two rulers and place one on top
of another, the height of the combined object is the sum of the individual heights of
each ruler. But whether you are looking at herds of bisons in a landscape, the viral
load in an infective patients bloodstream, or the interaction of black holes far away
in the universe, it turns out the sum of individual components does not necessarily
give a true measure of reality. To describe these systems, we need methods that
apply to nonlinear mathematical models.

This course will cover theoretical methods (some exact, some in limits and oth-
ers that are qualitative) to describe, solve and predict the results of such mod-
els. Classical mathematical methods were developed for linear models. We will
start with building blocks to describe models of semi-classical quantum mechanics
and related orthogonal polynomials. These turn out to be generalizable to models
that arise in modern physics, such as quantum gravity and random matrix theory.
These lead naturally to integrable systems.

Assessments: Everyone will be expected to participate in discussions of exercises in
tutorials. There will be two assignments, to be given out approximately in weeks
4 and 8, respectively. The exam is a take-home exam, to be done over a three-
day period. Assessments: participation in tutorials: 5%; assignments 55%; final
examination: 40%.
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4 Selective Units of Study

In addition to the core units, honours students in Applied Mathematics should choose their
two selective units from units offered by the School of Mathematics and Statistics listed as
4000 level or higher, which have not already been taken for credit with the proviso that at
most one unit labelled 5000 or higher may be taken.

For the full list of selective units available to students enrolled in Applied Mathematics
honours and specific rules, see Table A. Your selection of units should be first discussed with
your supervisor and you should get her/his approval of your choice of selective units.

5 Important Dates in 2024

Semester 1: 19 February to 15 June

• Seminar presentation: Thursday/Friday in week 8

• Project submission: Monday, 20 May (week 13)
For students completing in Semester 1, 2024. An electronic file (pdf format) must be
uploaded on Canvas before the deadline.

• Examination period: 3–15 June

Semester 2: 29 July to 23 November

• Seminar presentation: Thursday/Friday in week 8

• Project submission: Monday, 28 October (week 13)
For students completing in Semester 2, 2024. An electronic file (pdf format) must be
uploaded on Canvas before the deadline.

• Examination period: 11–23 November
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6 SCIE4999 Final Honours Mark

SCIE4999 Final Honours Mark: All students in Science Honours must enrol in this non-
assessable unit of study in their final semester (not before the final semester). This unit
will contain their final Honours mark as calculated from the coursework and research project
units (50% each).

Honours students in Applied Mathematics should be correctly enrolled in their final project
unit AMAT4106 and SCIE4999 in their projected final semester.

Changes must be made before the Census Date and will only be approved if they are the
”fault” of the university. Student error is not an acceptable reason. Wording of forms must
represent how this was the error of the school/faculty/university or it won’t be accepted by the
fee’s team.

7 Final Honours Mark

The final honours mark SCIE4999 for each student is based on the following marking scheme:

• 50% for the project unit AMAT4103–4106,

• 50% for four units of study (12.5% for each).

The marking scale for Honours is significantly different from the undergraduate marking
scale at the University of Sydney. The project will be marked with this scale in mind.

GRADE OF HONOURS FACULTY-SCALE
First Class, with Medal 95–100
First Class (possibly with Medal) 90–94
First Class 80–89
Second Class, First Division 75–79
Second Class, Second Division 70–74
Third Class 50–69
Fail 00–49
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8 Research Project in Applied Mathematics

A significant part of the honours year is the completion of a research project by each student.
Each student must choose a project supervisor who is willing to supervise the student’s chosen
topic for the project. Project topics and supervisors should be finalised by the beginning of
the first semester, so that students can commence work immediately on their projects. The
following list shows the main Applied Mathematics research areas:

• Dynamical systems

• Geophysical and astrophysical fluid dynamics

• Industrial and biomedical modelling

• Integrable systems

• Mathematical biology

Members of the Applied Mathematics Research Group: Anna Aksamit, Eduardo Altmann,
Harini Desiraju, Nathan Duignan, Holger Dullin, Ben Goldys, Georg Gottwald, Nalini Joshi,
Peter Kim, Robert Marangell, Mary Myerscough, Milena Radnović, Lindon Roberts, Pieter
Roffelsen, Marek Rutkowski, Sharon Stephen, Martin Wechselberger, Zhou Zhou.

Their email addresses and research interests can be found here.

8.1 Project assessments

The written thesis will be marked by three examiners and each marking will therefore con-
stitute 30% of the final mark from the project unit.

The final mark from the project unit AMAT4103–4106 will be awarded according to the fol-
lowing marking scheme:

• 90% for a written thesis,

• 10% for a seminar presentation on the project.

The seminar is an opportunity for each student to present the material of her/his research
project to members of Applied Mathematics Research Group. The seminar talk will usually
be of 25 minutes duration, with an additional 5 minutes set aside for questions. The presenter
of the best talk will be awarded the Chris Cannon Prize. Marks for the thesis and seminar
presentation will be awarded for:

(i) selection and synthesis of source material;
(ii) evidence of understanding;
(iii) evidence of critical ability;
(iv) clarity, style and presentation;
(v) mathematical and/or modelling expertise.
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8.2 Project guidelines

• The student should consult the supervisor on a regular basis, preferably at least once a
week. This is the student’s responsibility.

• A realistic schedule for work on the project should be drawn up at an early stage, and
adhered to as closely as possible. If it proves necessary to modify the original plans, a
revised schedule should be drawn up after discussion with the supervisor.

• At the end of Semester 1, a one page report is to be submitted to the Honours Coordi-
nator. This report includes a half page description about the students aim/scope of the
project and a half page description about what the student has achieved in Semester 1
and what the student wants to achieve in Semester 2. This report has to be approved by
the supervisor before submission.

• The project should be based on some four to six original primary source articles, which
themselves represent a substantial contribution to the topic. Secondary sources, such as
books, review papers, etc., should also be consulted and cited.

• The thesis should be both a discursive and a critical account of the selected topic. It
should be written at a level that an expert Applied Mathematician can be expected to
understand. The work must contain substantial mathematical content.

• Students are recommended to use LATEX in typesetting their projects. Additional infor-
mation on LATEX can be found here.

• The length of the written thesis should be between 40 to 60 typed (normal LATEX font size)
A4 pages. Only in exceptional circumstances, and after consultation with the supervisor,
should the project exceed 60 pages. This number includes all figures, contents pages,
tables, appendices, etc. Computer programs essential to the work should be included
(with adequate commentary) as additional material.

• Computer programs essential to the work should be included (with adequate commen-
tary) as additional material in appendices.

• Students should be careful to provide full and correct referencing to all material used
in the preparation of projects. Be explicit in stating what is your contribution and what
is someone else’s contribution. Avoid quoting verbatim unless reinforcing an important
point.

• Three examiners will be appointed to assess each written thesis. Although marking
schemes may differ, the assessment of the thesis will be based on:

(i) selection and synthesis of source material;
(ii) evidence of understanding;
(iii) evidence of critical ability;
(iv) clarity, style and presentation;
(v) mathematical and/or modelling expertise.

• Students who have worked on their project topics as Vacation Scholars are required to
make a declaration to that effect in the preface of their thesis.
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8.3 Topics for the project and supervisors

You will find below a list of possible project topics for honours students in Applied Mathemat-
ics in 2024. Prospective students interested in any of these topics are encouraged to discuss
them with the named supervisors as early as possible. The list is not exhaustive and thus
you may wish to suggest your own topic for project or discuss any other topic with a potential
supervisor. Notice that each student must find a member of staff who will agree to supervise
the project before applying for admission to Applied Mathematics honours.

Complex networks and social-media data
Prof E. Altmann; Carslaw 526; eduardo.altmann@sydney.edu.au; phone 9351-4533

Please contact me if you are interested in projects combining data analysis and mecha-
nistic models of complex networks and social-media data (time series and natural language
processing).

Monte Carlo methods in triangulation problems
Prof E. Altmann; Carslaw 526; eduardo.altmann@sydney.edu.au; phone 9351-4533

The goal of this project is to investigate how Markov Chain Monte Carlo methods can be
used to obtain efficient triangulation of manifolds in different dimensions. After reviewing
the known results for simple configurations (in low dimensions), we will focus on computa-
tional methods to efficiently find triangulations. Within a Monte Carlo framework, we will
investigate the efficiency of different proposal steps such as moves that merge and create tri-
angles. This project involves programming, it lies in the intersection between Applied and
Pure mathematics, and will be co-supervised by Dr. Jonathan Spreer and Prof. Eduardo
Altmann. Related work:

[1] T. Aste, R. Gramatica, and T. Di Matteo: Random and Frozen States in Complex Trian-
gulations. Philosophical Magazine, 92:1-3 (2012), 246–254.

Predictability of epidemic-spreading models
Prof E. Altmann; Carslaw 526; eduardo.altmann@sydney.edu.au; phone 9351-4533

The aim of this project is to quantify in which extent the spreading of an epidemic can be
forecasted in advance. Prediction of the spreading is limited due to the combination of random
fluctuations, unknown information, and the non-linear character of the underlying dynamics.
The focus of this project will be on predicting the peak of an infection [1,2]. It will involve
analytical and numerical investigations of ODE models and data analysis of time series of
number of infections in different geographical areas.

[1] M. Castro, S. Ares, J. A. Cuesta, S. Manrubia: The turning point and end of an ex-
panding epidemic cannot be precisely forecast. Proc. Natl. Acad. Sci. U.S.A. 117/46 (2020)
26190–26196.

[2] Claus O. Wilke and Carl T. Bergstrom Predicting an epidemic trajectory is difficult.
Proc. Natl. Acad. Sci. U.S.A. 117/46 (2020) 28549–28551.
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Quantizing Painlevé equations.
Dr H. Desiraju; Carslaw 630; harini.desiraju@sydney.edu.au

Description: Painlevé equations are a class of integrable second order ODEs with an ex-
traordinarily rich mathematical foundation, from their Hamiltonians to the associated geom-
etry. As such, the problem of quantizing these equations is a multi-faceted one, in the sense
that one could quantize one or more of their associated structures. These quantizations have
recently appeared in several areas of mathematics and physics from random matrices to black
hole physics. In this project we would study the quantization of Painlevé equations in one or
more ways, using their Hamiltonians and associated linear problems for example.

Finding regularity in chaos
Dr N. Duignan; Carslaw 606; nathan.duignan@sydney.edu.au

Chaotic systems are identified by the unpredictability of their motions. Some examples
include models of the weather, planetary motion, or the ion trajectories in a nuclear fusion
reactor. Remarkably, these chaotic systems often have a subset of initial conditions which
provide predictable, regular motion. Finding the initial conditions that lead to regular motion
is essential to understanding the motion of a chaotic system. In particular, for nuclear fusion
reactors, it is crucial to try and maximise the initial conditions that give regular motion to
achieve a stable reactor. In this project, you will study techniques for detecting regions of
chaos and apply it to an important system, for example, nuclear fusion reactors.

Numerical detection of integrability
Dr N. Duignan; Carslaw 606; nathan.duignan@sydney.edu.au

Integrable systems are identified by their complete predictability. Some examples include
the two-body problem, some problems of rigid body dynamics, and magnetic fields constructed
for optimal confinement of a plasma. The study of integrable systems lies on the intersec-
tion of dynamical systems, differential geometry, topology, algebra, and much more. Given a
system with parameters, it is often important to know when this system is integrable. For
example, in the case of confinement of a plasma, the magnetic field lines need to form an inte-
grable system to ensure the plasma is confined. In this project, you will develop a technique
for numerically finding when a value of the parameters gives an integrable system and apply
it to important systems.

Optimal magnetic axes
Dr N. Duignan; Carslaw 606; nathan.duignan@sydney.edu.au

A stellarator is a proposed device for the magnetic confinement of the plasma created in a
nuclear fusion reaction. In a stellarator, the magnetic field lines form the shape of a twisted
donut. At the centre of the stellarator lies a magnetic field line which closes on itself to
form a loop, called the magnetic axis. In this project you will try to understand how the
entire stellarator must look for good confinement of a plasma based purely off the shape of
the magnetic axis. The project could involve methods from differential geometry, dynamical
systems, Hamiltonian mechanics, Fourier analysis, and the theory of 3d curves.
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Other possible research projects
Dr N. Duignan; Carslaw 606; nathan.duignan@sydney.edu.au

Other possible research projects under the supervision of Dr Duignan include topics in
integrable systems, chaotic and regular dynamics, Hamiltonian mechanics, (pre)symplectic
geometry, the n-body problem, plasma physics and toroidal confinement devices, normal form
theory, and applications of each topic.

You can read more on https://www.maths.usyd.edu.au/u/nathand/. Please contact him if
interested!

The tennis racket effect
Prof H. Dullin; Carslaw 714; holger.dullin@sydney.edu.au; phone 9351-4083

The tennis racket effect is the observation that when you throw a tennis racket in the
air (initially holding it at its handle and facing the strings) and catch its handle after one
revolution, then usually the racket also flips by 180 degrees about its long axis, so that in the
end you are looking at the opposite side of the strings. Part of the explanation is that a rotation
of a free rigid body about its middle axis of inertia is unstable. This does now, however, explain
why the rotation around the long axis is somewhat synchronised. Explanations for this effect
have been proposed, but appear to either miss the point or to be too complicated. The goal of
the project is to use the geometric phase to derive at a simple quantitative explanation of the
effect, and to verify it numerically.

Chaotic dynamics of the pentagon
Prof H. Dullin; Carslaw 714; holger.dullin@sydney.edu.au; phone 9351-4083

A chain of planar rigid bodies is a simple mechanical system with n segments connected by
joints that allow free rotation. Connecting the first segment to the last by another joint gives
a closed chain. Since the distance between the joints is fixed the closed chain has n degrees of
freedom. Reduction by translations and rotations leaves n 3 degrees of freedom specifying the
shape. For certain parameters the dynamics of this system is chaotic in the sense of Anosov.
The goal of the project is to study the dynamics in the first non-trivial case of the pentagon
(n=5). In a chaotic system periodic orbits are dense in phase space, and the goal of the project
is to find and describe the periodic orbits of this system, using a combination of analytical and
numerical tools.

Non-normality in the Hopf bifurcation
Prof H. Dullin; Carslaw 714; holger.dullin@sydney.edu.au; phone 9351-4083

A real square matrix is normal if it commutes with its transpose. For example, orthogonal,
symmetric, and skew-symmetric matrices are normal matrices. Non-normal matrices are
important in regards to understanding stability and instability in dynamical systems. For
example, certain types of instabilities in fluid dynamics can be explained using non-normal
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matrices. The Hamiltonian Hopf bifurcation describes the bifurcations that can occur when
two pairs of imaginary eigenvalues collide on the imaginary axis and branch off into the
complex plane. Non-normal matrices appear naturally near this bifurcation. The goal of
the project is to describe and analyse the transient growth associated to non-normality as it
appears near this bifurcation.

Symplectic integration of the regularised planar circular restricted 3 body problem
Prof H. Dullin; Carslaw 714; holger.dullin@sydney.edu.au; phone 9351-4083

The restricted three body problem describes the motion of a test particle in the field of two
heavy masses rotating around each other in circular orbits. The problem has a singularity
when the test particle collides with either of the other masses. The collision can be regu-
larised, such that the solutions are defined for all times. The goal of the project is to construct
and implement a symplectic integration method for the regularised problem. This can then be
used to study periodic orbits in this chaotic system, in particular collision orbits. The study of
collision orbits is interesting and relevant because double collision orbits describe the motion
of a spacecraft from one body to the other.

Reaction-diffusion equation on a half-line driven by the boundary noise
Prof B. Goldys; Carslaw 709; ben.goldys@sydney.edu.au; phone 9351-2976

Partial differential equations with random boundary conditions arise in many problems
of Science and Engineering. In this project we will study an important nonlinear partial
differential equation with random boundary conditions, which was studied by Z. Brzeźniak,
B. Goldys, S. Peszat and F. Russo, “Second order PDEs with Dirichlet white noise boundary
conditions,” Journal of Evolution Equations 15(1) (2015), 1–26. We will focus on the existence
and uniqueness of stationary states and the rate of convergence to equilibrium. The project
will extend some results from the above-mentioned work.

Linear processes driven by space-time homogeneous noise
Prof B. Goldys; Carslaw 709; ben.goldys@sydney.edu.au; phone 9351-2976

Processes evolving randomly in space and time are often described using partial differen-
tial equations driven by external (independent of the solution) noise. Such partial differential
equations are nontrivial even in the linear case and they are frequently applied to model
random phenomena in physics, fluid dynamics, biology and engineering see, for example, the
paper by A. Sturm, “On convergence of population processes in random environments to the
stochastic heat equation with colored noise,” Electronic Journal of Probability 8(6) (2003). In
this project, we will focus on linear PDEs driven by the so-called space-time homogeneous
noise. Such an assumption leads to a rich class of examples, which are very useful in numer-
ous applications but still rather poorly understood. This project requires knowledge of Fourier
analysis and some basic functional analysis.
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Data-driven modelling: Finding models for observations in finance and climate
Prof G. Gottwald; Carslaw 625; georg.gottwald@sydney.edu.au; phone 9351-5784

When given data, which may come from observations of some natural process or data col-
lected form the stock market, it is a formidable challenge to find a model describing those
data. If the data were generated by some complex dynamical system one may try and model
them as some diffusion process. The challenge is that even if we know that the data can be
diffusive, it is by no means clear on what manifold the diffusion takes place. This project aims
at applying novel state-of-the-art methods such as diffusion maps and nonlinear Laplacian
spectral analysis to determine probabilistic models. You will be using data from ice cores en-
coding the global climate of the past 800kyrs as well as financial data. In the latter case you
might be able o recover the famous Black-Scholes formula (but probably not). This project
requires new creative ideas and good programming skills.

Optimal power grid networks and synchronisation
Prof G. Gottwald; Carslaw 625; georg.gottwald@sydney.edu.au; phone 9351-5784

Complex networks of coupled oscillators are used to model systems from pacemaker cells to
power grids. Given their sheer size we need methods to reduce the complexity while retaining
the essential dynamical information. Recent new mathematical methodology was developed
to describe the collective behaviour of large networks of oscillators with only a few parameters
which we call “collective coordinates.” This allows for the quantitative description of finite-size
networks as well as chaotic dynamics, which are both out of reach for the usually employed
model reduction methods.

You will apply this methodology to understand causes of and ways to prevent glitches and
failure in the emerging modern decentralised power grids. As modern societies increase the
share of renewable energies in power generation the resulting power grid becomes increas-
ingly decentralised. Rather than providing a power supply constant in time, the modern
decentralised grid generates fluctuating and intermittent supply. It is of paramount impor-
tance for a reliable supply of electric power to understand the dynamic stability of these power
grids and how instabilities might emerge. A reliable power-grid consists of well-synchronised
power generators. Failing to assure the synchronised state results in large power outages as,
for example, in North America in 2003, Europe in 2006, Brazil in 2009 and India in 2012
where initially localised outages cascade through the grid on a nation-wide scale. Such cas-
cading effects are tightly linked to the network topology. Modern power-grids face an intrinsic
challenge: on the one hand decentralisation was shown to favour synchronisation in power
grids, on the other hand decentralised grids are more susceptible to dynamic perturbations
such as intermittent power supply or overload.

The project uses analytical methods as well as computational simulation of models for
power grids. You will start with a simple network topology and then, if progress is made, use
actual power grid topologies.
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Data assimilation in numerical weather forecasting and climate science
Prof G. Gottwald; Carslaw 625; georg.gottwald@sydney.edu.au; phone 9351-5784

Data assimilation is the procedure in numerical weather forecasting whereby the infor-
mation of noisy observations and of an imperfect model forecast with chaotic dynamics, we
cannot trust, is combined to find the optimal estimate of the current state of the atmosphere
(and ocean). Data assimilation is arguably the most computationally costly step in producing
modern weather forecasts and has been topic of intense research in the last decade. There ex-
ists several approaches, each of which with their own advantage and disadvantages. Recently
a method was introduced to adaptively pick the best method to perform data assimilation.
This method employs a switch which, although it seems to work, has not been linked to any
theoretical nor physical properties of the actual flow. This project will be using toy models for
the atmosphere to understand the witch with the aim of improving the choice of the switching
parameter.

Networks of coupled oscillators
Prof G. Gottwald; Carslaw 625; georg.gottwald@sydney.edu.au; phone 9351-5784

Many biological systems are structured as a network. Examples range from microscopic
systems such as genes and cells, to macroscopic systems such as fireflies or even an applaud-
ing audience at a concert. Of paramount importance is the topography of such a network,
i.e., how the nodes, let’s say the fireflies, are connected and how they couple. Can they only
see their nearest neighbours, or all of them. Are some fireflies brighter than others, and how
would that affect the overall behaviour of a whole swarm of fireflies? For example, the famous
‘only 6 degrees of separation’-law for the connectivity of human relationships is important in
this context.

In this project we aim to understand the influence of the topography of such a network.
Question such as: How should a network be constructed to allow for maximal synchronization
will be addressed. This project requires new creative ideas and good programming skills.

Discrete soliton equations
Prof N. Joshi; Carslaw 629; nalini.joshi@sydney.edu.au; phone 9351-2172

Famous PDEs such as the Korteweg-de Vries equation (which have soliton solutions) have
discrete versions (which also have soliton solutions). These discrete versions are equations
fitted together in a self-consistent way on a square, a 3-cube or an N -dimensional cube. These
have simple, beautiful geometric structures that provide information about many properties:
solutions, reductions to discrete versions of famous ODEs, and deeper aspects such as La-
grangians. This project would consider generalisations of such structures and/or properties of
the solutions, such as finding their zeroes or poles.
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Integrable discrete or difference equations
Prof N. Joshi; Carslaw 629; nalini.joshi@sydney.edu.au; phone 9351-2172

The field of integrable difference equations is only about 20 years old, but has already
caused great interest amongst physicists (in the theory of random matrices, string theory, or
quantum gravity) and mathematicians (in the theory of orthogonal polynomials and soliton
theory). For each integrable differential equation there are, in principle, an infinite number of
discrete versions. An essay in this area would provide a critical survey of the many known dif-
ference versions of the classical Painlevé equations, comparisons between them, and analyse
differing evidence for their integrability. Project topics would include the derivation of new
evidence for integrability. The field is so new that many achievable calculations remain to be
done: including derivations of exact solutions and transformations for the discrete Painlevé
equations.

Exponential asymptotics
Prof N. Joshi; Carslaw 629; nalini.joshi@sydney.edu.au; phone 9351-2172

Near an irregular singular point of a differential equation, the solutions usually have di-
vergent series expansions. Although these can be ‘summed’ in some way to make sense as
approximations to the solutions, they do not provide a unique way of identifying a solution.
There is a hidden free parameter which has an effect like the butterfly in chaos theory. This
problem has been well studied for many classes of nonlinear ODEs but almost nothing is
known for PDEs and not much more is known for difference equations. This project would
include studies of a model PDE, like the famous Korteweg-de Vries equation near infinity, or
a difference equation like the string equation that arises in 2D quantum gravity.

Cellular automata
Prof N. Joshi; Carslaw 629; nalini.joshi@sydney.edu.au; phone 9351-2172

Cellular automata are mathematical models based on very simple rules, which have an
ability to reproduce very complicated phenomena. (If you have played the Game of Life on a
computer, then you have already seen automata with complicated behaviours.) This project
is concerned with the mathematical analysis of their solutions, which lags far behind corre-
sponding developments for differential or difference equations.

In this project, we will consider a family of cellular automata called parity filter rules,
for which initial data are given on an infinite set. For example, consider an infinitely long
train of boxes, a finite number of which have a ball inside, whilst the remainder are empty.
At each time step, there is a simple rule for moving the leftmost ball in a box to the next
empty box on the right. Continue until you have finished updating all nonempty boxes in the
initial train. (Try this out for yourself with adjacent boxes with three balls, followed by two
empty boxes and then two boxes with balls inside. What do you see after one update? Two
updates?) It turns out that these box-and-ball systems replicate solitons, observed in solutions
of integrable nonlinear PDEs. In this project, we will consider how to derive parity filter rules
from nonlinear difference equations, and how to analyse their solutions. One direction for the
project is to analyse the solutions as functions of initial data. Another direction is to develop
ways to describe long-term behaviours.
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Modelling the evolution of human post-menopausal longevity and pair bonding
Prof P. Kim; Carslaw 621; peter.kim@sydney.edu.au; phone 9351-2970

A striking contrast between humans and primates is that human lifespans extend well
beyond the end of the female reproductive years. Natural selection favours individuals with
the greatest number of offspring, so the presence of a long female post-fertile period presents
a challenge for understanding human evolution.

One prevailing theory that attempts to explain this paradox proposes that increased longe-
vity resulted from the advent of grandmother care of grandchildren. We have developed
preliminary age-structured PDE models and agent-based models to consider the intergen-
erational care of young proposed by this Grandmother Hypothesis. The project will involve
extending the models to consider whether the presence of grandmothering could increase the
optimum human longevity while simultaneously maintaining a relatively early end of fertility
as seen in humans (and killer whales).

Analytical approaches will involve developing numerical schemes for the PDEs and ana-
lytically and numerically studying the steady state age distributions and growth rates of the
populations with and without grandmothering and under different life history parameters,
e.g. longevity and end of fertility.

We have now also begun to explore mating strategies, especially pair bonding, yet another
unique human characteristic among mammals. Speculations about how pair bonding devel-
oped from our ancestral roots abound and are open to being quantified, modelled, and anal-
ysed. Like the grandmothering models, these investigations will involve PDEs or agent-based
models.

Modelling cancer immunotherapy
Prof P. Kim; Carslaw 621; peter.kim@sydney.edu.au; phone 9351-2970

A next generation approach to treating cancer focuses on cancer immunology, specifi-
cally directing a person’s immune system to fight tumours. Recent directions in cancer im-
munotherapy include

• Oncolytic virotherapy: infecting tumours with genetically-engineered viruses that pref-
erentially destroy tumour cells and induce a local anti-tumour immune response,

• Preventative or therapeutic cancer vaccines: stimulating a person’s immune system to
attack tumour colonies to prevent or hinder tumour development,

• Cytokine therapy: using immunostimulatory cytokines to recruit immune cells and en-
hance existing anti-tumour immune responses.

These treatments can be used alone or in combination with each other or with other forms
of treatment such as chemotherapy. Since immunotherapy often involves immune responses
against small tumours, often close to inception, they are highly spatially dependent and often
probabilistic. The goal of the will be to develop differential equation and possibly probabilis-
tic agent-based models to understand the tumour-virus-immune dynamics around a small,
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developing tumour and determine conditions that could lead to effective tumour reduction or
complete elimination. The project will involve developing the models and schemes for numer-
ically simulating the ODE and PDE systems, and if possible, performing a stability analysis
of the ODE system.

Geometric aspects of Turing bifurcations
A/Prof R. Marangell; Carslaw 720; robert.marangell@sydney.edu.au; phone 9351-5795

The Turing bifurcation is a classical example of a diffusion driven instability. This project
will attempt to look at some geometric aspects of the system at the onset of a Turing bifur-
cation, as well as potential factorisation of the system when the diffusion is either extremely
large or extremely small.

Fast-slow splitting in characteristic determinants
A/Prof R. Marangell; Carslaw 720; robert.marangell@sydney.edu.au; phone 9351-5795

Eigenvalue problems on a finite interval can often be characterised in terms of the vanish-
ing of the determinant of a matrix. Such a determinant is called the characteristic determi-
nant of the system. When multiple time-scales are present, this often results in the ability to
factor the characteristic determinant into characteristic determinants of lower-dimensional
systems. This project will look at how this factorisation takes place, based on the entries of
the original system.

Symmetries in PDEs
A/Prof R. Marangell; Carslaw 720; robert.marangell@sydney.edu.au; phone 9351-5795

This project is about the relationship between symmetries of partial differential equation,
the coordinate systems in which the equation admits solutions via separation of variables and
the properties of the special functions that arise in this manner. A major focus of this project
lying at the intersection of geometry, algebra and analysis is the characterisation of separable
coordinate systems in terms of the second-order symmetry operators of for the equations.

Chemotaxis in models with zero/negative diffusivity
A/Prof R. Marangell; Carslaw 720; robert.marangell@sydney.edu.au; phone 9351-5795

Chemotaxis is the movement of a cell via advection either towards or away from a chemi-
cal source. It has been used in many biological models, from slime-moulds to motile bacteria,
to roadway construction by humans. Typically linear diffusivity has been studied, but lately
models where the diffusivity is allowed to change sign have become of interest. This project
will examine the existence of travelling wave solutions in such models, as well as some ele-
mentary stability properties of such solutions.
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Stability in a model of herd grazing and chemotaxis
A/Prof R. Marangell; Carslaw 720; robert.marangell@sydney.edu.au; phone 9351-5795

This project will examine a model of the formation of a herd of grazing animals. The model
will focus on two major factors, how the animal seeks food and how the the animals interact
with each other. Remarkably, the model shares many properties with another, well studied
model, that of so-called bacterial chemotaxis. The aim of this project will be to analyse, both
numerically and analytically, such a model, and to understand certain special solutions in the
model, called travelling waves, as well as their stability.

Absolute spectrum of St. Venant roll waves
A/Prof R. Marangell; Carslaw 720; robert.marangell@sydney.edu.au; phone 9351-5795

Roll waves are a phenomenon that occurs when shallow water flows down an inclined ramp.
Mathematically they can be modelled by the St. Venant equations. Typically roll waves occur
as periodic solutions, however if they are far enough apart, they can be treated as solitary
waves. In this case, the spectrum of the linearised operator governs their dynamics, and in
particular, their stability properties. This project will focus on computing the absolute and
essential spectrum of these solitary waves. Medium computational skills are required for this
project.

Other possible research topics
A/Prof R. Marangell; Carslaw 720; robert.marangell@sydney.edu.au; phone 9351-5795

Other projects under the supervision of Dr Marangell include topics in the areas of non-
linear standing or travelling waves, topics in the application of geometric and topological
methods in dynamical systems and PDEs, symmetries in ODEs and PDEs and other research
topics in the history of mathematics and science in general. Examples of nonlinear standing
and travelling waves come from models in a wide range of areas which include mathematical
biology, chemistry and physics. More specific examples would be standing/travelling waves
in population dynamics, combustion models, and quantum computing, but really there are
many, many examples, so please contact Dr Marangell for further details.

PDE models for the distribution of ingested lipids in macrophages in atheroscle-
rotic plaques
Prof M. R. Myerscough; Carslaw 626; mary.myerscough@sydney.edu.au; phone 9351-3724

Atherosclerotic plaques are accumulations of lipid (fat) loaded cells and necrotic (dead)
cellular debris in artery walls. They are caused by LDL (which carries ‘bad cholesterol’) pen-
etrating the blood vessel wall, becoming chemically modified (usually oxidised) and setting
off an immune reaction. In response to this immune reaction, macrophages (a type of white
blood cell) enter the artery wall and consume the modified LDL. In this way macrophages
accumulate lipids and as more LDL and more cells enter the vessel walls the population of
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cells also grows. Other processes can affect the growth or regression of the plaque, such as cell
death, cells leaving the tissue and lipid export from inside cells to HDL (which carries ‘good
cholesterol’ which is good because it’s been carried away from the plaque). When atheroscle-
rotic plaques grow very large and rupture they can cause heart attacks and strokes which are
one of the two leading causes of death in the developed world. (The other is cancer.)

We have written a partial differential equation model for the accumulation of cells and
lipids in plaques. In this model, the number of macrophages in the plaque is a function of
both time t and accumulated lipid a. The primary equation is an advection equation with
nonlinear source and sink terms, including a term with an integral convolution that models
what happens when macrophages phagocytose (=eat) other macrophages that are dead or
dying.

We have done an analysis of this model at steady state when all the processes (lipid in-
gestion, macrophages leaving the plaque, the action of HDL) occur at a constant rate. This
project will build on this analysis and has the aim of producing numerical solutions to the
model when model processes are functions of a, the accumulated lipid inside the cell. This
project is particularly suitable for students who are interested in applications of mathematics
to biomedical problems, have completed a third year unit on PDEs and have at least some
experience in coding in Matlab, C, Python or similar.

Mathematical billiards
A/Prof M. Radnović; Carslaw 624; milena.radnovic@sydney.edu.au; phone 9351-5782

Mathematical billiards have been an established topic for research for about one century.
They have application in any situation involving collisions and reflections. They are used
as a model for the popular game of billiards, and also in laser techniques, the statistical
interpretation of the second law of thermodynamics wind-tree model, the dynamics of ideal
gas, tri-atomic chemical reactions etc. The field of mathematical billiards is at the cutting edge
of mathematics research, and work in the field is highly valued: several Fields Medals were
recently awarded for contributions in the area. The research on this project can vary from
making computer simulations to more theoretical work. Writing an essay is also available.

Poncelet porisms
A/Prof M. Radnović; Carslaw 624; milena.radnovic@sydney.edu.au; phone 9351-5782

Suppose that two conics are given in the plane, together with a closed polygonal line in-
scribed in one of them and circumscribed about the other one. The Poncelet porism states that
then infinitely many such closed polygonal lines exist and all of them with the same number of
sides. That statement is one of most beautiful and deepest contributions of the 19th century
geometry and has many generalisations and interpretations in various branches of mathe-
matics. In this essay, the student will present rich history and current developments of the
Poncelet porism.

Elliptical billiards and their periodic trajectories
A/Prof M. Radnović; Carslaw 624; milena.radnovic@sydney.edu.au; phone 9351-5782
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We consider billiards in a domain bounded by arcs of several conics belonging to a confocal
family. When the boundary of such a billiard does not contain reflex angles, the system turns
out to be integrable. Geometrically, the integrability has the following manifestation - for
each billiard trajectory, there is a curve, called caustic, which is touching each segment of
the trajectory. For elliptical billiards, the caustics are conics from the same confocal family.
Integrability implies that the trajectories sharing the same caustic are either all periodic with
the same period or all non-periodic.

On the other hand, if there is at least one reflex angle on the boundary, the integrability will
be broken, although the caustics still exist. Such billiards are thus called pseudo-integrable
and there may exist trajectories which are non-periodic and periodic with different periods
sharing the same caustic.

An essay on this topic would provide a review of classical and modern results related to
the elliptical billiards. In a project, the student would explore examples of billiard desks.

Stochastic gradient descent with randomised reshuffling
Dr L. Roberts; Carslaw 638; lindon.roberts@sydney.edu.au; phone 9351-5779

Many problems in data science can be reduced to optimising a very large sum of functions,
and methods based on stochastic gradient descent (SGD) are the most popular choices. Stan-
dard analysis of SGD assumes that the stochastic gradients (formed by selecting a random
data point) are unbiased and sampled independently at each iteration. However better per-
formance is usually observed if we shuffle the data points and use each one sequentially. This
is standard practice despite it violating the usual assumptions for SGD. In this project we will
investigate the convergence properties of randomised reshuffling for finite sum optimisation.
References:
K. Mishchenko, A. Khaled, and P. Richtarik. Random reshuffling: simple analysis with vast
improvements. 34th Conference on Neural Information Processing Systems, NeurIPS 2020.
L. M. Nguyen, Q. Tran-Dinh, D. T. Phan, P. H. Nguyen, and M. van Dijk. A unified conver-
gence analysis for shuffling-type gradient methods. Journal of Machine Learning Research 22
(2021) 1–44.
M. Gürbüzbalaban, A. Ozdaglar, and P. A. Parrilo. Why random reshuffling beats stochastic
gradient descent. Mathematical Programming 186 (2021) 49–84.
K. Mishchenko, A. Khaled, and P. Richtarik. Proximal and federated random reshuffling.
39th International Conference on Machine Learning, 2024.

Stochastic bilevel optimisation
Dr L. Roberts; Carslaw 638; lindon.roberts@sydney.edu.au; phone 9351-5779

Several data science problems, most notably hyperparameter tuning, is an example of
bilevel optimisation - optimising a function depends on the solution of a different optimisation
problem. This is a complicated problem, particularly when the inner problem is difficult to
solve. In this project we will look at extensions of stochastic optimisation algorithms to bilevel
optimisation (where both the outer and inner problems are solved using stochastic methods).
References: C. Crockett and J. A. Fessler. Bilevel methods for image reconstruction. Preprint,
2021, arXiv:2109.09610.
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K. Ji, J. Yang, and Y. Liang. Bilevel optimization: Convergence analysis and enhanced design.
38th International Conference on Machine Learning, 2021.
T. Chen, Y. Sun, Q. Xiao, and W. Yin. A single-timescale method for stochastic bilevel opti-
mization. 25th International Conference on Artificial Intelligence and Statistics, AISTATS
2024.
P. Khanduri, S. Zeng, M. Hong, H.-T. Wai, Z. Wang, and Z. Yang. A near-optimal algorithm
for stochastic bilevel optimization via double-momentum. 35th Conference on Neural Infor-
mation Processing Systems, NeurIPS 2021.

Nonlinear optimisation algorithms
Dr L. Roberts; Carslaw 638; lindon.roberts@sydney.edu.au; phone 9351-5779

Please contact me if you are interested in projects related to the study of algorithms for
solving nonlinear optimisation. I am particularly interested in stochastic algorithms (with
applications in data science) and algorithms for complex black-box functions, but am happy
to discuss other topics too.

q-orthogonal polynomials and corresponding determinants of moments
Dr P. Roffelsen; Carslaw 630; pieter.roffelsen@sydney.edu.au; phone 9351-3879

Orthogonal polynomials are fundamental mathematical objects with applications in a very
large range of fields, from numerical analysis to random matrix theory. The existence of or-
thogonal polynomials, for a specified weight, is predicated on the non-vanishing of certain
determinants of moments. For classical families of orthogonal polynomials, these determi-
nants can be worked out explicitly and are guaranteed not to vanish. However, when one
goes beyond the classical families, additional parameters enter the picture and these deter-
minants of moments play a vital role and become fascinating objects in themselves. They have
been found useful in solving problems in probability, random matrix theory and the theory of
Painlevé equations, amongst other areas. It is reasonable to expect that the landscape of q-
orthogonal polynomials, and corresponding determinants of moments, is similarly rich, but
much less is known there. This project is about exploring this landscape.

Control of boundary-layer flows
A/Prof S. Stephen; Carslaw 525; sharon.stephen@sydney.edu.au; phone 9351-3048

This project is in the field of hydrodynamic stability of boundary-layer flows where viscous
effects are important. The aim is towards understanding more fully the transition process
from a laminar flow to a turbulent one. We will consider rotating flows which are relevant to
the flow over a swept wing and to rotor-stator systems in a turbine engine. Experiments show
that the boundary layer becomes unstable to stationary or travelling spiral vortices.

The project will investigate the effect of different surface boundary conditions on boundary-
layer flows over rotating bodies. Effects such as suction, partial-slip, compliance and wall
shape can be modelled. Suction, for example, is used to achieve laminar flow control on swept
wings. The resulting system of governing ordinary differential equations will be solved nu-
merically for the basic flow, determining important values such as the wall shear. The linear
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stability of these flows to crossflow instabilities will be investigated. These take the form of
co-rotating vortices, observed in experiments, and only occur in three-dimensional boundary
layers.

The flow for large Reynolds number, corresponding to large values of rotation, will be con-
sidered. In this case the boundary layer thickness will be very small so asymptotic methods
of solution will be used. Different asymptotic regimes will need to be considered and solu-
tions obtained in each region. Matching the solutions between the regimes and satisfying the
boundary conditions will lead to an eigenrelation. Inviscid and viscous instability modes will
be considered.

The effect of the surface boundary conditions on the disturbance wave number and wave
angle will be determined. This will have applications in possible control of boundary layers
as boundaries causing stabilisation of the instabilities could lead to a delay in the transition
process from a laminar flow to a turbulent flow.

Geometric singular perturbation theory and its applications
Prof M. Wechselberger; Carslaw 628; martin.wechselberger@sydney.edu.au; phone 9351-3860

Projects under the supervision of Prof M. Wechselberger include research topics in the
field of dynamical systems with an emphasis on the study of pattern generation of so called
multiple time-scales dynamical systems. These multi-scale systems are ubiquitous in nature
and control most of our physiological rhythms. For instance, one cycle of a heartbeat consists
of a long interval of quasi steady state interspersed by a very fast change of state, the beat
itself. The same is true for the creation of neural action potentials. In these physiological
systems, the very fast relaxation of energy leads to the notion of a relaxation oscillator and
indicates physiological processes evolving on multiple timescales.

Topics could range from a theoretical study of possible multiple time-scales dynamics as-
sociated with relaxation oscillators to the analysis of a concrete physiological rhythm and
algorithmic implementation of geometric singular perturbation theory.

For more information on possible topics, please have a look at, e.g., the monograph Geo-
metric singular perturbation theory beyond the standard form by Prof M. Wechselberger:
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9 Prizes and Awards

The following prizes may be awarded to Applied Mathematics Honours students of sufficient
merit. Students do not need to apply for these prizes. A complete list of the prizes and
scholarships offered by the School of Mathematics and Statistics can be found here.

University Medal
A University Medal is awarded at the discretion of the Faculty to the highest achieving stu-
dents who, in the opinion of the Faculty, have an outstanding academic record. A student
meets the minimum levels of academic performance required for the award of a University
Medal if: their final honours mark SCIE4999 is equal to or greater than 60 and their WAM on
entry to Honours is equal to or greater than 80. The medal is always awarded when the final
honours mark SCIE4999 is 95 or higher. More than one medal may be awarded in any year.

Joye Prize in Mathematics Value: $6000, with medal and shield
Awarded to the most outstanding student completing Honours in the School of Mathematics
and Statistics.

K. E. Bullen Memorial Prize Value: $500
Awarded on the recommendation of the Head of the School of Mathematics and Statistics
in consultation with the professors of Applied Mathematics to the most proficient student in
Applied Mathematics Honours, provided that the student’s work is of sufficient merit.

Barker Prize Value: $550
Awarded at the Fourth (Honours) Year examination for proficiency in Pure Mathematics, Ap-
plied Mathematics or Mathematical Statistics.

M. J. and M. Ashby Prize Value: $400
Offered for the best project, submitted by a student in the Faculty of Science, that forms part
of the requirements of Honours in Pure Mathematics, Applied Mathematics or Mathematical
Statistics.

Norbert Quirk Prize No IV Value: $250
Awarded for the best project on a given mathematical subject by a student enrolled in a
Fourth Year course in Mathematics (Pure Mathematics, Applied Mathematics or Mathemati-
cal Statistics) provided that the essay is of sufficient merit.

Australian Federation of Graduate Women Prize in Mathematics. Value: $300
Awarded on the recommendation of the Head of the School of Mathematics and Statistics, to
the most distinguished woman candidate for the degree of BA or BSc who graduates with first
class Honours in Applied Mathematics, Pure Mathematics or Mathematical Statistics.

Chris Cannon Prize Value: $100
For the best adjudged project seminar presentation of an Applied Mathematics Honours stu-
dent.
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10 AMSI Courses

Students are welcomed to check the courses offered in January 2024 at the

• AMSI Summer School

as well as the courses available via the

• Advanced Collaborative Environment (ACE).

In principle, at most one AMSI/ACE course can be taken for credit by enrolling in the
unit AMSI4001. It should be noted, however, that this is only possible if very special circum-
stances can be demonstrated. In particular, it is not enough to show that a given AMSI/ACE
course is beneficial for a student since AMSI/ACE can be completed without enrolment in
AMSI4001. Furthermore, it should be stressed that enrolment in AMSI4001 can only be done
in consultation with the student’s supervisor and with explicit prior approvals by the Applied
Mathematics honours coordinator (Prof M. Rutkowski) and the School’s honours coordinator
(Prof L. Paunescu).

11 Rights and Responsibilities

Applied Mathematics Honours students will have access to the following:

• Office space and a desk in the Carslaw building.
• A computer account with access to e-mail, as well as LATEX and printing facilities for the

preparation of projects.
• A photocopying account paid by the School for assembling project source material.
• After-hours access to the Carslaw building.
• A pigeon-hole in room 728.
• Participation in the School’s social events.
• Class representative at School meetings.

Applied Mathematics Honours students have the following obligations:

• Regular attendance at the weekly seminars in Applied Mathematics.

• Have regular meetings with project supervisors, and meet all deadlines.

• Utilise all School resources in an ethical manner.

• Contribute towards the academic life in Applied Mathematics at the School of Mathe-
matics and Statistics.
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12 Life After Fourth Year

Postgraduate Studies

Many students completing the Honours programme have in the past gone on to pursue
postgraduate studies at the University of Sydney, at other Australian universities, and at
overseas universities. Please see the School’s Coordinator of Postgraduate Studies if inter-
ested in enrolling for an MPhil or PhD at the School of Mathematics and Statistics. Students
who do well in Applied Mathematics Honours may be eligible for postgraduate scholarships,
which provide financial support during subsequent study for higher degrees at Australian
universities. The honours coordinator is available to discuss options and provide advice to
students interested in pursuing studies at other universities.

Careers

Students seeking assistance with post-grad opportunities and job applications should feel
free to ask lecturers most familiar with their work for advice and written references. The
Director of the Applied Mathematics Teaching Program and Course Coordinators may also
provide advice and personal references for interested students.
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