]

Selecta Mathematica Sovietica 52-?2'9903/90i020155— 15 $1.50 + 0.20/0
Vol. 9, No. 2 (1990) © 1990 Birkhauser Veriag, Basel

Algebraic Structure of a Lie Algebra of Vector
Fields*

A. A. Kirillov and A. 1. Moley

1. Infroduction

Interest in the study of the algebraic structure of infinite-dimensional Lie
algebras has grown in recent years. This is due to the ever-increasing role that
infinite-dimensional Lie vector algebras play in the solution of a number of
problems in theoretical and mathematical physics. The principal examples of
infinite-dimensional Lie algebras include the Lie algebras of vector fields on
manifolds. Even the simplest of these examples, the Lie algebra Vect R' of all
smooth (of class C®) vector fields on the real line, is the source of a host of
difficult problems of algebra and analysis. In particular, only recently has it been
found that nontrivial identities are satisfied in this Lie algebra, the rate of
growth of this Lie algebra has been computed, and the investigation of general
finite-dimensional subalgebras begun {cf. [4], [6], [9]). In the present paper, we
will discuss a simple and elegant hypothesis that arises as a result of our
previous studies (cf. Section 4) and present certain lines of reasoning that seem
to indicate that it is true.

2. Pauli space

A well-known technique of polarization of polynomials {that are not necessarily
commutative) reduces the problem of describing all the identities that are
satisfied in this Lie algebra to the description of linear identities, that is,
identities in which each variable occurs linearly {cf. [1], [B]). In order to study
these identities, it is best to introduce the concept of a Pauli space for the given

* Originally published as Keldysh Inst. Prikl. Mat. USSR Academy of Sciences, Preprint 168,
Moscow, 1985, 22 pp. Translated by Robert H. Silverman.
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Lie algebra G. Suppose that F, (k) denotes a free Lie algebra over a field k of
characteristic { with a countable number of generators X, ..., X, .... Welet
I1 denote the subspace in F(k) generated by all the Lie monomials in which each
generator X; occurs at most once (Pauli “exclusion principle”). By II", we
denote the subspace in II generated by monomials of degree », and by I1,, the
subspace in II" generated by the monomials formed from the generators
X, ..., X, ltis clear that

Now let & denote an arbitrary Lie algebra over a field k. Every set
Xe={(X,...,%,...) of eclements of & generates a homomorphism
&1 F (k) - ® which carries generators of X, into the elements x;. The kernel
I of this homomorphism is an ideal in (k). The intersection (. I, over all
sets x is called the identity ideal of the Lie algebra ® and denoted by I(®).

The space II(G) = I/(XInI(®)) will be called the Pauli space of the Lie
algebra ®. In an analogous way, we introduce the spaces IT(G) and IL(G). The
latter space will be called a homogeneous Pauli space of degree n for &, or simply
a Pauli space if n and & are clear from the context.

The group S, of permutations of the indices (1,2,...,n,...) acts in IT and
" in a natural way. This operation extends to both II{G) and II"(®). The
group S of permutations of the indices (1,2, ..., n) acts in the spaces I1} and
I1,(®) and the following relations are valid:

TH®) = é—i) (), M(®) = Indg= IL.(6). n

These relations prove that the structure of the S -module of TI(®) is entirely
determined by the set of S, -modules I1,(®), # = 1,2, .. .. This set, therefore,
encodes all the information about the algebraic structure of the Lie algebra ®.
Unfortunately, an explicit description of the modules of I1,(®) is known only
for a few special examples.

If & = F (k) is a free Lie algebra, I1,(®) = I1,. In this case, the structure of
an §,-module has been described by Kliyachko [7]. It turns out that

11, = Ind3 (), (2

where 7, is the subgroup in §, consisiing of cyclic permutations and y is an
arbitrary primitive character of Z, (i.e., a character whose values on the
generators of Z, are primitive roots of degree » of unity).

Note that a generalization of Klyachko’s theorem to Lie superalgebras has
recently been obtained, yielding a new proof in the case of Lie algebras (cf. [10]).

R ¥
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We now present certain facts regarding the structure of the module I, ; these
follow from Equation (2).

If n <5, the spectrum of the module i, is simple (i.e., every irreducible
component occurs with multiplicity 1). For large n, the multiplicity v(n) of the
component = € §, in I, is roughly equal to (1/n) dim 7, as is clear from the
following exact formula:

v(m) = 1/n d; )z (d1™), ' (3)

where the sum is taken over all divisors d of the number n, p is the Mobius
function, ¥, is the character of the irreducible representation of n, and {d]*
denotes the permutation class consisting of r/d cycles of length d.

For the sake of better visualization and in light of references to be cited
below, we now present explicit formulas for the spectrum IT, with » < 7. We will
use the standard enumeration of the elements of S, by partitioning the number
n and writing out the expression 112% - - - n*= for a partition of n info o, units,
o, pairs, and so on.

Il = m; I, =m; Il =my;

T, =75 + 72525 IIs = T4y + Moy + Tarz + Taps)

Hg = =g + g + 2742 + T2 + 3say + Taps F 2202 + Taa;
TL, = 1mgy + 275y + 275y2 + 20gs -+ STany + 3aps + 3732

+ 3?5322 -+ 57'[32;2 + 2733;4 + 27[23‘ -+ 2‘12:2213 4 a5,

3. Harmonic polynomials

Let G be some group of linear transformations of an n-dimensional linear space
¥ over k. As usual, we denote by S(V) and S(V*) symmetric algebras over ¥
and over the dual space V*. The elements of S(V*) may be considered as
polynomial functions on ¥, and the elements of S(V) as differential operators
with constant coefficients acting in S(¥*). In this interpretation, the natural
pairing of (V) and S(V*) assumes the form

(D, P> =GP0). (4

Suppose that S(¥) is an aigebra of G-invariant differential operators, and let
S(¥)¢ be the ideal in this algebra that consists of operators without free term
{annihilating constants),

The element of S(V*) that is orthogonal to S(¥)9 in the sense of (4) will be
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called the harmonic polynomial for G. The space of harmonic polynomials for
the group G is denoted by #(G).

The classical harmonic polynomials are obtained if £ = R, G = §O{n); in this
case, the algebra S(V)? is generated by a single Laplacian operaior.

The space of harmonic polynomials for a group §,,, which acts by means of
permutations of the basis vectors in an n-dimensional space ¥V, is denoted by
H#,, and /its homogeneous component of degree k, by #°%. The following
properties of harmonic polynomials for S, are well known (cf. [10]):

(1) The S, -module of 4, is equivalent to a regular representation of §,; in
parficular, dim 5%, = nl, '

{2} The S,-module of S(F*) is equivalent to 3¢, @ S(V*)5-.

The structure of the §,-modules of #°% was described in [3]. The generating
function for the multiplicities of the irreducible components of these modules
proved to be a “g-analog” of the well-known *“hook formula” for the dimen-
sions of the irreducible S, -modules. That is, if we denote by p, () the multiplic-
ity of the component # € §, in #%, then

| R

where £ is the length of a hook, and f, is the length of the foot of the hook of
the kth cell in Young’s diagram corresponding to the representation #. As g — 1,
this equality becomes the hook formula:

dimz =] <. (6)
=} hk

4. Statement of the basic hypethesis

The experience gained in our studies of identities in Lie algebras demonstrates
that in certain cases modules of I1,{B) may be “formed” from modules of the
form of #°%. Thus, the relation

,= 3} #i+ (D
de Z
has been obtained [10] for (4, n) = 1. We suppose that the eguality
IL(Vect R = a7 ! (8)
is satisfied for the Lie algebra of vector fields on the real line.! Below, we prove
that, in every case, the spectra of the left and right sides in (8) possess a host of

U This hypothesis was proved in [11].
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ideniical properties. Here we may note that equalities such as (7) and (8) are
valid for both Lie algebras as well. That is, we denote by F,(T,) a free Lie
algebra with m generators in which the following identity T, is satisfied:

Alt(ad X, ad X, - ad X,)¥ =0, (9

where the symbol Alt denotes the alternating sum over all permutations of
indices 1,2,..., k.

The identity T expresses the fact that the algebra is commutative, while the
identity T, is equivalent to the claim that G is metabelian, ie.,
[[®, ®], [®, B]] =0. It has been conjectured that the Lie algebra F, (T,) is
isomorphic to the Lie algebra generated by m general vector fields on the real
line (cf. [6]). The Pauli space T1,(F, (7)) with m = n is independent of m and
may be denoted simply by IL(7,). It is clear that IL(7,) =0 if n = 3. It may
easily be verified that

IL(T) =%, 1, =¥,
If the hypotheses stated above are true, the eguality
N(T,) =7 (10

must be true. Finally, it is known that the identity T, is satisfied by the Lie
algebra Ham R? of Hamiltonian vector fields. If it is supposed that there are no
other identities of degree at most 7, the equalities

,(Ham R = 71 - 821 (1D

will be valid forn < 7.

5. The spectrum of Il (Vect RY)

The ordinary method of studying the spectrum of an §,-module M is to
compute the wreath numbers of this modulus with distinet “standard” moduli.
Young’s modulus

Y, =Ind§i (1), Y, =Ind5(sgn) (12)

may serve as such a standard modulus, where 1 =(n,, ..., n,) is a partitioning
of the number n, and §; =S5, x---x 8§, is Young’s subgroup in §,. In
particular, the irreducible representation I, is characterized by the following
properties:

0 i<y 0 ifd <y,
1 if A=y, 1 ifd =y,

where 4’ denotes the partitioning that is self-adjoint to 4 (with transposed

o(ns, Y,) ——-{ o(m;, Y) «-—»{ (13)
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Young’s diagram), and the symbol < is to be understood as indicating
lexicographic ordering of the partitions.

By the Frobenius principle of duality for an arbitrary $,-module Af, the
following equalities are valid:

(M, Y.} =dim M5,
(14)
(M, Y7) = dim SM,

where we denote by M the space of G-invariant vectors in M, and by M the
" space of G-anti-invariant vectors (i.e., the vectors multiplied by the substitution
symbol). It is well known (and also follows from (13)) that the numbers
(M, Y;) completely determine the structure of an S,-module M. The same
holds for the numbers c(M, ¥*). Unfortunately, it has been possible to find these
numbers for a module of I1(Vect R!), only under additional constraints on A.
Here we note one interpretation of the number (IL(®), Y,), A =(n,, ..., 7).
The technique of polarization demonstrates that it is equal to the number of
linearly independent commutators of length » that may be formed from the
general elements x,,...,x, of & such that x, occur #, times. In the case
® = Vect R!, this number has been found previously [4], [9] for r =2. For
A=k, D),k +1=n, it was proved that

(T (Vect R), Y =pn — 1) +p(n — 1) —p(n — 1), (15)

where p(#) denotes the total number of partitions of #; and p,(n), the number of
partitions of » that have at most k terms each. Simple computation, based on
the properties of harmonic polynomials presented in Section 3, demonstrates
that this formula is also valid for the number ¢(5#2~ !, ¥,). This observation
also suggested the statement of our basic hypothesis.

Let us now state the basic result of the present study.

Theorem 1. Suppose that we are given a partition
A=1m2%- . gt

of the number n; we denote by G, the subgroup S,, =8, acting on the first o,
indices, and by G, the subgroup

(8)2 x -+ X (S,

acting on the remaining indices.
Then

dim %I, (Vect R) % = dim (¢ 2~ 1) (16)
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under the condition that the partition i possesses the property

I ) S amn
=2 2

Note that the proof of Equation (16) would imply the validity of (8) if the
additional condition (17) is omitted.

Now let us clarify the meaning of condition (17). Simple computations
demonstrate that the right side of Equation (16} coincides with the coefficient of
4"~ in the expression

g: LD H (}—-qk)
-] = |
qi am *

f(na-o) i a-m

=

and consequently also coincides with the coefficient of 47 in the expression

n

M a-4¢9
koo tl (18)

!]:'[2 (fljl (1- ql))a,.,

where
r=n—1—2a5m. (19)
=} 2
Condition (17) asserts that if the equality
n=7% iy

is taken into account, then r < a,. Therefore, in computing the coefficient of g7,
the numerator in (18) may be replaced by 1. After this step, the desired
coefficient may be obtained by means of a simple combinatorial interpretation,
That is to say, it is equal to the number of partitions of r into nonnegative terms,
with , groups of two terms each, o, groups of three terms each, and so on.

The result may also be written in the following way. If condition (17) is
satisfied, the equality

dim 62((;?’2" ‘)Gi mpg‘@ PR p:‘“"(}’) (20)

is satisfied, where = denotes the convolution product.
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Let us now consider the left side of Equation (16). We enter r vector fields in
the cell of Young’s diagram that contains o, columns of length i, i = 1,2,.. ., a
Then the left-hand side of Equation (16) coincides with the number of linearly
independent expressions that may be obtained by means of a permutation of
these fields in such a way that each field occurs exactly once in the commutator
and such that these expressions are antisymmetric with respect to vector fields
that are in the same column of Young’s diagram of length equal to or greater
than 2 and symmetric with respect to the set of vector fields that occupy
columns of unit length (shaded portion of the diagram). The rest of the diagram
will be called the fimdamental part.

NN .

o

oz

oy

2y

o5

og

g

The principle of polarization demonstrates that, without loss of generality, it
may be assumed that all the fields that occupy the shaded part of the diagram
coincide and, if appropriately chosen, have the form d/dt.

Every expression that is formed in this way has the form ® d/dr, where @ is
a multilinear differential expression that is antisymmetric with respect to the set
of functions that specify vector fields in the same column of the fundamental
part of Young’s diagram.

Suppose that the number of columns in the fundamental part of the diagram
{21} is equal to /, where

QRG22 qzl

are the lengths of the columns and ®, = (@, d/dL, .. ., @, d/d?) is the set of
vector fields that occupy the ith column.
Then vector fields of the form

Fp(®1) »+~ Fyo (@) ddt (22)

will constitute a basis for all possible expressions d/df, where (k)=

(kis» - .., k) is a set of integers such that
0%y <ka< o <hys  Fup(®)=deto?].

ig:®
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The number of distinct fields of the form (22) may easily be computed. We set
ly=ky;~j+1,1sj<g;then0<],<---</, and

I J] ! —
5 ("Z lﬁ)mnml_ y q,-(qe-2 D_,
Feml N j=1 i=1
Therefore, the desired number is the number of partitions of r in each cell of the
fundamental part of Young's diagram, so that segments of a partition are
ordered from top to bottom within each column.

Thus, the dimension of the space generated by vector fields of the form (22)
coincides with the right-hand side of Equation {20).

To complete the proof of Theorem 1, it remains to prove that every vector
field (22) may be obtained by means of a permutation of the vector fields that
occupy the cells of Young’s diagram (21).

Lemma. Suppose that
G=edid, 1<i<gq, n=dd,
Ok, <h,< - <k,

Then the vector field F, (&, ..., ¢,) d/dr may be represented as a linear
combination of the commutators of the vector fields &,, .. ., ¢, 1. Moreover, if
q 2 3, in the algebra Vect(R"), the operator for multiplication by the function

Fepoa 0 £ = det]o®))

may be obtained by means of a composition of the commutator operators and
the vector fields &,, ..., ¢, n.

Proof. Both assertions of the lemma may be proved similarly; consequently we
present the proof of only the first assertion. For this purpose, we will use
induction. If ¢ = 1, 2, the assertion may easily be verified directly. Let us take
g > 2. By the inductive hypothesis, there exists a representation of the fields

~

Pt Ery o & &) djdl

in the form of a linear combination of commutators.
Let us form the new commutators:

q : Altf[(ad Y.’)kfcfh Fk; ..... E,- ..... kq(‘flr LR ‘fi! LSRR ) éq) gg]

= ZrFk; ..... PSRN (STRRIT B /0l T w&es oo ) didt,
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where i=1,2,...,q4 Solving this linear system, we find that all the fields
Feror (s o0 &) dfdt may also be represented in the form of a
linear combination of commutators of the fields £,, ..., &,. #. The assertion is
proved.

Suppose that the lengths of the columns of Young's diagram satisfy the
conditions ¢, 2 2¢,., 23 and g.= --=¢ =2. (Here, obviously,
f—m+1=ua,)

By means of the formula

@="8 ($ k)

we may form a weight relative to the vector field (22) corresponding to our
choice of g,,...,q, Using the lemma, we form commutators that yield the
vector fields

Fy (@) djdr, . .., Fy (®,)d/dr.

Then we represent the operators for multiplication by the functions
Fou (@), (@, )} in the form of a composition of commutator
operators. The number of occurrences of the operator ad # in these composi-
tions is then given by

T el a2 5 (10 )= E A2,

We form new operators by replacing the operator ad i by ad(F(kj)((P,-) d/-dt-),
m <i<]—1 at arbitrary positions. For such a substitution to be possible, it is
sufficient that the following inequality is satisfied:

1(41 o ) qi(ql
s e -y s
this is equivalent fo
Z ‘L(‘]:— )M __1’
im ]
or, using the original notation,

=1

which coincides with condition (17). o
Finaily, let us apply the operators that we have found to a linear combination
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of commutators, yielding the vector field
Fy (@) djdr.
We then obtain the following expression:

d d
Fa oy (@) - - Fu () 7 - (kz) CanFa(®) - - - e (23)

where the summation on the right-hand side extends over each set (k") such that
the weight of the set is less than (k).

In fact, the second term in (23) is obtained if, when we eliminate the
commutators, some of the derivatives of the functions

F(k,,,)(q)m)» cees F(k,__l)(@i-l)

will be lost, although, obviously, the weight of a field is decreased by the number
of such derivatives. The proof is completed by applying induction on the weight.

Analogously, with slight simplifications we may consider the case
gy = -+ 2 g, = 3. The theorem is proved.

Corollary 1. The S,-modules of TL(Vect R!) and #"~' contain the hook
representations 7,4, p + q = n with identical multiplicity.

Proof. Suppose that ¢, and b, are the multiplicities of the representation
g, g =0,1,...,nin IT,(Vect R?) and 52", respectively.
We apply Theorem 1 for the case G, =S, and G, = S,. It is well known that

Indg:xsq(l X SgH} = Tpg + Ty 11q — 1

consequently, if the corresponding wreath numbers coincide, this will mean that
the equalities

aombm a0+al=bﬁ+bly"'s anml+an=bn——§’+bn’ an=bns
are satisfied, whence the assertion of the corollary follows.

Corollary 2. The S, -modules of T1,(Vect R'Y and #7~ " coincide when n < 7.

In fact, if n <7 it follows from Theorem 1 and the Kirillov—Kontsevich
formula (cf. [4], [9]) that if the set of representations chosen is large enough, the
wreath numbers of these modules will be identical.
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6. Growth of 2 finitely generated subalgebra of the
Eie algebra Vect(R")

Suppose that 4,, is the Lie algebra generated by m general vector fields on the
real line &, ..., ¢, This algebra is polygraded by the degrees of the fields
&,.. .., ¢, oceurring in the commutators:

Supposing that hypothesis (8) is valid, let us compute the dimensions of the
spaces Uk -*m We set &, + -+ k,, = n. We have

C[xla-'-axn]=CExl:""xn}S"®3?n (24)

(cf. Section 3), whence the Poincaré series of the spaces 35k % %S, is casily
found. 1t has the form

L

[T (~g¢9

I_I::[lk(il%fl(l—q’)).

Consequently, the desired dimension is the coefficient of ¢"~' in (25j (cf.
Section 5). This number may be written in the form

(25)

dim Wyt bm =y e py xpp (1 — 1), (26)

where the series r(n) is given by the equality
3m*+m
L rmgr =1l -g)= ¥ (-Drg——

nz=0 Iz med

The rightmost side of the latter relation is the well-known Euler identity (cf. [2]).
We wish to compute the growth of the algebra 4,,, i.e., the growth of the
series @ = dim A, where :

(27

QI,(.:,') = (_B %fcnl ..... .
el =r

We set

S oo gn) =3, dim Wy bngfi- - g,
®
where the summation extends over all possible sets of nonnegative numbers
B =1k,,..., k)
Using simple combinatorial arguments, we find that

Eod

1
f(q“---"Im): Z Qk H il
- 1@ =) "T1 (1 ~g4)

, (28)
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where the term 1/(1 — g,¢7") in the numerator of the second product has been
omitted. The generating function we wish to find for the series

R fnl@) = T alg”
nz0

may be obtained if we set ¢, =g, =---=¢, =gin (28) and if the value of the
indeterminate form is found by means of L’Hépital’s rule. Unfortunately, the

final form of f£,,(g) is quite cumbersome, and therefore we present the formula
only for m = 2 (cf. also [5)):

5@ = q°P (@) + 29P(q)(1 — D(g)),

where
Plg) = 113; (1-¢%"" 9= E d(n)g", d(m)

1s the number of divisors of ».

Nevertheless, it is possible to obtain an asymptotic formula for the numbers
a® by using, for example, Theorem 6.2 from [2]. It has the form

2% ~ en¥%m =2 exp(n. /3 3n(m — 1)). (29)

Thus, if hypothesis (8) is true, all the algebras have intermediate growth {cf. {5)).
For m = 2, the asymptotic formula (29) is then proved; in this case, ¢ = 1/4, /3.

7. Growth of the series b{n) = dim ¥I_(Vect RY)

In this section we also suppose that hypothesis (8) is valid. In (26), wesetm =n
and ky=---=k, = |; then

bin) =dim Wy '=rxp x--epn—1
! m—-2-k
- w72
From (27) it follows that

=1k =03mr4+m)/2,
k) = {{} otherwise.
Consequently, for any number N 2 0, the following inequalities are satisfied:
ky __ kg —_2
I e R O R o o N
k=10 h— k=0

n—1
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where
32N + 12 4+2N
PRREICLA )2’*“ NN 42,
2N N
kzmmm:tz_zéjvz_;_ﬁr

2

If N is fixed, the asymptotics of the left-hand and right-hand sides of (30) as
n — oo may easily be calculated. In fact,

2n—2—k 4
n—1 ok+2 "Tm.

Consequently, b(n) has the asymptotic expression

4}1
N (31)

where the constant ¢ satisfies the conditions

E ()2k+2\/wmc< Z r(k)qu—z\/"

Taking the limit in these expressions as N — oo yields

1 ot

em—m= Y k)25 = 1—
4\/5 kgﬁ ® \/‘ H (

The growth of the series b(n) = dim IT,(Vect R?) is also known as the growth of

the manifold of Lie algebras generated by the algebra Vect R' [1]. Thus, the

growth of this manifold is exponential under the assumption that hypothesis (8)

1 valid.

(32
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