Combinatorial bases for representations

of the Lie superalgebra gl ,

Alexander Molev

University of Sydney



Gelfand—Tsetlin bases for gl,,



Gelfand—Tsetlin bases for gl,,

Finite-dimensional irreducible representations L()\) of g, are in
a one-to-one correspondence with n-tuples of complex

numbers A = (A1, ..., Ap) such that

)\j—)\,‘+1€Z+ f0r i:1,...,n—1.



Gelfand—Tsetlin bases for gl,,

Finite-dimensional irreducible representations L()\) of g, are in
a one-to-one correspondence with n-tuples of complex

numbers A = (A1, ..., Ap) such that
)\j—)\,‘+1€Z+ f0r i:1,...,n—1.
L()) contains a highest vector ¢ # 0 such that

Eii¢c=\¢ for i=1,...,n and

Eij¢=0 for 1<i<j<n



Suppose that )\ is a partition, A\ > --- > A\, > 0.



Suppose that )\ is a partition, A\ > --- > A\, > 0.
Depict it as a Young diagram.

Example. The diagram A = (5,5,3,0,0) is




Suppose that )\ is a partition, A\ > --- > A\, > 0.
Depict it as a Young diagram.

Example. The diagram A = (5,5,3,0,0) is

The number of nonzero rows is the length of A, denoted ¢(\).



Given a diagram \, a column-strict A-tableau T is obtained by
filling in the boxes of A with the numbers 1,2,..., nin such a
way that the entries weakly increase along the rows and strictly

increase down the columns.



Given a diagram \, a column-strict A-tableau T is obtained by
filling in the boxes of A with the numbers 1,2,..., nin such a
way that the entries weakly increase along the rows and strictly

increase down the columns.

Example. A column-strict A-tableau for A = (5,5, 3,0,0):

111244
2|3
4155

N
()]
()]




Theorem (Gelfand and Tsetlin, 1950). L(\) admits a basis (;
parameterized by all column-strict A-tableaux T such that the

action of generators of gl, is given by the formulas

Ess CT = Ws <T7

Essy1(r = Z Crr s
T/

Es+1,s CT = Z dTT/ gT/-
T/



Theorem (Gelfand and Tsetlin, 1950). L(\) admits a basis (;
parameterized by all column-strict A\-tableaux T such that the

action of generators of gl, is given by the formulas

Ess CT = Ws <T7

Essy1(r = Z Crr G
T/

Esi1sCr =Y drpCrr
T/

Here ws is the number of entries in T equal to s, and the sums
are taken over column-strict tableaux T’ obtained from T

respectively by replacing an entry s+ 1 by sand sby s+ 1.



Forany 1 <j < s < ndenote by \g; the number of entries in

row j which do not exceed s and set

lsj:)\sj_j+1.



Forany 1 <j < s < ndenote by \g; the number of entries in

row j which do not exceed s and set
lsj:)\sj_j+1.

Then

c _ _(lsi - ls+1,1) s (lsi - /s+1,s+1)
T (I —Tq) oAl = lss)

d _ (lsi_Isf1,1)"'(lsi_lsf1,sf1)
T (g —lgq) oo Aol — Iss)

if the replacement occurs in row i.



Equivalent parametrization of the basis vectors by

the Gelfand—Tsetlin patterns:



Equivalent parametrization of the basis vectors by

the Gelfand—Tsetlin patterns:

ni )‘n2 )‘nn

)‘n—1,1 )‘n—1,n—1



Equivalent parametrization of the basis vectors by

the Gelfand—Tsetlin patterns:

)‘n1 )‘n2 )‘nn

)‘n—1,1 )‘n—1,n—1

The top row coincides with A and the entries satisfy

the betweenness conditions Axj = Ak—1,i = Ak, it1-



Example. The column-strict tableau with A\ = (5,5, 3,0,0)




Example. The column-strict tableau with A\ = (5,5, 3,0,0)

1111244
2/3|/4/5|5
4155

corresponds to the pattern



Given w = (wy,...,wn) € Z", consider the weight subspace

L(N)w ={n € L(\) | Essn =wgn forall s}.



Given w = (wy,...,wp) € Z7, consider the weight subspace

L(N)w ={n € L(\) | Essn =wgn forall s}.

The character of L(\) is the polynomial in variables xi, ..., X,

defined by

chL(X) = dimL(A), X" ... x5,



Given w = (wy,...,wp) € Z7, consider the weight subspace

LNy = {n € L(\) | Eggn =wgn forall s}.
The character of L(\) is the polynomial in variables xi, ..., X,
defined by

chL(X) = dimL(A), X" ... x5,

Corollary. ch L(A) = sa(X1, ..., Xn), the Schur polynomial.
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Lie superalgebra gl ,

Basis elements of gl,, , are E;; with 1 </,j < m+n.

The Z,-degree (or parity) is given by

wherez=0for1 <i<mandzi=1form+1<i<m+n.



Lie superalgebra gl ,

Basis elements of gl,, , are E;; with 1 </,j < m+n.

The Z,-degree (or parity) is given by

wherez=0for1 <i<mandzi=1form+1<i<m+n.

The commutation relations in gl , have the form
[Eijs Exil = 0yjEir = (5,-,Ekj(_1)(7+i)(l_<+7),

where the square brackets denote the super-commutator.



The span of {E; | 1 <i,j < m}

is a Lie subalgebra isomorphic to gl,,,



The span of {E; | 1 <i,j < m}

is a Lie subalgebra isomorphic to gl,,,

the span of {E;; | m+1 <i,j < m+n}

is a Lie subalgebra of isomorphic to gl,,,



The span of {E; | 1 <i,j < m}

is a Lie subalgebra isomorphic to gl,,,

the span of {E;; | m+1 <i,j < m+n}

is a Lie subalgebra of isomorphic to gl,,,

the Lie subalgebra of even elements of gl , is isomorphic to

alm @ gl



Finite-dimensional irreducible representations of gl , are
parameterized by their highest weights X of the form

A:()‘17"'7)‘m’)\m—i-17-"7)\ITH-I7)1



Finite-dimensional irreducible representations of gl , are
parameterized by their highest weights X of the form

A= (M, s Am | Amets -+ oy Amen), Where

Ai—Aip1 €Z+4, for i=1,.... m4+n—-1, i#m.



Finite-dimensional irreducible representations of gl , are
parameterized by their highest weights X of the form

A= (M, s Am | Amets -+ oy Amen), Where
Ai—Aip1 €Z+4, for i=1,.... m4+n—-1, i#m.

The corresponding representation L(\) contains a highest

vector ¢ # 0 such that

Eii¢=M\¢( for i=1,...,m+n and

Eij¢=0 for 1<i<j<m+n.



Covariant representations L(\)



Covariant representations L(\)

These are the irreducible components of the representations

cMing ... .gcCmin
k




Covariant representations L(\)

These are the irreducible components of the representations

cMing ... .gcCmin
k

They are distinguished by the conditions:

» all components A1, ..., A\m1p Of X are nonnegative integers;



Covariant representations L(\)

These are the irreducible components of the representations

cMing ... .gcCmin
k

They are distinguished by the conditions:

» all components A1, ..., A\m1p Of X are nonnegative integers;

» the number ¢ of nonzero components among

Amits .-+ Amsn IS @t most \p,.



To each highest weight X\ satisfying these conditions, associate

the Young diagram Iy, containing Ay + - - - + A4 boOxes.



To each highest weight X\ satisfying these conditions, associate

the Young diagram Iy, containing Ay + - - - + A4 boOxes.

It is determined by the conditions that the first m rows of I' are

M, ..., Am While the first £ columns are A1 +m, ..., Ao + m.



To each highest weight X\ satisfying these conditions, associate

the Young diagram Iy, containing Ay + - - - + A4 boOxes.

It is determined by the conditions that the first m rows of I' are

M, ..., Am While the first £ columns are A1 +m, ..., Ao + m.

The condition ¢ < A\, ensures that Iy is the diagram of a

partition.



Example. The following is the diagram Iy associated with the

highest weight A = (10,7,4,3|3,1,0,0,0) of glys:

[ [




A supertableau A of shape I is obtained by filling in the boxes
of the diagram I with the numbers 1,..., m+ nin such a way

that



A supertableau A of shape I is obtained by filling in the boxes
of the diagram I with the numbers 1,..., m+ nin such a way

that

» the entries weakly increase from left to right along each

row and down each column;



A supertableau A of shape I is obtained by filling in the boxes
of the diagram I with the numbers 1,..., m+ nin such a way

that
» the entries weakly increase from left to right along each
row and down each column;

» the entries in {1,..., m} strictly increase down each

column;



A supertableau A of shape I is obtained by filling in the boxes
of the diagram I with the numbers 1,..., m+ nin such a way

that

» the entries weakly increase from left to right along each

row and down each column;

» the entries in {1,..., m} strictly increase down each
column;
» the entries in {m+1,..., m+ n} strictly increase from left

to right along each row.



Example. The following is a supertableau of shape I
associated with the highest weight A = (10,7,4,3/3,1,0,0,0)

of 9[4‘5:

2|2[3[5[6]7]9]

O N|(W|—=
©

DO N =

’\l‘\l()"l-lkbxbl\)—L




Theorem. The covariant representation L(A) of g, , admits a

basis (5 parameterized by all supertableaux A of shape T.



Theorem. The covariant representation L(A) of g, , admits a
basis (5 parameterized by all supertableaux A of shape T.
The action of the generators of the Lie superalgebra gl , in

this basis is given by the formulas

Ess C/\ = Ws C/\»

Essi1Cn = Z CAN Cpvs
/\/

Es+1,s C/\ = Z dA/\’ C/\/‘
/\/



Theorem. The covariant representation L(A) of g, , admits a
basis (5 parameterized by all supertableaux A of shape T.
The action of the generators of the Lie superalgebra gl , in

this basis is given by the formulas

Ess C/\ = Ws C/\»

Essi1Cn = Z CAN Cpvs
/\/

EsitsCn =Y daw Gy
/\/

The sums are over supertableaux A’ obtained from A by

replacing an entry s + 1 by s and an entry sby s + 1, resp.



Here ws denotes the number of entries in A equal to s.



Here ws denotes the number of entries in A equal to s.

Corollary (Sergeev 1985, Berele and Regev 1987). The
character ch L(\) coincides with the supersymmetric Schur
polynomial Sr, (X1, .-y Xm | Xm+1,- -, Xm+n) associated with the

Young diagram I,.



Given such a supertableau A, for any 1 </ < s < mdenote by

Asi the number of entries in row / which do not exceed s.



Given such a supertableau A, for any 1 </ < s < mdenote by

Asi the number of entries in row / which do not exceed s.

Setr=M\pandforany 0 < p< nand1<j<r+ pdenote by

, o ,
Ar4p,j the number of entries in column j

which do not exceed m + p.



Example. The supertableau with A = (7,5,2 | 2,1)

2/2|2[4]5]

’-P-POOT\J—*
ajo|w|—



Example. The supertableau with A = (7,5,2 | 2,1)

2/2|2[4]5]

’-P-POOI\J—*
ajo|w|—

corresponds to the patterns ¢/ and V:



Set =N —i+1,



Set =N —i+1,

The coefficients in the expansions of Es s, 1 (, and Es ;1 s(, are

given by



Set /i:)\;—i+1,

The coefficients in the expansions of Es s, 1 (, and Es ;1 s(, are
given by

(/si B IS+1,1) e (lsi - ls+1,s+1)

e = — ’

M (Il = lgq) - A (s — Tss)

azn = (/si - Isf1,1)"'(l3i — /5*1’5*1)
g —lsq) oA ey —Iss)

if 1 < s < m—1 andthe replacement occurs in row i,



and by

/ /
CAN = —( r/+p,j _ r,+p+1,1) e (/f+p,j - r+p+1,r+p+1)
- )

( r'/+p7j — /r/+p71) RV AN (lf/-i‘p,j — Ir,+p7r+p)

(Fipj = Hipa1) - p = lip 1 rp1)

v =

( r/+p,j - Ir,+p,1) A r/+p,j - /rl+p,r+p) 7
if s=m+ pfor1 < p< n—1andthe replacement

occurs in column .



Formulas for the expansions of Ep, ;11 ¢, and Epy1,m Cy

are also available.



Formulas for the expansions of Ep, ;11 ¢, and Epy1,m Cy
are also available.

Example (Palev 1989). The basis ¢ of the gl;,;-module

L(A, ..., Am|Ams1) is parameterized by the patterns
)‘m1 )‘m2 )‘mm
/\mf1,1 /\mf1,mf1
U=
A21 A22



The top row runs over partitions (A , Amm) such that

mi>---

either \pyj = \;or A\pj = \; —1foreachj=1,....,m.



The top row runs over partitions (A

either Ayj = \; or Apj = \j —

m

mi>---

, Amm) such that

1foreachj=1,..., m

Em,m+1 Cu = Z(lmi + /\m+1 + m)

i=1
Y= Amj mi =1 A
X H j /m/_/mj H lml_0'+1 ittt
J=i+1
Aj—Amj=1
mo(— Yoo (L —1 )
E, — mi — ‘m-1,1 mi__m-lm!
m+1,m Cy ; (lmi_lm1)"'/\"'(lm/ Imm)
i—1 =
il — 1 Imi — |
/\ s mj mi mj
X H i ’ﬁ H Imi — 1] s
j=1 oW
Aj=Am;=1



Example. The basis (5 of the gl ,-module LA | A2y .oy Anet)

is parameterized by the trapezium patterns

/ ! R ce N
r+n,1 r+n,2 r+n,r+n

/ N R !
r+1,1 r+1,2 r+1,r+1

1 1 A



Example. The basis (5 of the gl ,-module LA | A2y .oy Anet)

is parameterized by the trapezium patterns

! ! R e N
r+n,1 r+n,2 r+n,r+n

/ \ L /
r+1,1 r+1,2 r+1,r+1

1 1 A

The number r of 1’s in the bottom row is nonnegative and
varies between A\; — nand \{. The top row coincides with

(A, 5 Ap, 0,...,0), where p = Ay,



Yangian Y(gl,)



Yangian Y(gl,)

The Yangian Y(gl,,) is a unital associative algebra with
generators D 1@ where iand Jj run over the set

ijorij o
{1,...,n}.



Yangian Y(gl,)

The Yangian Y(gl,,) is a unital associative algebra with
generators t(/”, t,(jz), ... where j and j run over the set

{1,..., n}. The defining relations are given by

1
[t(r+1 t(s ] [t”r)’ t/£3/+ )] — k_/) tl(/) _ tl((i) I(/r)’

where r,s > 0 and t(o) = 0jj.



Using the formal generating series

() = 8+ 10 + 1202



Using the formal generating series
() = 8+ 10 + 1202
the defining relations can be written in the equivalent form

(U — V) [t,'/‘(U), fk/(V)] = tkj(U) f//(V) — tkj(V) t//(U).



Using the formal generating series
tij(u) = 6jj+ f,-(;) -1+ l‘(z) 24
the defining relations can be written in the equivalent form
(u—v)[tij(u), te; (V)] =t (u) ti (v) — b (v) tis (u).

A natural analogue of the Poincaré—Birkhoff—-Witt theorem

holds for the Yangian Y(gl,).



Every finite-dimensional irreducible representation L of Y(gl,,)

contains a highest vector ¢ such that

ij(u)¢=0 for 1<i<j<n, and

ti(u) ¢ =M(u)¢  for 1<i<n,



Every finite-dimensional irreducible representation L of Y(gl,,)

contains a highest vector ¢ such that

ij(u)¢=0 for 1<i<j<n, and

ti(u) ¢ =M(u)¢  for 1<i<n,
for some formal series

A(w) =14+ 201 2@y2y 0 \Dec,

I



Every finite-dimensional irreducible representation L of Y(gl,,)

contains a highest vector ¢ such that

ij(u)¢=0 for 1<i<j<n, and

ti(u)¢=N(u)¢  for 1<i<n,
for some formal series
M)y =1+ XDy 1)@z D,

The n-tuple of formal series A(u) = (A1(u), ..., An(u)) is the

highest weight of L.



Moreover, there exist monic polynomials Py (u), ...

in u (the Drinfeld polynomials) such that

Ai(u) Pi(u+1)

Aig1(u) — Pi(u)

fori=1,...,n—1.



Moreover, there exist monic polynomials P;(u), ...

in u (the Drinfeld polynomials) such that

Ai(u)  Pi(u+1)
Aip1(u)  Pi(u)

fori=1,....n—1.

Refs: Drinfeld (1988), Tarasov (1985).



For an arbitrary representation L(A) of gl ,

consider the vector space isomorphism

L) =@ L) @ L),



For an arbitrary representation L(A) of gl ,

consider the vector space isomorphism
L) =P L' () @ LV,
17

where L'(1) denotes the irreducible representation of the Lie

algebra gl,,, with the highest weight 1« = (11, ..., um),



For an arbitrary representation L(A) of gl ,

consider the vector space isomorphism
L) =P L' () @ LV,
17

where L'(1) denotes the irreducible representation of the Lie

algebra gl,,, with the highest weight . = (u1,...,um), and

L(N\);f is the multiplicity space spanned by the gl ,-highest

vectors in L(\) of weight p,



For an arbitrary representation L(A) of gl ,

consider the vector space isomorphism
L) =P L' () @ LV,
17

where L'(1) denotes the irreducible representation of the Lie

algebra gl,,, with the highest weight . = (u1,...,um), and

L(N\);f is the multiplicity space spanned by the gl ,-highest

vectors in L(\) of weight p,

L(N);; = Homgy (L' (1), L(V)).



Olshanski homomorphism



Olshanski homomorphism

Set E = [E,,],l ;- The mapping ¢ : Y(gl,) — U(gly ) given by

(1)
t,'j = Em+im+j,

WV
N

i Z Emvik(E™)iErmyy 1
k=1

defines an algebra homomorphism.



Olshanski homomorphism

Set E = [E,,],l ;- The mapping ¢ : Y(gl,) — U(gly ) given by

(1)
t,'j = Em+im+j,

i Z Emvik(E™)iErmyy 1
k=1

WV
N

defines an algebra homomorphism.

The image of ¢ is contained in the centralizer U(g[m|,,)9‘m



Theorem. The representation of Y(gl,) in L()\),; defined via the

homomorphism ) is irreducible.



Theorem. The representation of Y(gl,) in L()\),; defined via the
homomorphism ) is irreducible.
Proof.

> L()\);} is an irreducible representation of the centralizer

U(g[m\n)g[m-



Theorem. The representation of Y(gl,) in L()\),; defined via the

homomorphism ) is irreducible.

Proof.

> L()\);} is an irreducible representation of the centralizer
U(glmin)®m.

» The centralizer U(g[m‘n)glm is generated by the image of the
homomorphism Y(gl,) — U(gly,)% and the center of

U(g[m\n)-



Twist the Yangian action on L());f by the automorphism

t,'j(U) — t,j(u + m).



Twist the Yangian action on L());f by the automorphism
t,'j(U) — t,j(u + m).
For each box « = (i, ) of a Young diagram define its content by

cla)=j—1.



Twist the Yangian action on L());f by the automorphism
t,'j(U) — t,j(u + m).
For each box « = (i, ) of a Young diagram define its content by

cla)=j—1.

Theorem. Suppose that L(\) is a covariant representation. The

Drinfeld polynomials for the Y(gl,)-module L(\),; are given by

where «a runs over the leftmost boxes of the rows of length k in

the diagram I /.



Example. For A = (7,5,213,1,0,0) and u = (4,2, 1) we have

[ ]




Example. For A = (7,5,213,1,0,0) and u = (4,2, 1) we have

[ ]

Pi(u)=(u+1)(u+4)(u+5),



Example. For A = (7,5,213,1,0,0) and u = (4,2, 1) we have

[ ]

Pi(u)=(u+1)(u+4)(u+5),

PQ(U) =Uu-+ 3,



Example. For A = (7,5,213,1,0,0) and u = (4,2, 1) we have

[ ]

Pi(u)=(u+1)(u+4)(u+5),
PQ(U) = U+3,

Ps(u) = (u—4)(u—1).



Introduce parameters of the diagram conjugate to Iy /u.. Set
r=pqandlet u = (4, ..., n,) be the diagram conjugate to x

so that u/’- equals the number of boxes in column j of .



Introduce parameters of the diagram conjugate to Iy /u.. Set
r=pqandlet u = (4, ..., n,) be the diagram conjugate to x

so that u/’- equals the number of boxes in column j of .

Set X' = (X],..., Alyy), where X equals the number of boxes in

column j of the diagram I .



Introduce parameters of the diagram conjugate to Iy /u.. Set
r=pqandlet u = (4, ..., n,) be the diagram conjugate to x

so that u/’- equals the number of boxes in column j of .

Set X' = (X],..., Alyy), where X equals the number of boxes in

column j of the diagram T'.

Corollary. The Y(gl,)-module L()),} is isomorphic to L(\')/,,
the skew representation associated with g, ,-module L()\")

and the gl,-highest weight '



Construction of basis vectors



Construction of basis vectors

» produce the highest vector of the Y(gl,)-module L()\)!,



Construction of basis vectors

» produce the highest vector of the Y(gl,)-module L()\)!,

> use the isomorphism L(\)} = L(\'), to get the vectors of
the trapezium Gelfand-Tsetlin basis of L(\') |, in terms of

the Yangian generators,



Construction of basis vectors

> produce the highest vector of the Y(gl,)-module L(\),!,

> use the isomorphism L(\), = L(X),;, to get the vectors of
the trapezium Gelfand-Tsetlin basis of L(\') |, in terms of

the Yangian generators,

» combine with the Gelfand—Tsetlin basis of L'(n).



The exiremal projector p for gl,, is given by

(=1)%
p= HZ(E/’ Eij)" Ki(hi—h+ 1) (b~ + k)’

i<j k=0

where h; = Ej; — i + 1. The product is taken in a normal order.



The exiremal projector p for gl,, is given by

(=1)%
p= HZ(E/’ Eij)" Ki(hi—h+ 1) (b~ + k)’

i<j k=0

where h; = Ej; — i + 1. The product is taken in a normal order.

The projector satisfies

Eijp=pE;i=0 for 1<i<j<m



The exiremal projector p for gl,, is given by

(=1)
p= HZ(E/’ Eij)" Ki(hi— P+ 1) (hi— b+ k)’

i<j k=0

where h; = E;; — i + 1. The product is taken in a normal order.
The projector satisfies
Eijp=pE;i=0 for 1<i<j<m

Ref: Asherova, Smirnov and Tolstoy, 1971.



Fori=1,....manda=m+1,...,m+ nset

Zjg = PEja(hi — hy)...(h — hi_4),

Zai = PEai(hi — hit1) ... (h — hm).



Fori=1,....manda=m+1,...,m+ nset

Zjg = PEja(hi — hy)...(h — hi_4),

Zai = PEai(hi — hit1) ... (h — hm).

Zja and z,; can be regarded as elements of U(gl, )

modulo the left ideal generated by E;; with 1 </ <j<m.



Fori=1,....manda=m+1,...,m+ nset
Zjg = PEja(hi — hy)...(h — hi_4),
Zai = PEai(hi — hit1) ... (hi — hm).

Zja and z,; can be regarded as elements of U(gl, )

modulo the left ideal generated by E;; with 1 </ <j<m.

Example.

Z1a = By, Zog= Epg(ho — hy) + Ez1Eq 4,

Zam = Eam, Zam—1= Eg m-1 (hm—1 — hm) + Em m—1Eam-



The elements z;, and z,; are odd; together with the even
elements E,p with a,b € {m+1,..., m+ n} they generate the
Mickelsson—Zhelobenko superalgebra Z(g[m|n, 9lm)

associated with the pair gl;, C gl -



The elements z;, and z,; are odd; together with the even
elements E,p with a,b € {m+1,..., m+ n} they generate the
Mickelsson—Zhelobenko superalgebra Z(g[m|n, 9lm)

associated with the pair gl;, C gl -

The generators satisfy quadratic relations that can be written in

an explicit form.



They preserve the subspace of gl,,-highest vectors in L()),

Zig: LT — LT i Zaj : L(A): - L()‘):fa,.’

where 1 & ¢; is obtained from p by replacing x; by p; £ 1.



They preserve the subspace of gl,,-highest vectors in L()),
Zjg - L(/\),T - L()‘)ZJr&,-’ Zaj - L(A): - L()‘)ngl_’

where 1 & ¢; is obtained from p by replacing x; by p; £ 1.

Proposition. The element

m
Cu = H (Zm-i-)\/—uj,/ e ‘Zm+27l'zm+17/) G
j=1

with the product taken in the increasing order of j is the highest

vector of the Y(gl,)-module L())}.



