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Classical Lie algebras over C

A type:

B type:
C type:

D type:

special linear Lie algebra sly

general linear Lie algebra gl
orthogonal Lie algebra 02,41
symplectic Lie algebra sp,,

orthogonal Lie algebra 02,



General linear Lie algebra

The Lie algebra gly has the basis of the standard matrix units Ej;
with 1 < i,j < N so that dim gl = N?. The commutation
relations are

[Eij, Exi] = 6k Eir — 6i1Ex;.

The universal enveloping algebra U(gly) is the associative algebra

with generators Ej; and the defining relations

E,'J' Ek/ — Ek/ E,'J' = 5kjEiI - 5iIEkj~



By the Poincaré—Birkhoff~Witt theorem, given any ordering on the
set of generators {Ejj}, any element of U(gly) can be uniquely

written as a linear combination of the ordered monomials in the Ej;.

The center Z(gly) of U(gly) is
Z(gly) = {z € U(gly) | zx =xz forall x e U(gly)}.

The Casimir elements for gl are elements of Z(gly).



Given an N-tuple of complex numbers A = (A1, ..., An) the Verma
module M(X) for gl is the quotient of U(gly) by the left ideal

generated by the elements

E,'J' i</, and Ei—X, i=1,...,N.



Given an N-tuple of complex numbers A = (A1, ..., Ay) the Verma
module M(X) for gl is the quotient of U(gly) by the left ideal

generated by the elements

E,'J' i</, and Ei—X, i=1,...,N.

The Verma module has a unique maximal submodule K.

Set

the unique irreducible quotient of M(\).



Equivalently, L(\) is an irreducible module generated by a nonzero

vector ( such that

Ei¢=0 for 1<i<j<N, and

E,','C:)\,'g for 1§i§N.
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the highest weight of L(A).



Equivalently, L(\) is an irreducible module generated by a nonzero

vector ( such that
Ei¢=0 for 1<i<j<N, and
Ei,'€:)\i€ for 1§i<N.

Then ( is the highest vector and A = (A1,..., An) is

the highest weight of L(A).

The representation L(\) is finite-dimensional if and only if

/\;—/\i+1€Z+ for all iZl,...,N—l.



Any Casimir element z € Z(gl) acts as a multiplication by a
scalar x(z) in L(X). This scalar is a polynomial in A1,..., Ay; this

polynomial is symmetric in the shifted variables

h=X, bh=X-1, ..., In=Any—N+1



Any Casimir element z € Z(gl) acts as a multiplication by a
scalar x(z) in L(X). This scalar is a polynomial in A1,..., Ay; this

polynomial is symmetric in the shifted variables

h=MX, h=X-1, o, In=An—N+1.

The map X : Z(gly) — Clh, ..., In]®N in an algebra

isomorphism called the Harish-Chandra isomorphism.



Any Casimir element z € Z(gl) acts as a multiplication by a
scalar x(z) in L(X). This scalar is a polynomial in A1,..., Ay; this

polynomial is symmetric in the shifted variables

h=MX, h=X-1, o, In=An—N+1.

The map X : Z(gly) — Clh, ..., In]®N in an algebra

isomorphism called the Harish-Chandra isomorphism.

Example. X:Ei1+--+Ewwr— A+ + Ay
=h+--+In—NN-1)/2.
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gN = 02n+1, 5Pop, 02p.
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Orthogonal and symplectic Lie algebras

For N =2n or N =2n+ 1, respectively, set

gN = 02n+1, 5Pop, 02p.

We will number the rows and columns of N x N matrices by the
indices {—n,...,—1,0,1,...,n} if N=2n+1, and by
{=n,...,=1,1,....n}if N=2n.

The Lie algebra gy = op is spanned by the elements

FU:EU_E_J1_I’ —ngi,jgn.



gN = 02p+1 gn = 02p

—n -+ —1 O 1 .- n —_n - -1 1
—n —n
—1 1
0 A=-A' A=-A'
1
1
n n

Skew-symmetric matrices with respect to the second diagonal.



The Lie algebra gy = sppy with N = 2n is spanned by the elements

Fij=Ej—sgni-sgnj-E_j_j, —n<i,j<n



The Lie algebra gy = sppy with N = 2n is spanned by the elements

Fij=Ej—sgni-sgnj-E_j_j, —n<i,j<n

c=c'| A




Commutation relations in gp:

F,j’,,' = —(9,'j F,'J' and

[Fij, Fia] = 0ujFir — itFig — Ok —j 6i —kF—j 1+ 0i 1 61 jFk —i,

where

1 in the orthogonal case,

sgn /- sgn j in the symplectic case.



For any n-tuple of complex numbers A = (A1,...,A,) the
corresponding irreducible highest weight representation V() of gy

is generated by a nonzero vector £ such that

Fi¢=0 for —n<i<j<n, and

F,','&Z)\,‘f for 1<i<n.



For any n-tuple of complex numbers A = (A1,...,A,) the
corresponding irreducible highest weight representation V() of gy
is generated by a nonzero vector £ such that
Fi§=0 for —n<i<j<n, and
F,','&Z)\,‘f for 1<i<n.
The representation V() is finite-dimensional if and only if
)\i—)\;+1EZ+ for i=1,...,n—1
and —)\1 — AQ € Z_|_ if gN = 02p,
—A1 € Z+ if gN = SPap;

-2\ € Z+ if gN = 02p+1-



Any element z € Z(gp) of the center of U(gy) acts as a
multiplication by a scalar x(z) in V(). This scalar is a polynomial
in A1,...,An. In the B and C cases, this polynomial is symmetric

in the variables l12, ..., 12, where [; = \; + p; and

y'nt
—i+1 for gn = 0y,
—i for gn = sp,,,

fori=1,...,n. Also, po = 1/2 in the case gy = 0,, ;.



Any element z € Z(gp) of the center of U(gy) acts as a
multiplication by a scalar x(z) in V(). This scalar is a polynomial
in A1,...,An. In the B and C cases, this polynomial is symmetric

in the variables l12, ..., 12, where [; = \; + p; and

Y'n

—i+1 for gn = 0y,

—i for gn = sp,,,
fori=1,...,n. Also, po = 1/2 in the case gy = 0,, ;.

In the D case x(z) is the sum of a symmetric polynomial in

I2,...,12 and Iy ..., times a symmetric polynomial in /..., /2

IR



The map
X : Z(gn) — algebra of polynomials

is an algebra isomorphism called the Harish-Chandra isomorphism.



The map
X : Z(gn) — algebra of polynomials

is an algebra isomorphism called the Harish-Chandra isomorphism.

Example. For gy = oy

zn: ((me tom?t2 Y Fm,-F,-m>

m=1 —m<i<m

is the second degree Casimir element. Its Harish-Chandra image is

/12_|_..._|_/n2.



Newton's formulas

Denote by E the N x N matrix whose ij-th entry if E;. Denote by
C(u) the Capelli determinant
Clu)= > sgup-(u+E)pays--. (u+E = N+1)pmn-
pECGN
This is a polynomial in u with coefficients in the universal

enveloping algebra U(gly),

Clu)=uV +Cr "+ 4 Cy,  CeU(aly)



Example. For N = 2 we have

C(u) = (u+ En) (u+ Exp — 1) — Ex Epp

= ? + (E11 + Ex — 1) u+ Erp (E22 — 1) — B> Eqo.



Example. For N = 2 we have
C(u) = (u+ En1) (u+ Ex — 1) — Ex1 Epp
=? + (Ex + Exo— 1) u+ Epg (Exp — 1) — Exy Epa.
Note that
Ci=En+Exn—1, Co=E11(Ex2— 1) — Ex1 Ep2
are Casimir elements for gl, and

X(C1) =h + b,

x(C2) =h k.



Theorem
The coefficients C1, . ..,Cy belong to Z(gly). The image of C(u)

under the Harish-Chandra isomorphism is given by
X:Cu)— (u+h)...(u+In),

so that x(Cy) is the elementary symmetric polynomial of degree k
inh,... Iy,
X(Ck) == Z /,'1 PN Iik'
<<l

Moreover, the algebra Z(gly) is generated by Cq,...,Cp.



Gelfand invariants

are the elements of U(gly ) defined by

N
tI‘Ek = Z E,'l,'2 E,'2,'3...E,'k,'1,

11,0255k =1



Gelfand invariants
are the elements of U(gly ) defined by

N
trEX = Z Eii Epyis - - - Eiyir k=0,1,....

11,0255k =1
Example. For N = 2 we have
tr E = Eq1 + Exo,

tr E2 = EZ + Eyp Exy + Epy Epp + E2,.



Gelfand invariants

are the elements of U(gly ) defined by

N
tI‘Ek = Z E,'l,'2 E,'2,'3...E,'k,'1,

11,0255k =1

Example. For N = 2 we have

tr E = Eq1 + Exo,

tr E2 = EZ + Eyp Exy + Epy Epp + E2,.

These are Casimir elements and

X(tI‘E) =h+h-—1,

X(trE?) =12 + 12+ h + b.



A noncommutative analogue of the classical Newton formula:

Theorem

We have the equality of power series in u™!

N—|—1k+1 — C(v)

k



A noncommutative analogue of the classical Newton formula:

Theorem

We have the equality of power series in u™!

k

N—|—1k+1 — C(v)

Proof.

This is equivalent to the Perelomov—Popov formulas

o0
x(tr EX) utli+1
1 =|——F
+z;) u—N+1k+1 ,1:11 u+ i
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Introduce a special map

/

on 6y — Gy, p=p

from the symmetric group Gy into itself.
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Capelli-type determinant for gy

Introduce a special map

/

on: 6y — Gy, pp

from the symmetric group Gy into itself.

If N =2 we define ¢, as the map G, — S5 whose image is the

identity permutation.

Given a set of positive integers a; < --- < a, we regard Gy as the

group of their permutations.



For N > 2 define a map from the set of ordered pairs (a,, a;) with

k # | into itself by the rule

(3, a) = (ay, ay), k, I <N,



For N > 2 define a map from the set of ordered pairs (a,, a;) with

k # | into itself by the rule

(3, a) = (ay, ay), k,I <N,
(2, an) — (an—15 ), k<N-1,

(ansak) = (ag> an-1), k<N-1,



For N > 2 define a map from the set of ordered pairs (a,, a;) with

k # | into itself by the rule

(3, a) = (ay, ay), k,I <N,
(2, an) — (an—15 ), k<N-1,
(ansak) = (ag> an-1), k<N-1,

(an—1,an) = (an—1, an_2);
(an> an—1) = (an—_1, an_2)-



Let p = (py,...,py) be a permutation of the indices ay, ..., ay.

Its image under the map ¢y is the permutation of the form

p/ = (p]{7 . '7p//\[_17aN)-



Let p = (py,...,py) be a permutation of the indices ay, ..., ay.

Its image under the map ¢y is the permutation of the form

p'=(p{, - Py_1aN)-

The pair (p;, py_1) is the image of the ordered pair (p;, py) under

the above map.



Let p = (py,...,py) be a permutation of the indices ay, ..., ay.

Its image under the map ¢y is the permutation of the form

p'=(p{, - Py_1aN)-

The pair (p;, py_1) is the image of the ordered pair (p;, py) under

the above map.

Then the pair (p3, pp_5) is found as the image of (p,, pp_;) under

the above map, etc.



Examples. p=(3,5,7,6,1,2,4).
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Examples. p=(3,5,7,6,1,2,4).
(3’ 5’ 77 67 1’ 2’ 4) = (*7 *7 *7 *7 *7 *, 7)
(37 57 77 67 17 27 4) — (47 kK, ok ok 37 7)

(3,5,7,6,1,2,4) — (4,2,%,%,5,3,7)
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Examples. p=(3,5,7,6,1,2,4).

(3,5,7,6,1,2,4) — (%, %, %, %, %, x,7)
(3,5,7,6,1,2,4) — (4, %,%,%,%,3,7)
(3,5,7,6,1,2,4) — (4,2,%,%,5,3,7)

(375)7)6, 17254) = (4727 17675737 7) = p/'

(N, N —1,...,2,1) = (k,%,...,%,%, N)

(N,N—=1,...,2,1)— (1,%,...,%N—1 N)



Examples. p=(3,5,7,6,1,2,4).
(3,5,7,6,1,2,4) — (%, %, %, %, %, x,7)
(3,5,7,6,1,2,4) — (4, %,%,%,%,3,7)
(3,5,7,6,1,2,4) — (4,2,%,%,5,3,7)
(3,5,7,6,1,2,4) — (4,2,1,6,5,3,7) = p'.
(N, N —1,...,2,1) = (k,%,...,%,%, N)
(N,N—=1,...,2,1)— (1,%,...,%N—1 N)

(NN —1,...,2,1) = (1,2,...,N—2,N —1,N) = id.



Each fiber of the map p is an interval in Gy with respect to the

Bruhat order, and this interval is isomorphic to a Boolean poset.



Each fiber of the map p is an interval in Gy with respect to the
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123



Each fiber of the map p is an interval in Gy with respect to the

Bruhat order, and this interval is isomorphic to a Boolean poset.

321 312 301

231 312 213 132

231
213 132 123

123 213 123



Denote by F the N x N matrix whose ij-th entry is Fj;. Introduce

the Capelli-type determinant

C(u) = (-1)" Z sgnpp’ - (u+p_p+ F)_bp(l)’bp’(l)
pEGHN

XX (u+pn+ F)p

p(N)? Op (1)

where (by,..., by) is a fixed permutation of the indices

(—n,...,n) and p’ is the image of p under the map py.



Theorem

The polynomial C(u) does not depend on the choice of the
permutation (by, ..., by). All coefficients of C(u) belong to Z(gn).
Moreover, the image of C(u) under the Harish-Chandra

isomorphism is given by
n
C(u) = [[(w?=17), if N=2n,

and

n

X C(u) ( )Hu—/2 if N=2n+1.
i=1



Examples. For gy =sp, take (b1,b2) =(—1,1).
We have pPlL = —pP-1= —1, /1 = )\1 — 1,



Examples. For gy =sp, take (b1,b2) =(—1,1).
We have pPlL = —pP-1= —1, /1 = /\1 — 1,

Cluy)=(Ww+F 1 a+)(u+Fu1—-1)-F _1F 11

=~ (Fu— 12 -F,_1F 11



Examples. For gy =sp, take (b1,b2) =(—1,1).
We have pPlL = —pP-1= —1, /1 = /\1 — 1,

C(U) = (U + Ffl’fl + 1) (U + F11 — 1) — Fl,fl Ffl,l
=~ (Fu— 12 -F,_1F 11

and

x:C(u) — u? — 12,



For gn = 03 take (bl, b2, b3) = (—1,0, 1).
Here p_1 = po = —p1 = 1/2, h =X —-1/2,



For gn = 03 take (bl, b2, b3) = (—1,0, 1).
Here p_1 = po = —p1 = 1/2, h =X —-1/2,

Clu) = (u+ Fq1+1/2) (u+1/2) (u+ Fia —1/2)
— FO,—l F—l,O (U + F11 — 1/2)

— Fio (u + F—l,—l + 1/2) Fo1.



For gn = 03 take (bl, b2, b3) = (—1,0, 1).
Here p_1 = po = —p1 = 1/2, h =X —-1/2,

Clu) = (u+ Fq1+1/2) (u+1/2) (u+ Fia —1/2)
— FO,—l F—l,O (U + F11 — 1/2)

— Fio (u+ F_1,-1+1/2) Fo.
Hence
C(u) = (u+1/2) (v* — (Fi1 — 1/2)* — 2Fi0 Fo1)

and

X : C(u) — (u+1/2) (u2 — l12)



Gelfand invariants

are the elements of U(gy) defined by

n

tr Fk = Z Fii, F;2;3...

1,02, lk=—n

Fi

ki1



Gelfand invariants

are the elements of U(gy) defined by

n

tl”Fk = Z F,'1;2 F;2;3...F;k,'1,

1,02, lk=—n

We have tr F = 0,

n
trF2= Y FjFj

ij=—n



Gelfand invariants

are the elements of U(gy) defined by

n

tl”Fk = Z F,'1;2 F;2;3...F;k,'1,

i1,i2,...,ik:—n

We have tr F =0,

tr F? = zn: Fi F,

ij=—n

and

ter)—2Z — p?).



Theorem

If N = 2n then

2u+1 i Yetr FE C(u+1)
2U+1:F1k_0 u—i—p)k+1_ C(u) ’
where the upper sign is taken in the orthogonal case and the lower

sign in the symplectic case. If N =2n+ 1 then

Ly 2utl — (—1)ftr Fk  C(u+1)
2u = (utpn)tt T Clu)

where




All Gelfand invariants tr F¥ belong to Z(gn).



All Gelfand invariants tr F¥ belong to Z(gn).
Their images under the Harish-Chandra isomorphism are found by
the Perelomov—Popov formulas

2u+1 i x(tr F¥) Hu+/+1
2u+12}:1k70 u+,0 k1 21 ut; ’

where the zero index is skipped in the product if N = 2n, while for

N = 2n+ 1 one should set Iy = 0.



Noncommutative Cayley—Hamilton theorem

C(u) denotes the Capelli determinant for gl

or the Capelli-type determinant for gy = 025, SPs,, 02n+1-



Noncommutative Cayley—Hamilton theorem

C(u) denotes the Capelli determinant for gl

or the Capelli-type determinant for gy = 025, SPs,, 02n+1-

Theorem

(i) For gly we have
C(FE+N-1)=0 and C(—-Ef)=0.
(ii) For gn we have

C(—F — pn) =0.



Corollary (Characteristic identities of Bracken and Green)
(i) The image of the matrix E in the representation L(\) of gl

satisfies

N N

[[CE-ii-N+1)=0 and JJ(E*-1)=0.

i=1 i=1



Corollary (Characteristic identities of Bracken and Green)

(i) The image of the matrix E in the representation L(\) of gly

satisfies
N N
[[CE-ii-N+1)=0 and JJ(E*-1)=0.
i=1 i=1

(ii) The image of the matrix F in the representation V() of gy

satisfies
[T (F=ii+pn) =0,

The zero index is skipped in the product if N = 2n, while for
N = 2n+ 1 one should set Iy = 1/2.



Noncommutative power sums Casimir elements

For 1 < m < N and any positive integer k set

i k
o™ = ngmagiﬂz---&k—lm’

summed over iy, ..., ik—1 € {1,...,m},
where  &; = Ejj —4;(m—1) and

a(l) is the multiplicity of m in the multiset | = {i,

ey iket)



Noncommutative power sums Casimir elements

For 1 < m < N and any positive integer k set

m) k
¢§< - Z m gmflgiliz .- -gik_1m7
summed over iy, ..., ik—1 € {1,...,m},

where  &; = Ejj —4;(m—1) and

a(l) is the multiplicity of m in the multiset | = {1, ..., ik_1}.

Example.

o™ = Ep—m+1

m—1
O = (Egm — m+1)2 42> EnmiE;
i=1



Theorem. For any k>1 the element
o =0 4. oM
belongs to Z(gly). Moreover,
X(®k) = K+ + .
(Gelfand, Krob, Lascoux, Leclerc, Retakh and Thibon, '95).

N
¢1 - Z(Emm_ m+1)7

m=1
N
Oy = (Emm—m+12+2 > EpEpm.
m=1 1<I<m<N



Orthogonal and symplectic case

For 1 < m < n and any positive integer k set

m 2k
(ng) = Z W FmiFirip -+ Fige_ym

summed over ij,...,0hk—1 € {—m,...,m},



Orthogonal and symplectic case

For 1 < m < n and any positive integer k set

m 2k
(ng) = Z W FmiFirip -+ Fige_ym

summed over ij,...,0hk—1 € {—m,...,m},
and

~(m) 2k
¢2k - Z W ‘7:’""1‘7:"1"2 tee ‘7:"2k71m’

summed over i1,..., k1 € {—-m+1,....,m},

where  Fjj = Fjj +0;pm and

a(l) is the multiplicity of m in the multiset | = {i, ..

-y bk—1}.



Example. We have

¢gm):(me+pm)2+2 Z FmiFima

—m<i<m

<T>gm) = (me + pm)2 +2 Z Fm,'F,'m.

—m<i<m

and



Example. We have

¢gm):(me+pm)2+2 Z FmiFim,

—m<i<m
<T>gm) = (me+pm)2+2 Z Fm,'F,'m.
—m<i<m
Theorem. For any k>1 the element

b = 0% + B8 . oln) 4 YY)
belongs to Z(gn). Moreover,

X(¢2k) =2 (/12k + e+ [nZk)_

and



If gy =opn then the second order Casimir element is

=23 ((Fom+pm)?+2 3 Frifim).
m=1

—m<i<m



If gy =opn then the second order Casimir element is

=23 ((Fom+pm)?+2 3 Frifim).
m=1

—m<i<m

If gn =spy, then

=23 ((Fom = mP + FoFomm+2 3 FmiFim)-

m=1 —m<i<m



Quantum immanants for gl

A diagram (or partition) is a sequence p = (u1, ..., un) of integers
Wi such that ug > --- > un > 0, depicted as an array of unit cells

(or boxes).



Quantum immanants for gl

A diagram (or partition) is a sequence p = (1, ..., puy) of integers
Wi such that ug > --- > un > 0, depicted as an array of unit cells

(or boxes).

Example. The diagram p = (5,5,3) is

lul =13 l(p) =3




Quantum immanants for gl

A diagram (or partition) is a sequence p = (1, ..., puy) of integers
Wi such that ug > --- > un > 0, depicted as an array of unit cells
(or boxes).

Example. The diagram p = (5,5,3) is

lul =13 l(p) =3

The number of cells is the weight of the diagram, denoted |u|.

The number of nonzero rows is its length, denoted ().



For a diagram p with ¢(u) < N and || = k consider the row
tableau Ty obtained by filling in the cells by the numbers 1,... k

from left to right in successive rows:

4] 5]

’@@l—‘
[ee}



For a diagram p with ¢(u) < N and || = k consider the row
tableau Ty obtained by filling in the cells by the numbers 1,... k

from left to right in successive rows:

4] 5]

’@@l—‘
[ee}

Let R, and C, denote the row symmetrizer and column

antisymmetrizer of Tg respectively:

R#:ZO', CM:ZSgHT-T.
g T



Set ¢, (r) = j — i if the cell (i,) of Ty is occupied by r.



Set ¢, (r) = j — i if the cell (i,) of Ty is occupied by r.

Consider the matrix E as the element

N
E=) e®E;cEnd(C")®U(gly)
ij=1

and define the quantum immanant S, by
Sp= 7=t (E—cu(l)) @ @ (E — culk)) - RuCp,

where h(p) is the product of the hooks of 1 (Okounkov, 96).



The symmetric group Gy acts in a natural way in the tensor space
(CN)®k. We identify elements of &4 and hence R, and C,, with

the corresponding operators.



The symmetric group Gy acts in a natural way in the tensor space
(CN)®k. We identify elements of &4 and hence R, and C,, with
the corresponding operators.

Example

For p = (2,1) we have




The symmetric group Gy acts in a natural way in the tensor space
(CN)®k. We identify elements of &4 and hence R, and C,, with
the corresponding operators.

Example

For p = (2,1) we have

Hence

1
Sy =3 WE®(E-1) & (E+1)-(1+Pu)(1- Pu).



Explicitly,

E®(E-1)®(E+1)

= eijy ® ep, @ e, @ By By — 03,3,) (Eigjs + 63,,)-



Explicitly,

E®(E-1)® (E+1)

= eqj @ ehj @ e, @ Eyjy (

Hence

1
S(2,1) = g Z (Ei1f1 ( iz

i1,02,i3

+ Eilfz (Eizfl

summed over the indices i1, ip, i3 € {1,...,

Eizjz - 5:‘2]2) ( i3J3 + 613]3)

1) (Eiis +1)

- 61'2[1) (E/3l3 )
- Ei1i3 (Eiziz -

- Eiliz ( i2i3

) (E/311 + 5l3l1)
I3I1))7

I2I3) ( ’3’1

NY.



Examples. Capelli elements (quantum minors)

S(lk) = Z Z sgnp - E’.lvip(l) ce (E + k — 1)ik,ip(k)'

ih>->0 peSk



Examples. Capelli elements (quantum minors)

San= D

>>i0 peSk

Quantum permanents

D arian 2 i

i1>"'>lk pPES,

S(k) =

where «; is the multiplicity of 7 in iy, ...,

Z sgnp - Ei1,ip(1) .

(E+k— 1)ikaip(k)

(E k+1)’k7pk)7

ik, each i, € {1,...,N}.



Theorem
The quantum immanants S, with {(;) < N form a basis of the

center of the universal enveloping algebra U(gly).



Theorem
The quantum immanants S, with {(;) < N form a basis of the
center of the universal enveloping algebra U(gly).

Moreover,

where s;; = s;()) is the shifted symmetric polynomial.

(Okounkov, '96).



Theorem
The quantum immanants S, with {(;) < N form a basis of the
center of the universal enveloping algebra U(gly).

Moreover,

where s;; = s;()) is the shifted symmetric polynomial.

(Okounkov, '96).

The s;;(A) are certain symmetric polynomials in A, ..., .



Explicit formula:
ssN= > T O — (@),
sh(T)=p acn
summed over all reverse p-tableaux T with entries in {1,..., N}
such that the entries of T weakly decrease along the rows and
strictly decrease down the columns.
Here c(a) = j — i for a = (i,j) and T(«) is the entry of T in the

cell a.



Example. For = (2,1) the reverse tableaux are

i1l with i>j and i>k




Example. For = (2,1) the reverse tableaux are

i1l with i>j and i>k

Hence

si2,1)(A) = Z A (A = 1) (A + 1)

i, i>k



Examples. Harish-Chandra images of the Capelli elements

X(S(lk)) = Z Ay (Aiy +1) ... (N, + k—1).

>



Examples. Harish-Chandra images of the Capelli elements

D AL +1) (N + k=1,

>

Harish-Chandra images of the quantum permanents

XSw)= D Mp—1)... (N, —k+1).

12 2k



Examples. Harish-Chandra images of the Capelli elements

D AL +1) (N + k=1,

>

Harish-Chandra images of the quantum permanents

XSw)= D Mp—1)... (N, —k+1).
i1z Zik
These are symmetric polynomials in  h,..., /Iy,

h=X, ..., In=Ay—N+1.



Noncommutative Pfaffians and Hafnians

The Pfaffian Pf A of a 2k x 2k matrix A = [Aj] is defined by

1
PEA= erl D 8800 As(1)0(2) - - - As(2k—1),0(2K)-

Ao



Noncommutative Pfaffians and Hafnians

The Pfaffian Pf A of a 2k x 2k matrix A = [Aj] is defined by
1
PfA= Kkl Z Sgno - Ag(1),0(2) - - - Ac(2k—1),0(2k)
’ g€By
Let gv = on. For any subset | of {—n, ..., n} containing 2k
elements i1 < --- < oy, the 2k x 2k matrix [F;, _; ] is

skew-symmetric. We denote its Pfaffian by

&, =Pf[F, il p,g=1,...,2k.



Noncommutative Pfaffians and Hafnians

The Pfaffian Pf A of a 2k x 2k matrix A = [Aj] is defined by

1
PfA= W Z sgnao - Aa(l),a(2) ce Aa(2k—1),o(2k)~

g€By
Let gv = on. For any subset | of {—n, ..., n} containing 2k
elements i1 < --- < oy, the 2k x 2k matrix [F;, _; ] is

skew-symmetric. We denote its Pfaffian by
&, =Pf[F, il p,g=1,...,2k.

Set

DK 00, =iy, i}
I



If N=2n then C,=(-1)"(PfF)>2.



If N=2n then C,=(-1)"(PfF)>2.

Theorem

For all k =1,...,n the Cy are Casimir elements for oy. Moreover,
the image of Cy under the Harish-Chandra isomorphism is given by

X Ce— (—1)* Z (2 =p3)-. (/i2k - pi*k*%l)‘

1< < <ik<n



If N=2n then C,=(-1)"(PfF)>2.

Theorem

For all k =1,...,n the Cy are Casimir elements for oy. Moreover,
the image of Cy under the Harish-Chandra isomorphism is given by

X G (CD) YT (B =ph) (B = pFq).

1< < <ik<n

Corollary.

C(u) . Cx
(u+p-n)...(u+pn)




Forany k > 1let | = {i,...,hx} be a multiset whose elements
belong to {—n, ..., n}.

Denote by A; the 2k x 2k matrix whose (a, b) entry is A;j,.



Forany k > 1let | = {i,...,hx} be a multiset whose elements
belong to {—n, ..., n}.

Denote by A; the 2k x 2k matrix whose (a, b) entry is A;j,.

The Hafnian Hf A; of the matrix A; is defined by

1
Hf A, = kKl Z Aio'(l)’io'(2) e Aicr(2k—1)7io-(2k)'

UEGQk

(Caianiello, '56).



Let gy = spy,. Set F,-j =sgni- Fjj. Then we have It',-7_j = ’t_j,—i-
Let / be any sequence of length 2k of elements from the set
{=n,...,n}. Denote the multiplicity of an element i in / by «;.

Denote the Hafnian of the symmetric matrix [F;p7_;q] by
\U/ :Hf[/?,'w,,'q], pP,q = 1,...,2/(.
Set

sgn (i ...r . .
Dk:Z M W/\U[*, /*:{_l2k7--~7_’1}~

p a_pl..oapn!



Theorem

For all k > 1 the Dy are Casimir elements for sp,,,.



Theorem
For all k > 1 the Dy are Casimir elements for sp,,,.

Moreover, the image of Dy under the Harish-Chandra isomorphism

is given by

XD (0F > (B=R). (i + k—1)%).



Theorem
For all k > 1 the Dy are Casimir elements for sp,,,.

Moreover, the image of Dy under the Harish-Chandra isomorphism

is given by

XD (0F > (B=R). (i + k—1)%).

Corollary.

C(u) -1
((u +p_n)...(u+ Pn))

_ (— )ka
1+Z(u2 (119 (P (1 k)




