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Lecture 3. Yangians: representations

Recall that the Yangian Y(glN) is an associative algebra with

generators t
(r)
ij and the defining relations

(u − v) [tij(u), tkl(v)] = tkj(u) til(v)− tkj(v) til(u),

where

tij(u) = δij + t
(1)
ij u−1 + t

(2)
ij u−2 + · · · ∈ Y(glN)[[u−1]].



Definition. A representation L of the Yangian Y(glN) is called a

highest weight representation if there exists a nonzero vector ζ ∈ L

such that L is generated by ζ and the following relations hold

tij(u) ζ = 0 for 1 6 i < j 6 N, and

tii (u) ζ = λi (u) ζ for 1 6 i 6 N

for some formal series

λi (u) = 1 + λ
(1)
i u−1 + λ

(2)
i u−2 + . . . , λ

(r)
i ∈ C .

The vector ζ is called the highest vector of L, and the N-tuple of

formal series λ(u) =
(
λ1(u), . . . , λN(u)

)
is the highest weight of L.
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is the highest weight of L.



Verma module

Definition

Let λ(u) =
(
λ1(u), . . . , λN(u)

)
be an arbitrary tuple of formal

series. The Verma module M(λ(u)) is the quotient of Y(glN) by

the left ideal generated by all coefficients of the series tij(u) for

1 6 i < j 6 N and tii (u)− λi (u) for 1 6 i 6 N.

Proposition. For any given order on the set of generators t
(r)
ji with

1 6 i < j 6 N and r > 1, the elements

t
(r1)
j1i1

. . . t
(rm)
jmim

1λ(u), m > 0,

with ordered products of the generators, form a basis of M(λ(u)).



Verma module

Definition

Let λ(u) =
(
λ1(u), . . . , λN(u)

)
be an arbitrary tuple of formal

series. The Verma module M(λ(u)) is the quotient of Y(glN) by

the left ideal generated by all coefficients of the series tij(u) for

1 6 i < j 6 N and tii (u)− λi (u) for 1 6 i 6 N.

Proposition. For any given order on the set of generators t
(r)
ji with

1 6 i < j 6 N and r > 1, the elements

t
(r1)
j1i1

. . . t
(rm)
jmim

1λ(u), m > 0,

with ordered products of the generators, form a basis of M(λ(u)).



The irreducible highest weight representation L(λ(u)) of Y(glN)

with the highest weight λ(u) is defined as the quotient of the

Verma module M(λ(u)) by the unique maximal proper submodule.

Theorem

Every finite-dimensional irreducible representation of Y(glN) is

isomorphic to L(λ(u)) for some λ(u).

Proof.

Regard the representation of Y(glN) as a glN -module using the

embedding Eij 7→ t
(1)
ij .
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Given an N-tuple of complex numbers λ = (λ1, . . . , λN) denote by

L(λ) the irreducible representation of the Lie algebra glN with the

highest weight λ. So, L(λ) is generated by a nonzero vector ζ such

that

Eij ζ = 0 for 1 6 i < j 6 N, and

Eii ζ = λi ζ for 1 6 i 6 N.

Equip L(λ) with a structure of Y(glN)-module via the evaluation

homomorphism

tij(u) 7→ δij + Eij u−1.
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L(λ) is the evaluation module over Y(glN).

L(λ) is a highest weight representation of the Yangian with the

highest vector ζ, and the components of the highest weight are

given by

λi (u) = 1 + λiu
−1, i = 1, . . . ,N.

If L and M are any two Y(glN)-modules, then the tensor product

space L⊗M can be equipped with a Y(glN)-action with the use of

the comultiplication ∆ on Y(glN).

By the coassociativity of ∆, we may unambiguously define multiple

tensor product modules of the form

L(λ(1))⊗ L(λ(2))⊗ . . .⊗ L(λ(k)).
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Representations of Y(gl2)

Consider the irreducible highest weight representation L(λ(u)) of

Y(gl2) with an arbitrary highest weight λ(u) =
(
λ1(u), λ2(u)

)
.

Proposition

If dim L(λ(u)) <∞ then there exists a formal series

f (u) = 1 + f1u−1 + f2u−2 + . . . , fr ∈ C ,

such that f (u)λ1(u) and f (u)λ2(u) are polynomials in u−1.
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let λ1(u) and λ2(u) be polynomials in u−1 of degree not more

than k . Write the decompositions

λ1(u) = (1 + α1u−1) . . . (1 + αku−1),

λ2(u) = (1 + β1u−1) . . . (1 + βku−1).

Proposition

Suppose that for every i = 1, . . . , k − 1 the following condition

holds: if the multiset {αp − βq | i 6 p, q 6 k} contains

nonnegative integers, then αi − βi is minimal amongst them. Then

the representation L(λ1(u), λ2(u)) of Y(gl2) is isomorphic to the

tensor product module

L(α1, β1)⊗ L(α2, β2)⊗ . . .⊗ L(αk , βk).
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Theorem

The irreducible highest weight representation L(λ1(u), λ2(u)) of

Y(gl2) is finite-dimensional if and only if there exists a monic

polynomial P(u) in u such that

λ1(u)

λ2(u)
=

P(u + 1)

P(u)
.

In this case P(u) is unique.

The polynomial P(u) is called the Drinfeld polynomial of the

finite-dimensional representation L(λ1(u), λ2(u)).
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Proof.

dim L(α, β) <∞ if and only if α− β ∈ Z+.

The highest weight of the Y(gl2)-evaluation module is

λ1(u) = 1 + α u−1, λ2(u) = 1 + β u−1.

Hence, if α− β ∈ Z+ then
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P(u) = (u + β)(u + β + 1) . . . (u + α− 1).
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Recall that the Yangian Y(sl2) is the subalgebra of Y(gl2) which

consists of the elements stable under all automorphisms of the

form T (u) 7→ f (u) T (u).

Corollary

The isomorphism classes of finite-dimensional irreducible

representations of the Yangian Y(sl2) are parameterized by monic

polynomials in u. Every such representation is isomorphic to the

restriction of a Y(gl2)-module of the form

L(α1, β1)⊗ L(α2, β2)⊗ . . .⊗ L(αk , βk),

where each difference αi − βi is a positive integer.
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Irreducibility criterion

Define the string corresponding to a pair of complex numbers

(α, β) with α− β ∈ Z+ as the set

S(α, β) = {β, β + 1, . . . , α− 1}.

If α = β then the set S(α, β) is regarded to be empty.

Definition

Two strings S1 and S2 are in general position if either

(i) S1 ∪ S2 is not a string, or

(ii) S1 ⊂ S2, or S2 ⊂ S1.
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Suppose that all differences αi − βi are nonnegative integers.
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The representation

L(α1, β1)⊗ L(α2, β2)⊗ . . .⊗ L(αk , βk)

of Y(gl2) (or Y(sl2)) is irreducible if and only if the strings

S(α1, β1), . . . ,S(αk , βk) are pairwise in general position.
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Example. The representation L(7, 1)⊗ L(6, 4) of Y(gl2) is

irreducible:

t t t t t t
1 2 3 4 5 6

e e4 5

while L(6, 1)⊗ L(7, 4) is reducible:

t t t t t
1 2 3 4 5

e e e4 5 6
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Let λ(u) be an N-tuple of formal series in u−1,

λ(u) = (λ1(u), . . . , λN(u)).

Theorem

The irreducible highest weight representation L(λ(u)) of the

Yangian Y(glN) is finite-dimensional, if and only if there exist

monic polynomials P1(u), . . . ,PN−1(u) in u such that

λi (u)

λi+1(u)
=

Pi (u + 1)

Pi (u)
, i = 1, . . . ,N − 1.
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Drinfeld polynomials of L(λ(u)).
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)
and
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Q1(u), . . . ,QN−1(u)

)
.

Then the irreducible quotient of the cyclic Y(glN)-span of the

tensor product of the highest vectors of L and M corresponds to
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The evaluation Y(glN)-module L(α+ 1, . . . , α+ 1, α, . . . , α) with i

copies of α + 1 is a fundamental representation; its Drinfeld

polynomials are given by

Pi (u) = u + α and Pj(u) = 1 if j 6= i .

Corollary

Every finite-dimensional irreducible representation of the Yangian

Y(glN) is isomorphic to a subquotient of a tensor product of

fundamental representations.



The evaluation Y(glN)-module L(α+ 1, . . . , α+ 1, α, . . . , α) with i

copies of α + 1 is a fundamental representation; its Drinfeld

polynomials are given by

Pi (u) = u + α and Pj(u) = 1 if j 6= i .

Corollary

Every finite-dimensional irreducible representation of the Yangian

Y(glN) is isomorphic to a subquotient of a tensor product of

fundamental representations.



Remark

Contrary to the case N = 2, it is not true for N > 3 that every

finite-dimensional irreducible representation of Y(slN) is

isomorphic to a tensor product of evaluation modules. For

example, the Y(sl3)-module L(λ(u)) with

λ1(u) = (1 + 3u−1)(1 + u−1),

λ2(u) = 1 + 3u−1, λ3(u) = 1 + 2u−1

is 8-dimensional. On the other hand, the possible dimensions of

the evaluation modules are 1, 3, 6, 8, . . . so that L(λ(u)) cannot be

isomorphic to a tensor product of such modules.



Irreducibility criterion for tensor products

of evaluation modules

Let the λ(i) be glN -highest weights.

Theorem (Binary property). The Y(glN)-module

L(λ(1))⊗ L(λ(2))⊗ . . .⊗ L(λ(l))

is irreducible if and only if the modules L(λ(i))⊗ L(λ(j)) are

irreducible for all 1 6 i < j 6 l .
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Otherwise, A and B are called non-crossing.



Let

λ = (λ1, . . . , λN), µ = (µ1, . . . , µN)

with λi , µi ∈ Z and

λ1 > · · · > λN , µ1 > · · · > µN .

We will call two disjoint finite subsets A and B of Z crossing if

there exist elements a1, a2 ∈ A and b1, b2 ∈ B such that

a1 < b1 < a2 < b2 or b1 < a1 < b2 < a2.

Otherwise, A and B are called non-crossing.



For any glN -highest weight λ with integer components introduce
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The Y(glN)-module L(λ)⊗ L(µ) is irreducible if and only if the

sets Aλ \ Aµ and Aµ \ Aλ are non-crossing.
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Fusion procedure

The irreducible representations of Sk over C are parameterized by

partitions of k. Given a partition λ of k denote the corresponding

irreducible representation of Sk by Vλ. The vector space Vλ is

equipped with an Sk -invariant inner product ( , ). The

orthonormal Young basis {vU} of Vλ is parameterized by the set of

standard λ-tableaux U .



Set si = (i , i + 1) for i ∈ {1, . . . , k − 1}. We have

si · vU = d vU +
√

1− d2 vsi U ,

where d = (ci+1 − ci )
−1 and ci = ci (U) the content of the cell

occupied by the number i in a standard λ-tableau U . The tableau

si U is obtained from U by swapping the entries i and i + 1.



The group algebra C [Sk ] is isomorphic to the direct sum of matrix

algebras

C [Sk ] ∼= L
λ`k

Matfλ(C),

where fλ = dim Vλ. The matrix units eUU ′ ∈ Matfλ(C) are

parameterized by pairs of standard λ-tableaux U and U ′.

Identify C [Sk ] with the direct sum of matrix algebras by

eUU ′ =
fλ
k!
φUU ′ ,

where φUU ′ is the matrix element corresponding to the basis

vectors vU and vU ′ of the representation Vλ,

φUU ′ =
∑
s∈Sk

(s · vU , vU ′) · s−1 ∈ C [Sk ].
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For the diagonal elements we will simply write eU = eUU and
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x1 = 0, xi = (1 i) + (2 i) + · · ·+ (i − 1 i), i = 2, . . . , k .

They generate a commutative subalgebra of C [Sk ]. Moreover, xk

commutes with all elements of Sk−1.

The vectors of the Young basis are eigenvectors for the action of xi

on Vλ. For any standard λ-tableau U we have
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commutes with all elements of Sk−1.

The vectors of the Young basis are eigenvectors for the action of xi

on Vλ. For any standard λ-tableau U we have

xi · vU = ci (U) vU , i = 1, . . . , k .
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Fix a standard λ-tableau U and denote by V the standard tableau

obtained from U by removing the cell α occupied by k. Denote the

shape of V by µ.

Proposition (Murphy’s formula). We have the relation in C [Sk ],

eU = eV
(xk − a1) . . . (xk − al)

(c − a1) . . . (c − al)
,

where a1, . . . , al are the contents of all addable cells of µ except

for α, while c is the content of the latter.

Equivalently,

eU = eV
u − c

u − xk

∣∣∣
u=c

.
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For any distinct indices i , j ∈ {1, . . . , k} introduce the rational

function in two variables u, v with values in the group algebra

C [Sk ] by

ρij(u, v) = 1− (i j)

u − v
.

Proposition

Let r be a fixed index, r > k + 1. We have the equalities of

rational functions in u valued in C [Sr ],

φU ρk,r (−ck , u) . . . ρ1r (−c1, u)

= ρ1r (−c1, u) . . . ρk,r (−ck , u)φU

= φU

(
1 +

(1 r) + (2 r) + · · ·+ (k r)

u

)
.
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Take k complex variables u1, . . . , uk and set

φ(u1, . . . , uk) = ρ12(u1, u2) ρ13(u1, u3) ρ23(u2, u3)

× . . . ρ1k(u1, uk) ρ2k(u2, uk) . . . ρk−1,k(uk−1, uk).

Theorem

Suppose that λ is a partition of k and let U be a standard

λ-tableau. Set ci = ci (U) for i = 1, . . . , k.

Then the consecutive evaluations

φ(u1, . . . , uk)
∣∣
u1=c1

∣∣
u2=c2

. . .
∣∣
uk=ck

of the rational function φ(u1, . . . , uk) are well-defined. The

corresponding value coincides with the matrix element φU .
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Example: λ = (k). Then

U = 1 2 · · · k ci = i − 1,

and

φU =
∑
σ∈Sk

σ,

is the symmetrizer in C [Sk ]. By the theorem,

φU =
(

1 +
(1 2)

1

)(
1 +

(1 3)

2

)(
1 +

(2 3)

1

)

× . . .
(

1 +
(1 k)

k − 1

)(
1 +

(2 k)

k − 2

)
. . .
(

1 +
(k − 1 k)

1

)
.
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Example: λ = (1k). Then

U =

1

2

...

k

ci = −i + 1,

and φU =
∑
σ∈Sk

sgnσ · σ is the anti-symmetrizer in C [Sk ],
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Example: λ = (2, 1),

U =
3

1 2 V =
2

1 3

Then c1 = 0, c2 = 1, c3 = −1 for U , and

φU =
(

1 + (1 2)
)(

1− (1 3)
)(

1− (2 3)

2

)
,

while c1 = 0, c2 = −1, c3 = 1 for V, and

φV =
(

1− (1 2)
)(

1 + (1 3)
)(

1 +
(2 3)

2

)
.
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Example: λ = (22),

φ(u1, u2, u3, u4) = ρ12(u1, u2) ρ13(u1, u3) ρ23(u2, u3)

× ρ14(u1, u4) ρ24(u2, u4) ρ34(u3, u4).

Take the standard λ-tableau

U =
1

3

2

4

The contents are c1 = 0, c2 = 1, c3 = −1, c4 = 0.
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Taking u1 = 0, u2 = 1, u3 = −1, u4 = u we get

φ(0, 1,−1, u) =
(

1 + (1 2)
)(

1− (1 3)
)(

1− (2 3)

2

)

×
(

1 +
(1 4)

u

)(
1 +

(2 4)

u − 1

)(
1 +

(3 4)

u + 1

)
.

By the theorem, this rational function is regular at u = 0 and the

corresponding value coincides with φU .
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We have

φ(0, 1,−1, u) = φV

(
1 +

(1 4)

u

)(
1 +

(2 4)

u − 1

)(
1 +

(3 4)

u + 1

)
,

where

V =
3

1 2



We have
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,
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3
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Next step:

φV

(
1 +

(1 4)

u

)(
1 +

(2 4)

u − 1

)(
1 +

(3 4)

u + 1

)

=
3∏

i=1

(
1− 1

(u − ci )2

) u

u − c4
· φV

u − c4

u − x4
,

where c1 = 0, c2 = 1, c3 = −1, c4 = 0 and

x4 = (1 4) + (2 4) + (3 4).
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Finally, apply Murphy’s formula to get

3∏
i=1

(
1− 1

(u − ci )2

) u

u − c4
· φV

u − c4

u − x4

∣∣∣
u=c4

= φU .

Thus,

φU = φ(0, 1,−1, 0)

=
1

2

(
1 + (1 2)

)(
1− (1 3)

)(
2− (2 3)

)

×
(

2− (1 4)− (2 4)− (3 4)
)(

2 + (1 4) + (2 4) + (3 4)
)
.
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The symmetric group Sk acts naturally on the tensor product

space

CN ⊗ CN ⊗ . . .⊗ CN , k factors,

by permuting the factors. On the other hand, CN carries the

vector representation of the Lie algebra glN so that the tensor

product space is a representation of glN .

Suppose that λ = (λ1, . . . , λN) is a partition of k with `(λ) 6 N.

Consider an arbitrary standard λ-tableau U and let

ΦU ∈ End (CN)⊗k denote the image of the matrix element φU

under the action of Sk on the tensor product space.
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under the action of Sk on the tensor product space.



Then the subspace

LU = ΦU (CN)⊗k

is a glN -submodule of the tensor product module. This submodule

is irreducible and isomorphic to L(λ).

If U = U r is the row tableau of shape λ, then the subspace LU r

coincides with the image of the Young symmetrizer,

LU r = HU r AU r (CN)⊗k ,

where HU r and AU r are the row symmetrizer and column

anti-symmetrizer of U r .
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In the vector representation CN of glN we have Eij 7→ eij and so

the image of the matrix E =
∑N

i ,j=1 eij ⊗ Eij under the action of

glN can be written as

k∑
a=1

N∑
i ,j=1

eij ⊗ 1⊗(a−1) ⊗ eij ⊗ 1⊗(k−a) ∈ End CN ⊗ End (CN)⊗k .

Hence, under the evaluation homomorphism

T (u) 7→ 1 + E u−1,

the image of T t(u) in the representation LU is

T t(u) 7→ 1 +
(
P01 + P02 + · · ·+ P0k

)
u−1.
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In particular, if k = 1 then this takes the form

T t(u) 7→ R01(−u),

where we have used the Yang R-matrix.

For any complex number z we can make the vector space CN into

a representation of Y(glN) by the assignment

T t(u) 7→ R01(−u − z).

More generally, Y(glN) acts on (CN)⊗k by

T t(u) 7→ R01(−u − z1) R02(−u − z2) . . .R0k(−u − zk),

where z1, . . . , zk are fixed complex numbers.
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Consider a standard λ-tableau U and for any index r = 1, . . . , k

denote by cr = cr (U) the content of the cell of U occupied by r .

Proposition

The subspace LU of (CN)⊗k is stable under the action of Y(glN)

defined by

T t(u) 7→ R01(−u − c1) R02(−u − c2) . . .R0k(−u − ck).

Moreover, the representation of Y(glN) on LU obtained by

restriction is isomorphic to the evaluation module L(λ).



Consider a standard λ-tableau U and for any index r = 1, . . . , k

denote by cr = cr (U) the content of the cell of U occupied by r .

Proposition

The subspace LU of (CN)⊗k is stable under the action of Y(glN)

defined by

T t(u) 7→ R01(−u − c1) R02(−u − c2) . . .R0k(−u − ck).

Moreover, the representation of Y(glN) on LU obtained by

restriction is isomorphic to the evaluation module L(λ).



Proof.

Observe that Rij(u − v) coincides with the image of the element

ρij(u, v) under the action of the symmetric group Sk+1 on the

tensor product of the vector spaces CN . Hence, applying the

fusion procedure, we get

R01(−u − c1) R02(−u − c2) . . .R0k(−u − ck) ΦU

= ΦU

(
1 +

P01 + P02 + · · ·+ P0k

u

)
.

This implies the first part of the proposition. The second part

follows by taking into account that P01 + P02 + · · ·+ P0k

commutes with ΦU .



Gelfand–Tsetlin bases

Given any finite-dimensional irreducible representation of the

Yangian Y(glN), there exists an automorphism of Y(glN) of the

form T (u) 7→ f (u) T (u) such that its composition with the

representation is isomorphic to a subquotient of a tensor product

module

L(λ(1))⊗ . . .⊗ L(λ(p)),

where L(λ(i)) is the irreducible representation of glN with the

highest weight λ(i).

All generators t
(r)
ij with r > p + 1 act as zero operators.
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highest weight λ(i).

All generators t
(r)
ij with r > p + 1 act as zero operators.



Definition

For any positive integer p, the Yangian of level p is the quotient

Yp(glN) of the algebra Y(glN) by the ideal generated by all

elements t
(r)
ij with r > p + 1 and 1 6 i , j 6 N.

The composition of any finite-dimensional irreducible

representation of Y(glN) with an appropriate automorphism

T (u) 7→ f (u) T (u) can be regarded as a representation of Yp(glN)

for some p > 1. If p = 1 then the algebra Y1(glN) is isomorphic to

the universal enveloping algebra U(glN).
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For any positive integer p, the Yangian of level p is the quotient

Yp(glN) of the algebra Y(glN) by the ideal generated by all

elements t
(r)
ij with r > p + 1 and 1 6 i , j 6 N.

The composition of any finite-dimensional irreducible

representation of Y(glN) with an appropriate automorphism

T (u) 7→ f (u) T (u) can be regarded as a representation of Yp(glN)

for some p > 1. If p = 1 then the algebra Y1(glN) is isomorphic to

the universal enveloping algebra U(glN).



Yp(glN) can be regarded as an algebra with generators t
(r)
ij for

1 6 r 6 p and 1 6 i , j 6 N, subject to the defining relations

(u − v) [Tij(u),Tkl(v)] = Tkj(u) Til(v)− Tkj(v) Til(u),

where

Tij(u) = δij up + t
(1)
ij up−1 + · · ·+ t

(p)
ij .



The irreducible representation L(λ(u)) is generated by a nonzero

vector ζ such that

Tij(u) ζ = 0 for 1 6 i < j 6 N, and

Tii (u) ζ = λi (u) ζ for 1 6 i 6 N,

where λi (u) is a monic polynomial in u of degree p. Write

λi (u) = (u + λ
(1)
i )(u + λ

(2)
i ) . . . (u + λ

(p)
i ), i = 1, . . . ,N.

Impose the generality condition

λ
(k)
i − λ

(m)
j /∈ Z , for all i , j and all k 6= m.
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Tij(u) ζ = 0 for 1 6 i < j 6 N, and

Tii (u) ζ = λi (u) ζ for 1 6 i 6 N,

where λi (u) is a monic polynomial in u of degree p. Write

λi (u) = (u + λ
(1)
i )(u + λ

(2)
i ) . . . (u + λ

(p)
i ), i = 1, . . . ,N.

Impose the generality condition

λ
(k)
i − λ

(m)
j /∈ Z , for all i , j and all k 6= m.



The Gelfand–Tsetlin pattern Λ(u) (associated with the highest

weight λ(u)) is an array of monic polynomials in u of degree p of

the form

λN1(u) λN2(u) . . . λNN(u)

λN−1,1(u) . . . λN−1,N−1(u)

. . . . . .

λ21(u) λ22(u)

λ11(u)



Here the top row coincides with λ(u), and we have the

betweenness conditions

λr+1,i (u) −→ λri (u) −→ λr+1,i+1(u)

for r = 1, . . . ,N − 1 and i = 1, . . . , r .

Notation

λi (u) −→ µi (u)

means that there exists a uniquely determined decomposition

µi (u) = (u + µ
(1)
i )(u + µ

(2)
i ) . . . (u + µ

(p)
i ), i = 1, . . . ,N − 1,

such that λ
(k)
i − µ

(k)
i ∈ Z+ for all i and k .



Here the top row coincides with λ(u), and we have the

betweenness conditions
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for r = 1, . . . ,N − 1 and i = 1, . . . , r .

Notation
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µi (u) = (u + µ
(1)
i )(u + µ

(2)
i ) . . . (u + µ

(p)
i ), i = 1, . . . ,N − 1,

such that λ
(k)
i − µ

(k)
i ∈ Z+ for all i and k .



Theorem

The representation L(λ(u)) of Yp(glN) admits a basis {ζΛ}

parameterized by all patterns Λ(u) associated with the highest

weight λ(u).

Corollary (Branching rule).

L(λ(u))|Yp(glN−1)
∼= L

µ(u)
L′(µ(u)),

where µ(u) runs over all tuples of monic polynomials

µ(u) =
(
µ1(u), . . . , µN−1(u)

)
of degree p satisfying the

betweenness conditions.
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Introduce the polynomials with coefficients in Yp(glN) by

Ar (u) = T 1... r
1... r (u), Br (u) = T 1... r

1... r−1, r+1(u),

Cr (u) = T 1... r−1, r+1
1... r (u).

The coefficients of the polynomials Ar (u) for r = 1, . . . ,N and the

polynomials Br (u) and Cr (u) for r = 1, . . . ,N − 1 generate the

algebra Yp(glN).
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For a pattern Λ(u) due to the generality condition there exist

uniquely determined decompositions

λri (u) = (u + λ
(1)
ri ) . . . (u + λ

(p)
ri ), 1 6 i 6 r 6 N,

such that λ
(k)
Ni = λ

(k)
i ,

λ
(k)
r+1,i − λ

(k)
ri ∈ Z+ and λ

(k)
ri − λ

(k)
r+1,i+1 ∈ Z+

for k = 1, . . . , p and 1 6 i 6 r 6 N − 1.

Set

l
(k)
ri = λ

(k)
ri − i + 1, k = 1, . . . , p and i = 1, . . . , r .
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Theorem

We have

Ar (u) ζΛ = λr1(u) . . . λrr (u − r + 1) ζΛ,

for r = 1, . . . ,N, and

Br (−l
(k)
ri ) ζΛ = −λr+1,1(−l

(k)
ri ) . . . λr+1,r+1(−l

(k)
ri − r) ζ

Λ+δ
(k)
ri

,

Cr (−l
(k)
ri ) ζΛ = λr−1,1(−l

(k)
ri ) . . . λr−1,r−1(−l

(k)
ri − r + 2) ζ

Λ−δ(k)
ri

,

for r = 1, . . . ,N − 1.
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Representations of twisted Yangians

I Classification theorems, highest weight theory

I Constructions of all representations of Y(o2) and Y(sp2)

via tensor products

I Open problems:

I Gelfand–Tsetlin bases

I Characters of irreducible representations
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