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Quantum immanants S, form a basis of the center of
U(gly) [Okounkov 1996, Okounkov and Olshanski 1997].
Coefficients of the power series T, («) generate a Bethe
subalgebra of the Yangian Y(gly) [Nazarov 1998].

The dual series T/ («) are invariants of the quantum
vacuum module [Jing, Kozi¢, M. and Yang 2018].

Taking quasi-classical limits we get Sugawara operators —

Casimir elements for gl at the critical level.
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Young diagrams and tableaux

A partition or Young diagram p of length ¢ = ¢(u) is a weakly
decreasing sequence p = (uy, ..., ue) of integers

suchthat iy > -+ > py > 0.
If iy + -+ - + e = m, then p is a partition of m:  p + m.

The figure illustrates the diagram of the partition (5,4,4,2) of

15, its length is 4:
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A tableau U of shape p F m is obtained by filling in the boxes of

the diagram with the numbers in a given set.

A tableau U with entries in {1,...,m} which are filled in the
boxes bijectively is called standard if its entries strictly increase

along the rows and down the columns.

The following is a standard tableau of shape (4,4, 1):

3/4|5
6179

(oo]0]=




The irreducible representations of the symmetric group &,, over
C are parameterized by partitions of m. Given n = m denote the

corresponding irreducible representation of S, by V,,.



The irreducible representations of the symmetric group &,, over
C are parameterized by partitions of m. Given n = m denote the

corresponding irreducible representation of S, by V,,.

The vector space V,, admits an orthonormal Young basis

parameterized by the set of standard p-tableaux .



The irreducible representations of the symmetric group &,, over
C are parameterized by partitions of m. Given n = m denote the

corresponding irreducible representation of S, by V,,.

The vector space V,, admits an orthonormal Young basis

parameterized by the set of standard p-tableaux .
The group algebra C[&,,] is isomorphic to the direct sum

C[&u] = €D Maty, (C),

pEm

fu = dimV,, is the number of standard tableaux of shape /.
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The diagonal matrix units ¢;, = ¢;,,, € Maty, (C) are primitive
idempotents of C[&,,]. We have C[&,,] ¢,, = V,, so that explicit

formulas for ¢;, € C[S,,] provide realizations of V.
The Jucys—Murphy elements xy, ..., x, € C[&,,] are defined by
xq=1a)+---+(@a—1a) for a=2,...,m
and x; = 0. We have
Xaey = €y xa = ca(U) ey, a=1,...,m,

cq,(U) =j — iis the content of the box (i,j) € u occupied by a.
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Denote by V the standard tableau obtained from ¢/ by removing
the box o occupied by m. Then the shape of V is a diagram

which we denote by v.

Jucys—Murphy formula [Jucys 1971, Murphy 1981]:

(Xm—ar)...(Xp—a;)  u-—c
(c—ay)...(c—a)

€y =e =e
v Vu—xm u:c,

where ay, ..., a; are the contents of all addable boxes of v

except for «, while ¢ is the content of the latter.
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Example. Take p = (2%) and let U be

112
314,

Then Vis

1/2]

withc =c4(U) =0and v = (2,1).

Hence

ey = ey —32(;4;2)7 xy = (14) +(24) + (34).




Fusion procedure



Fusion procedure

Take m variables uy, ..., u, and consider the rational function
ab
o(uyy ... uy) = H (1 — u),
Ug — Up
1<a<b<m

the product is taken in the lexicographical order.



Fusion procedure

Take m variables uy, ..., u, and consider the rational function
ab
o(uyy ... uy) = H (1 — u),
Ug — Up
1<a<b<m

the product is taken in the lexicographical order.

Suppose that © - m and let U be a standard pu-tableau. Set

ca=coU)fora=1,... ,m.



Fusion procedure

Take m variables uy, ..., u, and consider the rational function
ab
o(uyy ... uy) = H (1 — u),
Ug — Up
1<a<b<m

the product is taken in the lexicographical order.

Suppose that © - m and let U be a standard pu-tableau. Set
cqg=cq(UU) fora=1,...,m. We have [Jucys 1966]:

m!

= — €.
Unm=Cm f/»"' u

gb(”la s 7”'")‘u]:c| ‘u2=Cz e
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Schur—Weyl duality

The symmetric group &,, acts by permuting the tensor factors

in the tensor product space

cMHem=c’"oC"®...@C".

m

Denote by &, the image of ¢, under this action.

If £(u) < N then &,(CN)®™ = L(p) is an irreducible gl-module

with the highest weight i = (i1, ..., 1¢,0,...,0). Moreover,

€= @ VasLp).

pkm, £(p)<N
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Introduce the matrix

N
E=) ¢;®E; € EndC" @ U(gly).
ij=1

Fora=1,...,mlet E, be the element of the algebra

EndC" @ ...® EndC" ® U(gly)

m




Introduce the matrix

N
E=) ¢;®E; € EndC" @ U(gly).
ij=1

Fora=1,...,mlet E, be the element of the algebra

EndC" @ ...® EndC" ® U(gly)

m

defined by
N
E, = Z 1®(a—1) Qe ® 1®(m—a) ® Ej.
ij=1
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Quantum immanants

Given a standard tableau U of shape p = m with ¢(u) < N,
consider the sequence of contents ¢, = ¢,(U) witha=1,...,m.

The quantum immanant is defined by
SM = tr17.."m 5u (El + Cl) ce (Em + Cm).

The element S, does not depend on /.
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Theorem [Okounkov 1996, Okounkov and Olshanski 1997].
The quantum immanants S,, with /(x) < N form a basis of the

center of U(gly).

The eigenvalue of S, in the highest weight module L(\) with
A= (A1,...,\) (the Harish-Chandra image)
is the factorial Schur polynomial,
s; N = D> T O + (@),
sh(T)=p a€p
summed over semistandard tableaux 7 of shape p with entries

in{1,...,N}.
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Example. Take p = (1"™). The contents of the only standard
tableau U/ are givenby ¢, = —a+ 1fora=1,... ,m.
We have &, = A" is the anti-symmetrizer in (CV)®™, the

quantum minors

tr;, o AME(E;—1)...(Ew—m+1)

goeey

are obtained as coefficients of the Capelli determinant

u+Ey Ep ... En
C(u) = cdet

ENl ENZ M+ENN—N+1
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Bethe subalgebras in Yangian

The Yangian Y(gly) is a unital associative algebra with

generators ti,.’), where 1 <i,j<Nandr=1,2,... and the

defining relations

[t(r-‘rl) () D) _ 4(0) () _ (), (n)

(s) _
i ohl = =ty — ity

where r,s =0,1,... and ti(jo) =0y



In terms of the formal series

() = 8+ > 17w € Y(aly) [l ]
r=1

the defining relations are written in the form

(= v) [t (), ta(v)] = ti5() ta(v) — 15(v) tu(u).



In terms of the formal series
) = g+ S € V(g [
the defining relations are \;;rlitten in the form
(=) [15(u), (V)] = 15 (u) ta(v) — 15(v) ti ().

Set

N
T(u) =) ej@t;(u) € EndCN @ Y(gly)[[u™']]
ij=1
and use the notation 7,(u) witha = 1,...,m for formal series in

u~! with coefficients in the tensor product algebra

EndC" ® ... ® EndC" ® Y(gly).

m




The defining relations for the algebra Y(gly) can be written in

the matrix form as
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The defining relations for the algebra Y(gly) can be written in

the matrix form as
R(u—v)T\(u) To(v) = To(v) T1 (u) R(u — v),

where

R(u)=1- Pu”!

is the Yang R-matrix,
p:CVeC¥5Cc¥eCN

is the permutation operator.
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Given a standard tableau U/ of shape p = m with £(u) < N,

consider the sequence of contents ¢, = ¢, (U) witha =1,...,m.

Define the power series in u~! with coefficients in Y(gly) by

.... myuTi(u+ci)...Tn(u+cp).
It does not depend on /.
Using the evaluation homomorphism

ev:Y(gly) — U(gly), T(u) — 14+ Eu",
we get

Su=(u+c)...(u+cn)ev(T,(u))

u=0 '
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coefficients of #;(u) with 1 <i <j <N.
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Consider the left ideal I of the algebra Y(gly) generated by all
coefficients of #;(u) with 1 <i <j <N.
The intersection Y(gly)o N1 is a two-sided ideal of Y(gly)o-

Yangian version of the Harish-Chandra homomorphism:
Y(aly)o = CAji=1,... N, r>1], &7 =",
Combine the elements )\f’) into the formal series
u) = 1 +§:A§’)u—r, i=1,...,N,

so that [l'i(l/t) — /\l-(u).



Theorem [cf. Okounkov 1996, Nazarov 1998].

The coefficients of all series T ,(«) pairwise commute.
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Theorem [cf. Okounkov 1996, Nazarov 1998].

The coefficients of all series T ,(«) pairwise commute.

The Harish-Chandra image of T ,(«) coincides with
the Yangian character of the evaluation module L(u):
= > 7w+ e@),
sh(T)=p acp
summed over semistandard tableau 7 of shape . with entries

in{1,...,N}.

20



Introduce the rational function in variables u, ..

P,
R(uy, ... upy) = H <1— b

.y Uy DY

Ug — ub)'

1<a<b<m
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R(uy, ... upy) = H <l—i).

1<a<b<m Ua = Ub
By the fusion procedure,

m!

R(M], e ’Mm){ulzcl ’uzzcz = = E (‘:u
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Introduce the rational function in variables u, .. ., u,, by

R(uy, ... upy) = H <l—£).

1<a<b<m Ua = Ub
By the fusion procedure,
R m ¢
(uy,y... ,um){ulzc1 ’uz:Cz N E -

A key point in the proof is the identity

R(ury ... um)Ti(ur) ... T(ttm) = Ton(tty) - .. Ty (u1)R(uy, . . .

and its consequence implied by the fusion procedure:

EyTi(u+cr).. . Tulu+cm) =Tulu+cm) ... Ti(u+c1) &y

21
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Quantum vacuum modules

The double Yangian DY (gly) is generated by the central
element C and elements tl.(j’) and té.(,*’), where 1 <i,j < N and

r=1,2,....
The defining relations are written in terms of the series
o0
tz']'(u) = 5’] + Z t[(]r) u "
r=1

and

ISR o W e
tlj(u)—@-j—g tp u
r=1

22



The defining relations are
R(u—v)Ti(u) To(v) = Ta(v) Ty (u) R(u — v),
R(u—v) T} (u) T (v) = TS (v) T} (u) R(u — v),

R(u—v+C/2)Ty(u) Ty (v) =T (v) T1 (u) R(u — v — C/2),

23



The defining relations are
R(u—v)Ti(u) To(v) = Ta(v) Ty (u) R(u — v),
R(u—v) T} (u) T (v) = TS (v) T} (u) R(u — v),

R(u—v+C/2)Ty(u) Ty (v) =T (v) T1 (u) R(u — v — C/2),

where the coefficients of powers of u, v belong to
End C" ® End CV @ DY(gly)

and

Tuw)=> e;@t;(u) and  TH(u) = e;@tf(u).

ij=1 ij=1

23



As before, R(u) is the Yang R-matrix,

Ru)=1—Pu"
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As before, R(u) is the Yang R-matrix,
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As before, R(u) is the Yang R-matrix,
Ru)=1—Pu"

We also use the normalized R-matrix

where
oo
gu)=1+> gu', geC,
i=1

is uniquely determined by the relation
glu+N)=g(u) (1 —u?).

24



The (quantum) vacuum module V,(gly) at the level c € C

over the double Yangian DY (gly) is defined as the quotient

Ve(gly) = DY(gly) /DY (gly)(C — ¢, 1 |r > 1).

25



The (quantum) vacuum module V,(gly) at the level c € C

over the double Yangian DY (gly) is defined as the quotient
Ve(aly) = DY (gly) /DY (ghy)(C = ¢, 1, [ r > 1).
On the vacuum vector 1 € V.(gly) we have

Cl=c1 and tP1=0 for r>1.

y
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The (quantum) vacuum module V,(gly) at the level c € C

over the double Yangian DY (gly) is defined as the quotient
Ve(gly) = DY(gly)/DY (aly)(C = ¢, 1 | > 1).
On the vacuum vector 1 € V.(gly) we have

Cl=c1 and tP1=0 for r>1.

y

As a vector space, the vacuum module is isomorphic to the

dual Yangian Y*(gly), which is the subalgebra of DY (gly)
(=)

i

generated by the elements ¢

25



Assume the level is critical, c = —N.
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Assume the level is critical, c = —N.
Let V denote the completion of V_y(aly) = Y*(gly) by

the descending filtration defined by deg’ tl.(j*’) =r.
Introduce the subspace of invariants by

3(V) = {v eV | (u)v = 6;v},

so that any element of 3(V) is annihilated by all ¢\ with r > 1.

y
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Assume the level is critical, c = —N.
Let V denote the completion of V_y(aly) = Y*(gly) by

the descending filtration defined by deg’ tl.(j*’) =r.
Introduce the subspace of invariants by

(V) = v eV ty(w)v = v},

so that any element of 3(V) is annihilated by all ¢\ with r > 1.

y

~

Proposition. 3(V) is a subalgebra of the completed dual

Yangian Y* (gly).

26
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m

set
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Construction of invariants

For a standard tableau ¢/ of shape ;. - m with /() < N,

consider the sequence of contents ¢, = c,(U) witha =1,...,m.

In the tensor product algebra

EndC’ ®... @ EndC" @V

m

set

Tr(u) =ty &y Ty (u+cr)... Toy(u+cu).

This is a power series in u independent of &/, whose coefficients

are elements of the completed vacuum module V.
27



Theorem [Jing—Kozic—-M.—Yang 2018].
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Theorem [Jing—KoZi¢—M.-Yang 2018].

All coefficients of the series T! () belong to the subalgebra of

~

invariants 3(V).

Corollary.

All coefficients of the series

trlwmA(m) T (u)... T (u—m+1), m=1,...,N,
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Theorem [Jing—KoZi¢—M.-Yang 2018].
All coefficients of the series T! () belong to the subalgebra of

~

invariants 3(V).

Corollary.

All coefficients of the series

tr, A(m)Tf(u)...Tn"{(u—m—Fl), m=1,...,N,

)

and

e T (). .. T (u—m+1), m=1,

belong to the subalgebra 3(V).

28
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Introduce the series

LT (u—k+ 1),
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Introduce the series

ol :Z (N k)“l’-‘wk*‘“"Tr<u>---T:<u—k+1>,
k=

and define its coefficients by

= i CID,(J) u'.

r=0

Theorem. The subalgebra of invariants 3(V) is commutative.
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Introduce the series

ol :Z (N k)“17-~7kA“"Tr<u>---T:<u—k+1>,
k=

and define its coefficients by

= i CID,(nr) u'.

r=0

Theorem. The subalgebra of invariants 3(V) is commutative.

It is topologically generated by the family of elements

o) withm=1,....Nandr=0,1,....
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Introduce the series

ol :Z (N k)“17-~7kA“"Tr<u>---T:<u—k+1>,
k=

and define its coefficients by

= i CID,(nr) u'.

r=0

Theorem. The subalgebra of invariants 3(V) is commutative.

It is topologically generated by the family of elements

o) withm=1,....Nandr=0,1,....

This family is algebraically independent.
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Segal-Sugawara vectors from the invariants

Consider the affine Kac-Moody algebra gly = gly[t, 7] & CK
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[Eylr], Euls]] :5kjEl~1[r+s}—6,.1Ekj[r+s]+r6,,,sK(ékjaﬂ— ’N"’),
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Segal-Sugawara vectors from the invariants

Consider the affine Kac-Moody algebra gly = gly[t, 7] & CK

defined by the commutation relations

5ij5kl
[Eyj[r], Euls]] :5kjEi1[r+s}_6ilEkj[r+S]+r6r,fsK((skjéil_ N );

and the element K is central.

Here X[r] = X¢" for X € gly and any r € Z.

30



Consider the filtration on DY (gly) defined by deg C = 0,

(r)

i

degt:’ =r—1 and deg tl(j_r) = —r.
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Consider the filtration on DY (gly) defined by deg C = 0,

(r)

i

(=n) _

degr.’ =r—1 and degt; ' = —r.

Use the bar notation for the images of the generators in the

associated graded algebra gr DY (gly).
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Consider the filtration on DY (gly) defined by deg C = 0,

(r)

i

(=n) _

degr.’ =r—1 and degt; ' = —r.

Use the bar notation for the images of the generators in the

associated graded algebra gr DY (gly).
Proposition. The assignments
Ejlr—1] =1,  Ejf-r—1 " and K~—C

with r > 1
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Consider the filtration on DY (gly) defined by deg C = 0,

(r) (=n _

degt;” =r—1 and degt; ' = —r.

Use the bar notation for the images of the generators in the

associated graded algebra grDY (gly).
Proposition. The assignments
Ejlr—1] =1,  Ejf-r—1 " and K~—C
with » > 1 define an algebra isomorphism
U(g[N) — grDY(gly).

31



By the proposition, gr Y* (gly) = U(r~'gly[r"!]) so that Vis a

quantization of the vacuum module at the critical level over EIN:
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By the proposition, gr Y* (gly) = U(r~'gly[r"!]) so that Vis a

quantization of the vacuum module at the critical level over EIN:

V= U(E[N)/U(&NXQINM +C(K+N)).

Then (V) is a quantization of the Feigin—Frenkel center 3(gly):

5(9A[N) = {v e V]gly[t]ly=0}.
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By the proposition, gr Y* (gly) = U(r~'gly[r"!]) so that Vis a

quantization of the vacuum module at the critical level over EIN:

V= U(E[N)/U(&NXQINM +C(K+N)).

Then (V) is a quantization of the Feigin—Frenkel center 3(gly):

5(9A[N) = {v e V]gly[t]ly=0}.

Any element of 5(5[]\,) is called a Segal-Sugawara vector.
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Extend the filtration on the dual Yangian to the algebra

Y (gly)[[u, 8,]] by degu = 1 and degd, = —1.
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Extend the filtration on the dual Yangian to the algebra
Y (gly)[[u, 8,]] by degu = 1 and degd, = —1.

The associated graded is isomorphic to U(t~'gly[r~']) [[u, D,]].
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Extend the filtration on the dual Yangian to the algebra
Y (gly)[[u, 8,]] by degu = 1 and degd, = —1.
The associated graded is isomorphic to U(t~'gly[r~']) [[u, D,]].

The element

77777

has degree —m

33



Extend the filtration on the dual Yangian to the algebra

Y (gly)[[u, D.]] by degu = 1 and deg 9, = —1.

The associated graded is isomorphic to U(t~'gly[r~']) [[u, D,]].

The element

77777

-----
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Extend the filtration on the dual Yangian to the algebra

Y (gly)[[u, D.]] by degu = 1 and deg 9, = —1.

The associated graded is isomorphic to U(t~'gly[r~']) [[u, D,]].

The element

77777

-----

where

E(u); =Y E[-rju"".
r=1
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By taking the coefficients of «” in

.....
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By taking the coefficients of «” in

trl mA(m)(8u+E(u)+]) (8M+E(M)+m>,

we get the differential operator in 7 = —0;:

try, A (T +E[-1]1) ... (7 + E[~1]n)

= (ZsmO ™+ (z)ml Tmil et ¢mm
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By taking the coefficients of «” in

trl mA(m)(8u+E(u)+]) (8M+E(M)+m>,

we get the differential operator in 7 = —0;:

try, A (T +E[-1]1) ... (7 + E[~1]n)

= (ZsmO " + (z)ml Tmil + o+ ¢mm

Corollary.

All elements ¢,, , are Segal-Sugawara vectors.

ma

34



Example. m = N.
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Example. m = N.

Consider the N x N matrix 7 + E[—1] given by

T+ E[-1] =

T+E11[—1]

Er[—1]

Eni[—1]

Epp[—1]

T+ Ezz[—l]

Ena[—1]

En[—1]

Eon[—1]

T+ ENN[—l]
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The coefficients ¢y, ..., ¢y of the polynomial
cdet(r + E[-1]) =7V + o™V b v T+ by

form a complete set of Segal-Sugawara vectors.
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The coefficients ¢y, ..., ¢y of the polynomial
Cdet(T—i-E[—l]) =V 4 ¢17'N_1 4+ ONI T+ ON
form a complete set of Segal-Sugawara vectors.

That is, the elements (0,)" ¢, withr > 0anda=1,...,N are
algebraically independent generators of the Feigin—Frenkel

center 3(gly). [Chervov—Talalaev 2006, Chervov—M. 2009].
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