Lecture 2

Lecture 2

Key points from the last lecture.

Lecture 2

Key points from the last lecture.

Yangian $Y(\mathfrak{gl}_N)$ is the associative algebra over $\mathbb C$ with generators $t_{ij}^{(1)},\ t_{ij}^{(2)},\dots$ where $i,j=1,\dots,N,$ and the defining relations

$$\left[t_{ij}^{(r)},t_{kl}^{(s)}\right] = \sum_{a=1}^{\min\{r,s\}} \left(t_{kj}^{(a-1)}t_{il}^{(r+s-a)} - t_{kj}^{(r+s-a)}t_{il}^{(a-1)}\right),\,$$

where $t_{ij}^{(0)} = \delta_{ij}$.

Equivalently,

$$(u-v)[t_{ij}(u),t_{kl}(v)]=t_{kj}(u)t_{il}(v)-t_{kj}(v)t_{il}(u).$$

Equivalently,

$$(u-v)[t_{ij}(u),t_{kl}(v)] = t_{kj}(u) t_{il}(v) - t_{kj}(v) t_{il}(u).$$

where

$$t_{ij}(u) = \delta_{ij} + t_{ij}^{(1)}u^{-1} + t_{ij}^{(2)}u^{-2} + \dots \in Y(\mathfrak{gl}_N)[[u^{-1}]].$$

► Equivalently,

$$(u-v)\left[t_{ij}(u),t_{kl}(v)\right]=t_{kj}(u)\,t_{il}(v)-t_{kj}(v)\,t_{il}(u).$$

where

$$t_{ij}(u) = \delta_{ij} + t_{ij}^{(1)}u^{-1} + t_{ij}^{(2)}u^{-2} + \dots \in Y(\mathfrak{gl}_N)[[u^{-1}]].$$

▶ Also, the defining relations take the form of *RTT*-relation

$$R(u - v) T_1(u) T_2(v) = T_2(v) T_1(u) R(u - v).$$

▶ We have the evaluation homomorphism

$$\operatorname{ev}: \mathbf{Y}(\mathfrak{gl}_N) \to \mathbf{U}(\mathfrak{gl}_N), \qquad t_{ij}(u) \mapsto \delta_{ij} + E_{ij}u^{-1},$$

► We have the evaluation homomorphism

$$\operatorname{ev}: \mathbf{Y}(\mathfrak{gl}_N) \to \mathbf{U}(\mathfrak{gl}_N), \qquad t_{ij}(u) \mapsto \delta_{ij} + E_{ij}u^{-1},$$

and the embedding

$$i: \mathrm{U}(\mathfrak{gl}_N) \hookrightarrow \mathrm{Y}(\mathfrak{gl}_N), \qquad E_{ij} \mapsto t_{ij}^{(1)}.$$

► We have the evaluation homomorphism

$$\operatorname{ev}: \mathrm{Y}(\mathfrak{gl}_N) \to \mathrm{U}(\mathfrak{gl}_N), \qquad t_{ij}(u) \mapsto \delta_{ij} + E_{ij}u^{-1},$$

and the embedding

$$i: \mathrm{U}(\mathfrak{gl}_N) \hookrightarrow \mathrm{Y}(\mathfrak{gl}_N), \qquad E_{ij} \mapsto t_{ij}^{(1)}.$$

In particular,

$$[E_{ij},t_{kl}(u)] = \delta_{kj} t_{il}(u) - \delta_{il} t_{kj}(u).$$

▶ We have the automorphisms

$$T(u) \mapsto f(u) T(u),$$

 $T(u) \mapsto T(u+c),$
 $T(u) \mapsto BT(u) B^{-1},$

▶ We have the automorphisms

$$T(u) \mapsto f(u) T(u),$$

 $T(u) \mapsto T(u+c),$
 $T(u) \mapsto B T(u) B^{-1},$

Remark.
$$(u + c)^{-r} = u^{-r} - r c u^{-r-1} + \dots$$

We have the automorphisms

$$T(u) \mapsto f(u) T(u),$$

 $T(u) \mapsto T(u+c),$
 $T(u) \mapsto B T(u) B^{-1},$

Remark.
$$(u + c)^{-r} = u^{-r} - r c u^{-r-1} + \dots$$

and anti-automorphisms

$$\sigma_N: T(u) \mapsto T(-u),$$

 $t: T(u) \mapsto T^t(u),$
 $S: T(u) \mapsto T^{-1}(u).$

► The Poincaré—Birkhoff—Witt theorem holds:

▶ The Poincaré—Birkhoff—Witt theorem holds:

Given an arbitrary linear order on the set of generators $t_{ij}^{(r)}$, any element of the algebra $Y(\mathfrak{gl}_N)$ can be uniquely written as a linear combination of ordered monomials in these generators.

▶ The Poincaré—Birkhoff—Witt theorem holds:

Given an arbitrary linear order on the set of generators $t_{ij}^{(r)}$, any element of the algebra $Y(\mathfrak{gl}_N)$ can be uniquely written as a linear combination of ordered monomials in these generators.

We noted in the proof that the associated graded algebra $\operatorname{gr} Y(\mathfrak{gl}_N)$ is the algebra of polynomials in infinitely many variables $\overline{t}_{ij}^{(r)}$.

▶ A Hopf algebra is a unital algebra A equipped with a coproduct Δ , an antipode S and a counit ε .

▶ A Hopf algebra is a unital algebra A equipped with a coproduct Δ , an antipode S and a counit ε .

Since $\Delta: A \mapsto A \otimes A$ is a homomorphism, the tensor product of two A-modules V and W is again an A-module with the action defined via Δ .

▶ A Hopf algebra is a unital algebra A equipped with a coproduct Δ , an antipode S and a counit ε .

Since $\Delta: A \mapsto A \otimes A$ is a homomorphism, the tensor product of two A-modules V and W is again an A-module with the action defined via Δ .

For any $a \in A$ we have

$$a \cdot (v \otimes w) = \Delta(a)(v \otimes w)$$
$$= \left(\sum a_{(1)} \otimes a_{(2)}\right)(v \otimes w) = \sum a_{(1)}v \otimes a_{(2)}w.$$

for any $v \in V$ and $w \in W$.

Example. If V and W are representations of a Lie algebra \mathfrak{g} ,

Example. If V and W are representations of a Lie algebra \mathfrak{g} , then $V \otimes W$ is also a representation with the action

$$X(v \otimes w) = Xv \otimes w + v \otimes Xw, \qquad X \in \mathfrak{g}.$$

Example. If V and W are representations of a Lie algebra \mathfrak{g} , then $V \otimes W$ is also a representation with the action

$$X(v \otimes w) = Xv \otimes w + v \otimes Xw, \qquad X \in \mathfrak{g}.$$

In fact, $U(\mathfrak{g})$ is a Hopf algebra with the coproduct

$$\Delta: X \mapsto X \otimes 1 + 1 \otimes X, \qquad X \in \mathfrak{g},$$

the antipode $S: X \mapsto -X$ and the counit $\varepsilon: X \to 0$.

$$\Delta: t_{ij}(u) \mapsto \sum_{k=1}^{N} t_{ik}(u) \otimes t_{kj}(u),$$

$$\Delta: t_{ij}(u) \mapsto \sum_{k=1}^{N} t_{ik}(u) \otimes t_{kj}(u),$$

the antipode

$$S: T(u) \mapsto T^{-1}(u),$$

$$\Delta: t_{ij}(u) \mapsto \sum_{k=1}^{N} t_{ik}(u) \otimes t_{kj}(u),$$

the antipode

$$S: T(u) \mapsto T^{-1}(u),$$

and the counit $\varepsilon : T(u) \mapsto 1$.

$$\Delta: t_{ij}(u) \mapsto \sum_{k=1}^{N} t_{ik}(u) \otimes t_{kj}(u),$$

the antipode

$$S: T(u) \mapsto T^{-1}(u),$$

and the counit $\varepsilon: T(u) \mapsto 1$.

Proof. We will verify the main axiom that

$$\Delta: \mathrm{Y}(\mathfrak{gl}_N) \to \mathrm{Y}(\mathfrak{gl}_N) \otimes \mathrm{Y}(\mathfrak{gl}_N)$$

is an algebra homomorphism.

The definition of Δ can be written in a matrix form,

$$\Delta: T(u) \mapsto T_{[1]}(u) T_{[2]}(u),$$

The definition of Δ can be written in a matrix form,

$$\Delta: T(u) \mapsto T_{[1]}(u) T_{[2]}(u),$$

by extending it to the map

$$\Delta : \operatorname{End} \mathbb{C}^N \otimes \operatorname{Y}(\mathfrak{gl}_N) \to \operatorname{End} \mathbb{C}^N \otimes \operatorname{Y}(\mathfrak{gl}_N) \otimes \operatorname{Y}(\mathfrak{gl}_N),$$

ĉ

The definition of Δ can be written in a matrix form,

$$\Delta: T(u) \mapsto T_{[1]}(u) T_{[2]}(u),$$

by extending it to the map

$$\Delta : \operatorname{End} \mathbb{C}^N \otimes \operatorname{Y}(\mathfrak{gl}_N) \to \operatorname{End} \mathbb{C}^N \otimes \operatorname{Y}(\mathfrak{gl}_N) \otimes \operatorname{Y}(\mathfrak{gl}_N),$$

with the notation

$$T_{[1]}(u) = \sum_{i,j=1}^N e_{ij} \otimes t_{ij}(u) \otimes 1$$
 and $T_{[2]}(u) = \sum_{i,j=1}^N e_{ij} \otimes 1 \otimes t_{ij}(u)$.

We need to show that $\Delta(T(u))$ satisfies the *RTT* relation

$$R(u - v) T_{1[1]}(u) T_{1[2]}(u) T_{2[1]}(v) T_{2[2]}(v)$$

$$= T_{2[1]}(v) T_{2[2]}(v) T_{1[1]}(u) T_{1[2]}(u) R(u - v)$$

We need to show that $\Delta(T(u))$ satisfies the *RTT* relation

$$R(u - v) T_{1[1]}(u) T_{1[2]}(u) T_{2[1]}(v) T_{2[2]}(v)$$

$$= T_{2[1]}(v) T_{2[2]}(v) T_{1[1]}(u) T_{1[2]}(u) R(u - v)$$

in the algebra

$$\operatorname{End} \mathbb{C}^N \otimes \operatorname{End} \mathbb{C}^N \otimes \operatorname{Y}(\mathfrak{gl}_N) \otimes \operatorname{Y}(\mathfrak{gl}_N).$$

We need to show that $\Delta(T(u))$ satisfies the *RTT* relation

$$R(u - v) T_{1[1]}(u) T_{1[2]}(u) T_{2[1]}(v) T_{2[2]}(v)$$

$$= T_{2[1]}(v) T_{2[2]}(v) T_{1[1]}(u) T_{1[2]}(u) R(u - v)$$

in the algebra

End
$$\mathbb{C}^N \otimes \text{End } \mathbb{C}^N \otimes Y(\mathfrak{gl}_N) \otimes Y(\mathfrak{gl}_N)$$
.

This follows by the RTT relation for T(u) and by the observation that the elements $T_{1[2]}(u)$ and $T_{2[1]}(v)$ commute, as well as the elements $T_{1[1]}(u)$ and $T_{2[2]}(v)$.

Classical limit

Classical limit

Introduce new generators of $Y(\mathfrak{gl}_N)$ by setting

$$\widetilde{t}_{ij}^{(r)} = h^{r-1} t_{ij}^{(r)}, \qquad r \geqslant 1,$$

where h is a nonzero complex number.

Classical limit

Introduce new generators of $Y(\mathfrak{gl}_N)$ by setting

$$\widetilde{t}_{ij}^{(r)} = h^{r-1} t_{ij}^{(r)}, \qquad r \geqslant 1,$$

where h is a nonzero complex number.

The defining relations of the algebra $Y_h(\mathfrak{gl}_N)$ take the form

$$\begin{split} \left[\widetilde{t}_{ij}^{(r)}, \widetilde{t}_{kl}^{(s)}\right] &= \delta_{kj} \, \widetilde{t}_{il}^{(r+s-1)} - \delta_{il} \, \widetilde{t}_{kj}^{(r+s-1)} \\ &+ h \, \sum_{a=2}^{\min\{r,s\}} \left(\widetilde{t}_{kj}^{(a-1)} \, \widetilde{t}_{il}^{(r+s-a)} - \widetilde{t}_{kj}^{(r+s-a)} \, \widetilde{t}_{il}^{(a-1)} \right). \end{split}$$

Note that $Y_0(\mathfrak{gl}_N) = U(\mathfrak{gl}_N[x])$ via the identification

$$\widetilde{t}_{ij}^{(r)} \mapsto E_{ij} x^{r-1}.$$

Note that $Y_0(\mathfrak{gl}_N) = U(\mathfrak{gl}_N[x])$ via the identification

$$\widetilde{t}_{ij}^{(r)} \mapsto E_{ij} x^{r-1}.$$

So the Yangian is a flat deformation of the algebra $U(\mathfrak{gl}_N[x])$.

Note that $Y_0(\mathfrak{gl}_N) = U(\mathfrak{gl}_N[x])$ via the identification

$$\widetilde{t}_{ij}^{(r)} \mapsto E_{ij} x^{r-1}.$$

So the Yangian is a flat deformation of the algebra $U(\mathfrak{gl}_N[x])$.

For the coproduct we have

$$\Delta: \widetilde{t}_{ij}^{(r)} \mapsto \widetilde{t}_{ij}^{(r)} \otimes 1 + 1 \otimes \widetilde{t}_{ij}^{(r)} + h \sum_{k=1}^{N} \sum_{s=1}^{r-1} \widetilde{t}_{ik}^{(s)} \otimes \widetilde{t}_{kj}^{(r-s)}.$$

12

Note that $Y_0(\mathfrak{gl}_N) = U(\mathfrak{gl}_N[x])$ via the identification

$$\widetilde{t}_{ij}^{(r)} \mapsto E_{ij} x^{r-1}.$$

So the Yangian is a flat deformation of the algebra $U(\mathfrak{gl}_N[x])$.

For the coproduct we have

$$\Delta: \widetilde{t}_{ij}^{(r)} \mapsto \widetilde{t}_{ij}^{(r)} \otimes 1 + 1 \otimes \widetilde{t}_{ij}^{(r)} + h \sum_{k=1}^{N} \sum_{s=1}^{r-1} \widetilde{t}_{ik}^{(s)} \otimes \widetilde{t}_{kj}^{(r-s)}.$$

Hence the Yangian is a deformation of $U(\mathfrak{gl}_N[x])$ in the class of Hopf algebras.

Let Δ' be the opposite coproduct on $Y(\mathfrak{gl}_N)$,

$$\Delta': t_{ij}(u) \mapsto \sum_{k=1}^N t_{kj}(u) \otimes t_{ik}(u).$$

Let Δ' be the opposite coproduct on $Y(\mathfrak{gl}_N)$,

$$\Delta': t_{ij}(u) \mapsto \sum_{k=1}^{N} t_{kj}(u) \otimes t_{ik}(u).$$

In the algebra $Y_h(\mathfrak{gl}_N)$ we have

$$\frac{\Delta(\widetilde{t}_{ij}^{(r)}) - \Delta'(\widetilde{t}_{ij}^{(r)})}{h} = \sum_{k=1}^{N} \sum_{s=1}^{r-1} \widetilde{t}_{ik}^{(s)} \otimes \widetilde{t}_{kj}^{(r-s)} - \sum_{k=1}^{N} \sum_{s=1}^{r-1} \widetilde{t}_{kj}^{(s)} \otimes \widetilde{t}_{ik}^{(r-s)}.$$

Let Δ' be the opposite coproduct on $Y(\mathfrak{gl}_N)$,

$$\Delta': t_{ij}(u) \mapsto \sum_{k=1}^{N} t_{kj}(u) \otimes t_{ik}(u).$$

In the algebra $Y_h(\mathfrak{gl}_N)$ we have

$$\frac{\Delta(\widetilde{t}_{ij}^{(r)}) - \Delta'(\widetilde{t}_{ij}^{(r)})}{h} = \sum_{k=1}^{N} \sum_{s=1}^{r-1} \widetilde{t}_{ik}^{(s)} \otimes \widetilde{t}_{kj}^{(r-s)} - \sum_{k=1}^{N} \sum_{s=1}^{r-1} \widetilde{t}_{kj}^{(s)} \otimes \widetilde{t}_{ik}^{(r-s)}.$$

For h=0 this coincides with the image $\delta\left(\widetilde{t}_{ij}^{(r)}\right)=\delta\left(E_{ij}x^{r-1}\right)$ of the cocommutator δ on $\mathfrak{gl}_N[x]$.

$$\delta:\mathfrak{gl}_N[x]\mapsto\mathfrak{gl}_N[x]\otimes\mathfrak{gl}_N[x]\cong(\mathfrak{gl}_N\otimes\mathfrak{gl}_N)[x,y],$$

$$\delta:\mathfrak{gl}_N[x]\mapsto\mathfrak{gl}_N[x]\otimes\mathfrak{gl}_N[x]\cong(\mathfrak{gl}_N\otimes\mathfrak{gl}_N)[x,y],$$

defined by

$$\delta: Zx^r \mapsto \frac{\left[Z\otimes 1,C\right]x^r + \left[1\otimes Z,C\right]y^r}{x-y},$$

$$\delta:\mathfrak{gl}_N[x]\mapsto\mathfrak{gl}_N[x]\otimes\mathfrak{gl}_N[x]\cong(\mathfrak{gl}_N\otimes\mathfrak{gl}_N)[x,y],$$

defined by

$$\delta: Zx^r \mapsto \frac{\left[Z\otimes 1,C\right]x^r + \left[1\otimes Z,C\right]y^r}{x-y},$$

where $Z \in \mathfrak{gl}_N$ and

$$C=\sum_{i,j=1}^N E_{ij}\otimes E_{ji}.$$

$$\delta: \mathfrak{gl}_N[x] \mapsto \mathfrak{gl}_N[x] \otimes \mathfrak{gl}_N[x] \cong (\mathfrak{gl}_N \otimes \mathfrak{gl}_N)[x,y],$$

defined by

$$\delta: Zx^r \mapsto \frac{[Z \otimes 1, C]x^r + [1 \otimes Z, C]y^r}{x - y},$$

where $Z \in \mathfrak{gl}_N$ and

$$C=\sum_{i,i=1}^N E_{ij}\otimes E_{ji}.$$

Remark. This is the starting point to define the Yangian $Y(\mathfrak{a})$ associated with a simple Lie algebra \mathfrak{a} .

Quantum determinant

Quantum determinant

Direct definition. The quantum determinant of the matrix

$$T(u) = \begin{bmatrix} t_{11}(u) & t_{12}(u) & \dots & t_{1N}(u) \\ t_{21}(u) & t_{22}(u) & \dots & t_{2N}(u) \\ \dots & \dots & \dots & \dots \\ t_{N1}(u) & t_{N2}(u) & \dots & t_{NN}(u) \end{bmatrix}$$

Quantum determinant

Direct definition. The quantum determinant of the matrix

$$T(u) = \begin{bmatrix} t_{11}(u) & t_{12}(u) & \dots & t_{1N}(u) \\ t_{21}(u) & t_{22}(u) & \dots & t_{2N}(u) \\ \dots & \dots & \dots & \dots \\ t_{N1}(u) & t_{N2}(u) & \dots & t_{NN}(u) \end{bmatrix}$$

is defined as the series

$$\operatorname{qdet} T(u) = \sum_{p \in \mathfrak{S}_N} \operatorname{sgn} p \cdot t_{p(1) \, 1}(u) \dots t_{p(N) \, N}(u - N + 1).$$

Exercise. (1) Show that for N=2 we have

$$\operatorname{qdet} T(u) = t_{11}(u) t_{22}(u-1) - t_{21}(u) t_{12}(u-1)$$

$$= t_{22}(u) t_{11}(u-1) - t_{12}(u) t_{21}(u-1)$$

$$= t_{11}(u-1) t_{22}(u) - t_{12}(u-1) t_{21}(u)$$

$$= t_{22}(u-1) t_{11}(u) - t_{21}(u-1) t_{12}(u).$$

Exercise. (1) Show that for N = 2 we have

$$\operatorname{qdet} T(u) = t_{11}(u) t_{22}(u-1) - t_{21}(u) t_{12}(u-1)$$

$$= t_{22}(u) t_{11}(u-1) - t_{12}(u) t_{21}(u-1)$$

$$= t_{11}(u-1) t_{22}(u) - t_{12}(u-1) t_{21}(u)$$

$$= t_{22}(u-1) t_{11}(u) - t_{21}(u-1) t_{12}(u).$$

(2) Prove that the coefficients of the series $q \det T(u)$ belong to the center of the Yangian $Y(\mathfrak{gl}_2)$.

R-matrix construction of qdet T(u)

R-matrix construction of qdet T(u)

For any positive integer m consider the algebra

$$(\operatorname{End} \mathbb{C}^N)^{\otimes m} \otimes \operatorname{Y}(\mathfrak{gl}_N).$$

For any $a \in \{1, ..., m\}$ denote by $T_a(u)$ the matrix T(u) which corresponds to the a-th copy of the algebra $\operatorname{End} \mathbb{C}^N$ in the tensor product algebra.

17

R-matrix construction of qdet T(u)

For any positive integer m consider the algebra

$$(\operatorname{End} \mathbb{C}^N)^{\otimes m} \otimes \operatorname{Y}(\mathfrak{gl}_N).$$

For any $a \in \{1, \ldots, m\}$ denote by $T_a(u)$ the matrix T(u) which corresponds to the a-th copy of the algebra $\operatorname{End} \mathbb{C}^N$ in the tensor product algebra. That is, $T_a(u)$ is a formal power series in u^{-1} given by

$$T_a(u) = \sum_{i,j=1}^N 1^{\otimes (a-1)} \otimes e_{ij} \otimes 1^{\otimes (m-a)} \otimes t_{ij}(u),$$

where 1 is the identity matrix.

lf

$$C = \sum_{i,j,k,l=1}^{N} c_{ijkl} \, e_{ij} \otimes e_{kl} \in \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{End} \mathbb{C}^{N},$$

then for any two indices $a,b \in \{1,\ldots,m\}$ such that a < b, define the element C_{ab} of the algebra $(\operatorname{End} \mathbb{C}^N)^{\otimes m}$ by

lf

$$C = \sum_{i,j,k,l=1}^{N} c_{ijkl} e_{ij} \otimes e_{kl} \in \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{End} \mathbb{C}^{N},$$

then for any two indices $a,b \in \{1,\ldots,m\}$ such that a < b, define the element C_{ab} of the algebra $(\operatorname{End} \mathbb{C}^N)^{\otimes m}$ by

$$C_{ab} = \sum_{i,j,k,l=1}^{N} c_{ijkl} \, 1^{\otimes (a-1)} \otimes e_{ij} \otimes 1^{\otimes (b-a-1)} \otimes e_{kl} \otimes 1^{\otimes (m-b)}.$$

The tensor factors e_{ij} and e_{kl} belong to the a-th and b-th copies of End \mathbb{C}^N , respectively.

For any $m \ge 2$ introduce the rational function $R(u_1, \ldots, u_m)$ with values in the tensor product algebra $(\operatorname{End} \mathbb{C}^N)^{\otimes m}$ by

$$R(u_1,\ldots,u_m)=(R_{m-1,m})(R_{m-2,m}R_{m-2,m-1})\ldots(R_{1m}\ldots R_{12}),$$

For any $m \geqslant 2$ introduce the rational function $R(u_1, \ldots, u_m)$ with values in the tensor product algebra $(\operatorname{End} \mathbb{C}^N)^{\otimes m}$ by

$$R(u_1,\ldots,u_m)=(R_{m-1,m})(R_{m-2,m}R_{m-2,m-1})\ldots(R_{1m}\ldots R_{12}),$$

where u_1, \ldots, u_m are independent complex variables and we abbreviate

$$R_{ab} = R_{ab}(u_a - u_b) = 1 - \frac{P_{ab}}{u_a - u_b}.$$

Using the Yang-Baxter equation, we also get

$$R(u_1, \dots, u_m) = (R_{12} \dots R_{1m}) \dots (R_{m-2,m-1} R_{m-2,m}) (R_{m-1,m})$$
$$= \prod_{a < b} \left(1 - \frac{P_{ab}}{u_a - u_b} \right)$$

Using the Yang-Baxter equation, we also get

$$R(u_1, \dots, u_m) = (R_{12} \dots R_{1m}) \dots (R_{m-2,m-1} R_{m-2,m}) (R_{m-1,m})$$
$$= \prod_{a < b} \left(1 - \frac{P_{ab}}{u_a - u_b} \right)$$

with the lexicographical order of the pairs (a, b).

Using the Yang-Baxter equation, we also get

$$R(u_1, \dots, u_m) = (R_{12} \dots R_{1m}) \dots (R_{m-2,m-1} R_{m-2,m}) (R_{m-1,m})$$
$$= \prod_{a < b} \left(1 - \frac{P_{ab}}{u_a - u_b} \right)$$

with the lexicographical order of the pairs (a, b).

We used the observation that R_{ab} and R_{cd} commute, if the indices a, b, c, d are all distinct.

$$R(u_1,\ldots,u_m) T_1(u_1) \ldots T_m(u_m) = T_m(u_m) \ldots T_1(u_1) R(u_1,\ldots,u_m).$$

$$R(u_1,\ldots,u_m) T_1(u_1) \ldots T_m(u_m) = T_m(u_m) \ldots T_1(u_1) R(u_1,\ldots,u_m).$$

For m = 3 we have $R(u_1, u_2, u_3) = R_{23} R_{13} R_{12}$.

$$R(u_1,\ldots,u_m) T_1(u_1) \ldots T_m(u_m) = T_m(u_m) \ldots T_1(u_1) R(u_1,\ldots,u_m).$$

For m = 3 we have $R(u_1, u_2, u_3) = R_{23} R_{13} R_{12}$. Hence, omitting the arguments, we get

$$R(u_1, u_2, u_3) T_1 T_2 T_3 = R_{23} R_{13} R_{12} T_1 T_2 T_3$$

$$R(u_1,\ldots,u_m) T_1(u_1) \ldots T_m(u_m) = T_m(u_m) \ldots T_1(u_1) R(u_1,\ldots,u_m).$$

For m = 3 we have $R(u_1, u_2, u_3) = R_{23} R_{13} R_{12}$. Hence, omitting the arguments, we get

$$R(u_1, u_2, u_3) T_1 T_2 T_3 = R_{23} R_{13} R_{12} T_1 T_2 T_3$$

which equals

$$R_{23} R_{13} T_2 T_1 R_{12} T_3 = R_{23} T_2 R_{13} T_1 T_3 R_{12}$$

$$R(u_1,\ldots,u_m) T_1(u_1) \ldots T_m(u_m) = T_m(u_m) \ldots T_1(u_1) R(u_1,\ldots,u_m).$$

For m = 3 we have $R(u_1, u_2, u_3) = R_{23} R_{13} R_{12}$. Hence, omitting the arguments, we get

$$R(u_1, u_2, u_3) T_1 T_2 T_3 = R_{23} R_{13} R_{12} T_1 T_2 T_3$$

which equals

$$R_{23} R_{13} T_2 T_1 R_{12} T_3 = R_{23} T_2 R_{13} T_1 T_3 R_{12}$$

= $R_{23} T_2 T_3 T_1 R_{13} R_{12} = T_3 T_2 T_1 R_{23} R_{13} R_{12}$.

$$R(u, u-1, \ldots, u-m+1) = A_m,$$

$$R(u, u-1, \ldots, u-m+1) = A_m,$$

the image of the anti-symmetrizer

$$a_m = \sum_{p \in \mathfrak{S}_m} \operatorname{sgn} p \cdot p \in \mathbb{C}[\mathfrak{S}_m].$$

$$R(u, u-1, \ldots, u-m+1) = A_m,$$

the image of the anti-symmetrizer

$$a_m = \sum_{p \in \mathfrak{S}_m} \operatorname{sgn} p \cdot p \in \mathbb{C}[\mathfrak{S}_m].$$

Equivalently,

$$A_m = \prod_{a < b} \left(1 - \frac{P_{ab}}{b - a} \right).$$

$$R(u, u-1, \ldots, u-m+1) = A_m,$$

the image of the anti-symmetrizer

$$a_m = \sum_{p \in \mathfrak{S}_m} \operatorname{sgn} p \cdot p \in \mathbb{C}[\mathfrak{S}_m].$$

Equivalently,

$$A_m = \prod_{a < b} \left(1 - \frac{P_{ab}}{b - a} \right).$$

Remark. This is a particular case of the fusion procedure going back to [A. Jucys 1966].

Proof. We use induction on m. Case m = 2 is obvious for

$$A_2 = R_{12}(1) = 1 - P_{12}.$$

Proof. We use induction on m. Case m = 2 is obvious for

$$A_2 = R_{12}(1) = 1 - P_{12}.$$

By the induction hypothesis we have for m > 2

$$R(u, u-1, \ldots, u-m+1) = (R_{12} \ldots R_{1m}) A'_{m-1},$$

where A'_{m-1} denotes the anti-symmetrizer over $\{2, \ldots, m\}$.

Calculate

$$(R_{12}...R_{1m})A'_{m-1} = (1-P_{12})(1-\frac{P_{13}}{2})...(1-\frac{P_{1m}}{m-1})A'_{m-1}.$$

Calculate

$$(R_{12}...R_{1m})A'_{m-1} = (1-P_{12})(1-\frac{P_{13}}{2})...(1-\frac{P_{1m}}{m-1})A'_{m-1}.$$

Expand the product and write

$$P_{1i_1} P_{1i_2} \dots P_{1i_k} A'_{m-1} = P_{1i_k} P_{i_k i_1} \dots P_{i_k i_{k-1}} A'_{m-1}$$

Calculate

$$(R_{12}...R_{1m})A'_{m-1} = (1-P_{12})(1-\frac{P_{13}}{2})...(1-\frac{P_{1m}}{m-1})A'_{m-1}.$$

Expand the product and write

$$P_{1i_1} P_{1i_2} \dots P_{1i_k} A'_{m-1} = P_{1i_k} P_{i_k i_1} \dots P_{i_k i_{k-1}} A'_{m-1}$$

which equals

$$(-1)^{k-1} P_{1i_k} A'_{m-1}.$$

Therefore,

$$(R_{12}...R_{1m})A'_{m-1} = (1 - \alpha_2 P_{12} - \cdots - \alpha_m P_{1m})A'_{m-1}$$

Therefore,

$$(R_{12} \dots R_{1m}) A'_{m-1} = (1 - \alpha_2 P_{12} - \dots - \alpha_m P_{1m}) A'_{m-1}$$

with

$$\alpha_r = \frac{1}{r-1}(1+1)\left(1+\frac{1}{2}\right)\dots\left(1+\frac{1}{r-2}\right) = 1.$$

Therefore,

$$(R_{12} \dots R_{1m}) A'_{m-1} = (1 - \alpha_2 P_{12} - \dots - \alpha_m P_{1m}) A'_{m-1}$$

with

$$\alpha_r = \frac{1}{r-1}(1+1)\left(1+\frac{1}{2}\right)\dots\left(1+\frac{1}{r-2}\right) = 1.$$

Finally, note that

$$(1-P_{12}-\cdots-P_{1m})A'_{m-1}=A_m.$$

Hence, by the Lemma and the fundamental relation

$$R(u_1,\ldots,u_m) T_1(u_1) \ldots T_m(u_m) = T_m(u_m) \ldots T_1(u_1) R(u_1,\ldots,u_m),$$

Hence, by the Lemma and the fundamental relation

$$R(u_1,\ldots,u_m) T_1(u_1) \ldots T_m(u_m) = T_m(u_m) \ldots T_1(u_1) R(u_1,\ldots,u_m),$$

we have

$$A_m T_1(u) \dots T_m(u-m+1) = T_m(u-m+1) \dots T_1(u) A_m.$$

Hence, by the Lemma and the fundamental relation

$$R(u_1,\ldots,u_m) T_1(u_1) \ldots T_m(u_m) = T_m(u_m) \ldots T_1(u_1) R(u_1,\ldots,u_m),$$

we have

$$A_m T_1(u) \dots T_m(u-m+1) = T_m(u-m+1) \dots T_1(u) A_m.$$

Observe that if m = N, then the operator A_N on $(\mathbb{C}^N)^{\otimes N}$ has a one-dimensional image.

We have

$$A_N(e_{i_1}\otimes\ldots\otimes e_{i_N})=0$$

unless (i_1, \ldots, i_N) is a permutation of $(1, \ldots, N)$.

We have

$$A_N(e_{i_1}\otimes\ldots\otimes e_{i_N})=0$$

unless (i_1, \ldots, i_N) is a permutation of $(1, \ldots, N)$.

Moreover, in that case,

$$A_N(e_{q(1)}\otimes\ldots\otimes e_{q(N)})=\operatorname{sgn} q\cdot\xi,$$

where

We have

$$A_N(e_{i_1}\otimes\ldots\otimes e_{i_N})=0$$

unless (i_1, \ldots, i_N) is a permutation of $(1, \ldots, N)$.

Moreover, in that case,

$$A_N(e_{q(1)}\otimes\ldots\otimes e_{q(N)})=\operatorname{sgn} q\cdot\xi,$$

where

$$\xi = \sum_{\tau \in \mathfrak{S}_N} \operatorname{sgn} \tau \cdot e_{\tau(1)} \otimes \ldots \otimes e_{\tau(N)}.$$

Since $A_N^2 = NA_N$,

Since $A_N^2 = NA_N$, both sides of the relation

$$A_N T_1(u) \dots T_N(u-N+1) = T_N(u-N+1) \dots T_1(u) A_N$$

are equal to $A_N d(u)$ for a series d(u) with coefficients in $Y(\mathfrak{gl}_N)$,

Since $A_N^2 = NA_N$, both sides of the relation

$$A_N T_1(u) \dots T_N(u-N+1) = T_N(u-N+1) \dots T_1(u) A_N$$

are equal to $A_N d(u)$ for a series d(u) with coefficients in $Y(\mathfrak{gl}_N)$,

$$d(u) = 1 + d_1 u^{-1} + d_2 u^{-2} + \dots$$

Since $A_N^2 = NA_N$, both sides of the relation

$$A_N T_1(u) \dots T_N(u-N+1) = T_N(u-N+1) \dots T_1(u) A_N$$

are equal to $A_N d(u)$ for a series d(u) with coefficients in $Y(\mathfrak{gl}_N)$,

$$d(u) = 1 + d_1 u^{-1} + d_2 u^{-2} + \dots$$

Definition. The series d(u) is called the quantum determinant of the matrix T(u) and denoted q det T(u).

Proposition. For any permutation $q \in \mathfrak{S}_N$ we have

$$\begin{aligned} \operatorname{qdet} T(u) &= \operatorname{sgn} q \sum_{p \in \mathfrak{S}_N} \operatorname{sgn} p \cdot t_{p(1) \, q(1)}(u) \dots t_{p(N) \, q(N)}(u - N + 1) \\ &= \operatorname{sgn} q \sum_{p \in \mathfrak{S}_N} \operatorname{sgn} p \cdot t_{q(1) \, p(1)}(u - N + 1) \dots t_{q(N) \, p(N)}(u). \end{aligned}$$

Proposition. For any permutation $q \in \mathfrak{S}_N$ we have

$$\begin{split} \operatorname{qdet} T(u) &= \operatorname{sgn} q \sum_{p \in \mathfrak{S}_N} \operatorname{sgn} p \cdot t_{p(1) \, q(1)}(u) \dots t_{p(N) \, q(N)}(u - N + 1) \\ &= \operatorname{sgn} q \sum_{p \in \mathfrak{S}_N} \operatorname{sgn} p \cdot t_{q(1) \, p(1)}(u - N + 1) \dots t_{q(N) \, p(N)}(u). \end{split}$$

In particular,

$$\operatorname{qdet} T(u) = \sum_{p \in \mathfrak{S}_N} \operatorname{sgn} p \cdot t_{p(1) 1}(u) \dots t_{p(N) N}(u - N + 1)$$
$$= \sum_{p \in \mathfrak{S}_N} \operatorname{sgn} p \cdot t_{1 p(1)}(u - N + 1) \dots t_{N p(N)}(u).$$

$$A_N T_1(u) \dots T_N(u-N+1) = A_N \operatorname{qdet} T(u).$$

$$A_N T_1(u) \dots T_N(u-N+1) = A_N \operatorname{qdet} T(u).$$

Apply both sides to the basis vector $e_{q(1)} \otimes \ldots \otimes e_{q(N)}$.

$$A_N T_1(u) \dots T_N(u-N+1) = A_N \operatorname{qdet} T(u).$$

Apply both sides to the basis vector $e_{q(1)} \otimes \ldots \otimes e_{q(N)}$.

The right hand side yields $\operatorname{sgn} q \cdot \operatorname{qdet} T(u) \xi$.

$$A_N T_1(u) \dots T_N(u-N+1) = A_N \operatorname{qdet} T(u).$$

Apply both sides to the basis vector $e_{q(1)} \otimes \ldots \otimes e_{q(N)}$.

The right hand side yields $\operatorname{sgn} q \cdot \operatorname{qdet} T(u) \xi$.

For the left hand side we get

$$A_N \sum_{i_1,\ldots,i_N} t_{i_1\,q(1)}(u) \ldots t_{i_N\,q(N)}(u-N+1)(e_{i_1} \otimes \ldots \otimes e_{i_N}),$$

proving the first formula.

Assuming that $m \leq N$ is arbitrary, define

the $m \times m$ quantum minors $t_{b_1...b_m}^{a_1...a_m}(u)$ so that each side of

$$A_m T_1(u) \dots T_m(u-m+1) = T_m(u-m+1) \dots T_1(u) A_m$$

equals

$$\sum e_{a_1b_1}\otimes\ldots\otimes e_{a_mb_m}\otimes t_{b_1\ldots b_m}^{a_1\ldots a_m}(u),$$

summed over the indices $a_i, b_i \in \{1, ..., N\}$.

Skew-symmetry properties: for any $p \in \mathfrak{S}_m$ we have

$$t_{b_1\dots b_m}^{a_{p(1)}\dots a_{p(m)}}(u) = \operatorname{sgn} p \cdot t_{b_1\dots b_m}^{a_1\dots a_m}(u)$$

Skew-symmetry properties: for any $p \in \mathfrak{S}_m$ we have

$$t_{b_1...b_m}^{a_{p(1)}...a_{p(m)}}(u) = \operatorname{sgn} p \cdot t_{b_1...b_m}^{a_1...a_m}(u)$$

and

$$t_{b_{p(1)}\dots b_{p(m)}}^{a_1\dots a_m}(u) = \operatorname{sgn} p \cdot t_{b_1\dots b_m}^{a_1\dots a_m}(u).$$

Skew-symmetry properties: for any $p \in \mathfrak{S}_m$ we have

$$t_{b_1...b_m}^{a_{p(1)}...a_{p(m)}}(u) = \operatorname{sgn} p \cdot t_{b_1...b_m}^{a_1...a_m}(u)$$

and

$$t_{b_{p(1)}\dots b_{p(m)}}^{a_1\dots a_m}(u) = \operatorname{sgn} p \cdot t_{b_1\dots b_m}^{a_1\dots a_m}(u).$$

As with the quantum determinant, we have

$$t_{b_{1}...b_{m}}^{a_{1}...a_{m}}(u) = \sum_{p \in \mathfrak{S}_{m}} \operatorname{sgn} p \cdot t_{a_{p(1)}b_{1}}(u) \dots t_{a_{p(m)}b_{m}}(u - m + 1)$$
$$= \sum_{p \in \mathfrak{S}_{m}} \operatorname{sgn} p \cdot t_{a_{1}b_{p(1)}}(u - m + 1) \dots t_{a_{m}b_{p(m)}}(u).$$

Proposition. The images of quantum minors under the coproduct are given by

$$\Delta(t_{b_1\dots b_m}^{a_1\dots a_m}(u)) = \sum_{c_1 < \dots < c_m} t_{c_1\dots c_m}^{a_1\dots a_m}(u) \otimes t_{b_1\dots b_m}^{c_1\dots c_m}(u),$$

summed over all subsets of indices $\{c_1, \ldots, c_m\}$ from $\{1, \ldots, N\}$.

Proposition. The images of quantum minors under the coproduct are given by

$$\Delta(t_{b_1\dots b_m}^{a_1\dots a_m}(u)) = \sum_{c_1 < \dots < c_m} t_{c_1\dots c_m}^{a_1\dots a_m}(u) \otimes t_{b_1\dots b_m}^{c_1\dots c_m}(u),$$

summed over all subsets of indices $\{c_1,\ldots,c_m\}$ from $\{1,\ldots,N\}$.

Proof. Apply Δ to the product

$$A_m T_1(u) \dots T_m(u-m+1)$$

Proposition. The images of quantum minors under the coproduct are given by

$$\Delta(t_{b_1...b_m}^{a_1...a_m}(u)) = \sum_{c_1 < \cdots < c_m} t_{c_1...c_m}^{a_1...a_m}(u) \otimes t_{b_1...b_m}^{c_1...c_m}(u),$$

summed over all subsets of indices $\{c_1, \ldots, c_m\}$ from $\{1, \ldots, N\}$.

Proof. Apply Δ to the product

$$A_m T_1(u) \dots T_m(u-m+1)$$

to get the element of the algebra $(\operatorname{End} \mathbb{C}^N)^{\otimes m} \otimes \operatorname{Y}(\mathfrak{gl}_N)[[u^{-1}]]^{\otimes 2}$:

$$A_m T_{1[1]}(u) T_{1[2]}(u) \dots T_{m[1]}(u-m+1) T_{m[2]}(u-m+1).$$

$$A_m T_{1[1]}(u) \dots T_{m[1]}(u-m+1) T_{1[2]}(u) \dots T_{m[2]}(u-m+1),$$

$$A_m T_{1[1]}(u) \dots T_{m[1]}(u-m+1) T_{1[2]}(u) \dots T_{m[2]}(u-m+1),$$

apply the fundamental relation to get

$$\frac{1}{m!} A_m T_{m[1]}(u-m+1) \dots T_{1[1]}(u) A_m T_{1[2]}(u) \dots T_{m[2]}(u-m+1)$$

$$A_m T_{1[1]}(u) \dots T_{m[1]}(u-m+1) T_{1[2]}(u) \dots T_{m[2]}(u-m+1),$$

apply the fundamental relation to get

$$\frac{1}{m!}A_m T_{m[1]}(u-m+1) \dots T_{1[1]}(u) A_m T_{1[2]}(u) \dots T_{m[2]}(u-m+1)$$

which coincides with

$$\frac{1}{m!} A_m T_{1[1]}(u) \dots T_{m[1]}(u-m+1) A_m T_{1[2]}(u) \dots T_{m[2]}(u-m+1).$$

$$A_m T_{1[1]}(u) \dots T_{m[1]}(u-m+1) T_{1[2]}(u) \dots T_{m[2]}(u-m+1),$$

apply the fundamental relation to get

$$\frac{1}{m!}A_m T_{m[1]}(u-m+1) \dots T_{1[1]}(u) A_m T_{1[2]}(u) \dots T_{m[2]}(u-m+1)$$

which coincides with

$$\frac{1}{m!}A_m T_{1[1]}(u) \dots T_{m[1]}(u-m+1)A_m T_{1[2]}(u) \dots T_{m[2]}(u-m+1).$$

Taking the matrix elements gives the formula.

Corollary. We have

$$\Delta: \operatorname{qdet} T(u) \mapsto \operatorname{qdet} T(u) \otimes \operatorname{qdet} T(u).$$

Corollary. We have

$$\Delta$$
: qdet $T(u) \mapsto$ qdet $T(u) \otimes$ qdet $T(u)$.

Proof. Since

$$\operatorname{qdet} T(u) = t_{1...N}^{1...N}(u),$$

this follows from the proposition.

Center of $Y(\mathfrak{gl}_N)$

Center of $Y(\mathfrak{gl}_N)$

Proposition. We have the relations

$$(u - v) \left[t_{kl}(u), t_{b_1 \dots b_m}^{a_1 \dots a_m}(v) \right]$$

$$= \sum_{i=1}^m t_{a_i l}(u) t_{b_1 \dots b_m}^{a_1 \dots k \dots a_m}(v) - \sum_{i=1}^m t_{b_1 \dots l \dots b_m}^{a_1 \dots a_m}(v) t_{kb_i}(u)$$

where the indices k and l in the quantum minors replace a_i and b_i , respectively.

$$R(u, v, v - 1, ..., v - m + 1) T_0(u) T_1(v) ... T_m(v - m + 1)$$

$$= T_m(v - m + 1) ... T_1(v) T_0(u) R(u, v, v - 1, ..., v - m + 1).$$

$$R(u, v, v - 1, ..., v - m + 1) T_0(u) T_1(v) ... T_m(v - m + 1)$$

$$= T_m(v - m + 1) ... T_1(v) T_0(u) R(u, v, v - 1, ..., v - m + 1).$$

We have

$$R(u, v, v - 1, \dots, v - m + 1) = A_m R_{0m}(u - v + m - 1) \dots R_{01}(u - v).$$

$$R(u, v, v - 1, ..., v - m + 1) T_0(u) T_1(v) ... T_m(v - m + 1)$$

$$= T_m(v - m + 1) ... T_1(v) T_0(u) R(u, v, v - 1, ..., v - m + 1).$$

We have

$$R(u, v, v - 1, \dots, v - m + 1) = A_m R_{0m}(u - v + m - 1) \dots R_{01}(u - v).$$

The same argument as for the proof of the fusion formula gives

$$R(u, v, v - 1, \dots, v - m + 1) = A_m \left(1 - \frac{1}{u - v} (P_{01} + \dots + P_{0m}) \right).$$

$$R(u, v, v - 1, ..., v - m + 1) T_0(u) T_1(v) ... T_m(v - m + 1)$$

$$= T_m(v - m + 1) ... T_1(v) T_0(u) R(u, v, v - 1, ..., v - m + 1).$$

We have

$$R(u, v, v - 1, \dots, v - m + 1) = A_m R_{0m}(u - v + m - 1) \dots R_{01}(u - v).$$

The same argument as for the proof of the fusion formula gives

$$R(u, v, v - 1, \dots, v - m + 1) = A_m \left(1 - \frac{1}{u - v} (P_{01} + \dots + P_{0m}) \right).$$

Apply both sides to the vector $e_l \otimes e_{b_1} \otimes \ldots \otimes e_{b_m}$ and compare the coefficients of the vector $e_k \otimes e_{a_1} \otimes \ldots \otimes e_{a_m}$.

Corollary. The coefficients d_1, d_2, \ldots of the series

$$\operatorname{qdet} T(u) = 1 + d_1 u^{-1} + d_2 u^{-2} + \dots$$

belong to the center $\mathrm{ZY}(\mathfrak{gl}_N)$ of the algebra $\mathrm{Y}(\mathfrak{gl}_N).$

Corollary. The coefficients d_1, d_2, \ldots of the series

$$\operatorname{qdet} T(u) = 1 + d_1 u^{-1} + d_2 u^{-2} + \dots$$

belong to the center $ZY(\mathfrak{gl}_N)$ of the algebra $Y(\mathfrak{gl}_N)$.

Proof. The proposition gives

$$(u-v) \left[t_{kl}(u), t_{1...N}^{1...N}(v) \right] = t_{kl}(u) t_{1...N}^{1...N}(v) - t_{1...N}^{1...N}(v) t_{kl}(u)$$

Corollary. The coefficients d_1, d_2, \ldots of the series

$$\det T(u) = 1 + d_1 u^{-1} + d_2 u^{-2} + \dots$$

belong to the center $ZY(\mathfrak{gl}_N)$ of the algebra $Y(\mathfrak{gl}_N)$.

Proof. The proposition gives

$$(u-v) \left[t_{kl}(u), t_{1...N}^{1...N}(v) \right] = t_{kl}(u) t_{1...N}^{1...N}(v) - t_{1...N}^{1...N}(v) t_{kl}(u)$$

and so

$$[t_{kl}(u), \operatorname{qdet} T(v)] = 0,$$

as we wanted.

Proof. Since the Yangian is a flat deformation of the universal enveloping algebra $U(\mathfrak{gl}_N[x])$, it will be enough to verify the corresponding claim for this algebra.

Proof. Since the Yangian is a flat deformation of the universal enveloping algebra $U(\mathfrak{gl}_N[x])$, it will be enough to verify the corresponding claim for this algebra.

It will be convenient to use another ascending filtration on $Y(\mathfrak{gl}_N)$ by setting $\deg' t_{ij}^{(r)} = r-1$ for every $r\geqslant 1$.

Proof. Since the Yangian is a flat deformation of the universal enveloping algebra $U(\mathfrak{gl}_N[x])$, it will be enough to verify the corresponding claim for this algebra.

It will be convenient to use another ascending filtration on $Y(\mathfrak{gl}_N)$ by setting $\deg' t_{ij}^{(r)} = r-1$ for every $r\geqslant 1$.

Denote the corresponding graded algebra by $\operatorname{gr}' Y(\mathfrak{gl}_N)$.

Proof. Since the Yangian is a flat deformation of the universal enveloping algebra $U(\mathfrak{gl}_N[x])$, it will be enough to verify the corresponding claim for this algebra.

It will be convenient to use another ascending filtration on $Y(\mathfrak{gl}_N)$ by setting $\deg' t_{ij}^{(r)} = r - 1$ for every $r \geqslant 1$.

Denote the corresponding graded algebra by $\operatorname{gr}' Y(\mathfrak{gl}_N)$.

Let $\widetilde{t}_{ij}^{(r)}$ be the image of $t_{ij}^{(r)}$ in the (r-1) component of $\operatorname{gr}' Y(\mathfrak{gl}_N)$.

Recalling the defining relations

$$\left[t_{ij}^{(r)}, t_{kl}^{(s)}\right] = \sum_{s=1}^{\min\{r, s\}} \left(t_{kj}^{(a-1)} t_{il}^{(r+s-a)} - t_{kj}^{(r+s-a)} t_{il}^{(a-1)}\right),$$

Recalling the defining relations

$$\left[t_{ij}^{(r)}, t_{kl}^{(s)}\right] = \sum_{a=1}^{\min\{r,s\}} \left(t_{kj}^{(a-1)} t_{il}^{(r+s-a)} - t_{kj}^{(r+s-a)} t_{il}^{(a-1)}\right),\,$$

we find that

$$\left[\widetilde{t}_{ij}^{(r)},\widetilde{t}_{kl}^{(s)}\right] = \delta_{kj}\widetilde{t}_{il}^{(r+s-1)} - \delta_{il}\widetilde{t}_{kj}^{(r+s-1)}.$$

Recalling the defining relations

$$\left[t_{ij}^{(r)}, t_{kl}^{(s)}\right] = \sum_{a=1}^{\min\{r,s\}} \left(t_{kj}^{(a-1)} t_{il}^{(r+s-a)} - t_{kj}^{(r+s-a)} t_{il}^{(a-1)}\right),\,$$

we find that

$$\left[\widetilde{t}_{ij}^{(r)},\widetilde{t}_{kl}^{(s)}\right] = \delta_{kj}\widetilde{t}_{il}^{(r+s-1)} - \delta_{il}\widetilde{t}_{kj}^{(r+s-1)}.$$

Hence, the mapping

$$U(\mathfrak{gl}_N[x]) \to \operatorname{gr}' Y(\mathfrak{gl}_N), \qquad E_{ij} x^{r-1} \mapsto \widetilde{t}_{ij}^{(r)}$$

is an isomorphism.

$$\operatorname{qdet} T(u) = \sum_{p \in \mathfrak{S}_N} \operatorname{sgn} p \cdot t_{p(1) \mid 1}(u) \dots t_{p(N) \mid N}(u - N + 1),$$

$$\operatorname{qdet} T(u) = \sum_{p \in \mathfrak{S}_N} \operatorname{sgn} p \cdot t_{p(1) 1}(u) \dots t_{p(N) N}(u - N + 1),$$

we derive that

$$d_r = t_{11}^{(r)} + \cdots + t_{NN}^{(r)} + \text{terms of smaller degree.}$$

4

$$\operatorname{qdet} T(u) = \sum_{p \in \mathfrak{S}_N} \operatorname{sgn} p \cdot t_{p(1) 1}(u) \dots t_{p(N) N}(u - N + 1),$$

we derive that

$$d_r = t_{11}^{(r)} + \cdots + t_{NN}^{(r)} + \text{terms of smaller degree.}$$

Hence, the image of d_r in the (r-1)-th component of $\operatorname{gr}' \operatorname{Y}(\mathfrak{gl}_N)$ can be identified with Ix^{r-1} where $I=E_{11}+\cdots+E_{NN}$.

4

$$\operatorname{qdet} T(u) = \sum_{p \in \mathfrak{S}_N} \operatorname{sgn} p \cdot t_{p(1) 1}(u) \dots t_{p(N) N}(u - N + 1),$$

we derive that

$$d_r = t_{11}^{(r)} + \cdots + t_{NN}^{(r)} + \text{terms of smaller degree.}$$

Hence, the image of d_r in the (r-1)-th component of $\operatorname{gr}' Y(\mathfrak{gl}_N)$ can be identified with Ix^{r-1} where $I=E_{11}+\cdots+E_{NN}$.

However, the elements Ix^{r-1} are algebraically independent generators of the center of $U(\mathfrak{gl}_N[x])$.

4