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Key points from the last lecture.

» Yangian Y(gly) is the associative algebra over C with

generators tfj), l(f),... wherei,j=1,...,N, and the

defining relations

min{r,s}
01— (e ),
a=1

0
where tfj ) = dij.



» Equivalently,

(=) [15(w), ta(v)] = tij(u) ta(v) — 15(v) tu(u).
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» Equivalently,
(u —v) [t5(u), ta(v)] = tig(u) ta(v) — 15(v) tu(u).
where

1) = 8 a5 4170 4 € V(g [

» Also, the defining relations take the form of RTT-relation

R(u—v)Ti(u) To(v) = To(v) T\ (u) R(u — v).



» We have the evaluation homomorphism

ev:Y(aly) = Ugly),  t;(u) = 6+ Eju™",
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» and the embedding

1: U(gly) <= Y(gly), Ej— l‘i(jl).



» We have the evaluation homomorphism

ev: Y(gly) = U(gly), tij(u) v 6 + Eju™ ",

» and the embedding

v U(aly) = Y(aly),  Eyres ity

» In particular,

[E,'j, l‘k[(u)] = 5kj t,-;(u) — 51’1 tkj(l/t).
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» We have the automorphisms
T(u) = f(u) T(u),

T(u) — T(u+c),

T(u) — BT(u)B™",

Remark. (u+c¢) " =u"—rcu "' 4+....

» and anti-automorphisms
oy : T(u) — T(—u),
t:T(u) — T'(u),

S:T(u)— T (u).



» The Poincaré—Birkhoff-Witt theorem holds:



» The Poincaré—Birkhoff-Witt theorem holds:

Given an arbitrary linear order on the set of generators tfj’),
any element of the algebra Y(gly) can be uniquely written
as a linear combination of ordered monomials in these

generators.



» The Poincaré—Birkhoff-Witt theorem holds:

Given an arbitrary linear order on the set of generators tfj’),
any element of the algebra Y(gly) can be uniquely written
as a linear combination of ordered monomials in these

generators.
» We noted in the proof that the associated graded algebra
grY(gly) is the algebra of polynomials in infinitely many

variables fl.](.r).
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> A Hopf algebra is a unital algebra A equipped with a

coproduct A, an antipode S and a counit ¢.

Since A : A — A ® A is a homomorphism, the tensor product of
two A-modules V and W is again an A-module with the action
defined via A.

For any a € A we have

a-(veaw)=A(a)(vew)
= (Za(l) X a(2))(v® W) = Za(l)v ®a(2)w.

foranyve Vandwe W.
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Example. If V.and W are representations of a Lie algebra g,

then V ® W is also a representation with the action

Xvow) =Xveow+veXw, Xeg.



Example. If V.and W are representations of a Lie algebra g,

then V ® W is also a representation with the action

Xvow) =Xveow+veXw, Xeg.

In fact, U(g) is a Hopf algebra with the coproduct
A X XR1+1®X, X € g,

the antipode S : X — —X and the counite : X — 0.
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Theorem. The Yangian Y(gly) is a Hopf algebra with coproduct

N
A ti(u 0—>Zt,k ) @ tyi(u
=1

the antipode

S:T(u) — T '(u),

and the counite : T(u) — 1.
Proof. We will verify the main axiom that

A Y(gly) — Y(gly) ® Y(gly)

is an algebra homomorphism.
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The definition of A can be written in a matrix form,

A T(u) = Ty (u) Ty (u),

by extending it to the map

A :EndCY ® Y(gly) = EndC" @ Y(gly) ® Y(gly),



The definition of A can be written in a matrix form,

A T(u) = Ty (u) Ty (u),

by extending it to the map

A :EndCY ® Y(gly) = EndC" @ Y(gly) ® Y(gly),

with the notation

N
W)=Y e;@t(u) @1 and Tiy(u Ze,]®1®t,]

ij=1 ij=1



We need to show that A(7'(u)) satisfies the RTT relation

R(u —v) Typ1) () Ty (u) Topy (v) Topy (v)

= To(v) Tapy(v) Thpap () Thpgy () R(u — v)



We need to show that A(7'(u)) satisfies the RTT relation

R(u —v) Typ1) () Ty (u) Topy (v) Topy (v)
= To(v) Tapy(v) Thpap () Thpgy () R(u — v)

in the algebra

EndC" @ End C" @ Y(gly) ® Y(gly).



We need to show that A(7'(u)) satisfies the RTT relation
R(u —v) Typ1) () Ty (u) Topy (v) Topy (v)
= To(v) Tapy(v) Thpap () Thpgy () R(u — v)
in the algebra
EndC" @ End C" @ Y(gly) ® Y(gly).

This follows by the RTT relation for T(u) and by the observation
that the elements Ty (1) and T,(;;(v) commute, as well as the

elements T;;; () and Ty (v). O



Classical limit
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Classical limit

Introduce new generators of Y(gly) by setting

’tvl](”) — hr—l t(’) r> 1’

ij )

where h is a nonzero complex number.



Classical limit

Introduce new generators of Y(gly) by setting

()_hr 1 (r)

l]’ r>17

where h is a nonzero complex number.

The defining relations of the algebra Y, (gly) take the form

r) ~ r4s—1 r4s—1
[ lE )’tk(l )] = 5/{] 1( ) 511 k(J )

min{r,s}

+h Z (tk] ir+§ a) tk(JrJrs a) tigafl)).



Note that Yo (gly) = U(gly[x]) via the identification

~(r) r—1
tij — E,-jx .
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Note that Yo (gly) = U(gly[x]) via the identification

ZJ(F) — E,’j XL
So the Yangian is a flat deformation of the algebra U(gly/[x]).

For the coproduct we have

N r—1
0 70 7 70) o F(r=s)
At = @1+101; +h§ E Ly’ @ .
k=1 s=1



Note that Yo (gly) = U(gly[x]) via the identification

~(r) r—1
tij — E,-jx .

So the Yangian is a flat deformation of the algebra U(gly/[x]).

For the coproduct we have
(1~ 0 4 NS 7 )
Ao elv1en) +h Y Y B et
k=1 s=1
Hence the Yangian is a deformation of U(gly[x])

in the class of Hopf algebras.



Let A’ be the opposite coproduct on Y(gly),

N
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Let A’ be the opposite coproduct on Y(gly),

N
tlj ’_> Z tkj ® tlk
k=1

In the algebra Y;(gly) we have

For 1 = 0 this coincides with the image §(7\) = 6 (E;x~") of

the cocommutator 6 on gly|[x].

- ij Al ~ ~(r—s Al ~(s ~(r—s
; =SSN W ery™ -3 N i e



The cocommutator is the map

§ = glylx] = glylx] ® gly[x] = (gly ® gly)[x,y],



The cocommutator is the map

§ = glylx] = glylx] ® gly[x] = (gly ® gly)[x,y],

defined by

524 s [Z@l,C}x’—{—[l@Z,C]y”
x—y




The cocommutator is the map

§ = glylx] = glylx] ® gly[x] = (gly ® gly)[x,y],

defined by
Zo1,Clx +[1®ZCly
(5:Zxr'—>[ © ]x [ ]y’
=y
where Z € gl and
N
C:ZE’J®EJ‘

ij=1



The cocommutator is the map

§ = glylx] = glylx] ® gly[x] = (gly ® gly)[x,y],

defined by
ZR1,ClxX +|1Z,C|y
5.z ZOLCIE 4] .
=y
where Z € gl and
N
C:ZElj@Ejl

ij=1

Remark. This is the starting point to define the Yangian Y(a)

associated with a simple Lie algebra a.



Quantum determinant
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Quantum determinant

Direct definition. The quantum determinant of the matrix

tll(u)

1 (u)

_tNl (u)

tlz(u)

l‘zz(u)

N2 (u)

th(u)

tZN(u)

Z‘NN(M)_



Quantum determinant

Direct definition. The quantum determinant of the matrix

ﬁl(u) tlz(u) ... th(u)
T(u) _ 1 (Lt) l‘zz(u) . tZN(u)
_nv1(u) va(u) .. Uwv(u)_

is defined as the series

qdet T(u) = Z sgnp -ty (u) -ty — N +1).

peSy



Exercise. (1) Show that for N = 2 we have

tll(u) l‘zz(u — 1) — l‘zl(u) l‘lz(u — 1)

qdet T'(u)

t(u) i (u—1) —tip(u) oy (u— 1)

t11(u — 1) lzz(u) — l]z(u — 1) t21(u)

lzz(u — 1)[11(1/!) — 121(1/! — 1)t12(14).

16



Exercise. (1) Show that for N = 2 we have

qdet T(u) = t11(u) 2o (tt — 1) — to1 (1) 112 (u — 1)
=tn(u)ti(u—1)—t1p(u) tr1(u—1)
=ti(u—1)tn(u) — tio(u— 1) 121 (u)

=tn(u—1)t11(u) —t21(u— 1) 112(u)

(2) Prove that the coefficients of the series qdet 7T(u) belong to

the center of the Yangian Y(gl,).



R-matrix construction of qdet T'(u)



R-matrix construction of qdet T'(u)
For any positive integer m consider the algebra
(EndCM)®™ @ Y(gly).

Forany a € {1,...,m} denote by T,(u) the matrix T'(«) which
corresponds to the a-th copy of the algebra End C" in the

tensor product algebra.



R-matrix construction of qdet T'(u)
For any positive integer m consider the algebra
(EndCM)®™ @ Y(gly).

Forany a € {1,...,m} denote by T,(u) the matrix T'(«) which
corresponds to the a-th copy of the algebra End C" in the
tensor product algebra. That is, 7,(«) is a formal power series

in u~! given by

N
To(u) =Y 1%V @ e @ 19079 @ 1(u),
ij=1

where 1 is the identity matrix.



N
C = Z Cijki €ij X ey € End CV ® End(CN,
i =1

then for any two indices a,b € {1,...,m} such that a < b, define
the element C,;, of the algebra (End CV)®™ by



N
C = Z Cijki €ij X ey € End CV ® End(CN,
i =1

then for any two indices a,b € {1,...,m} such that a < b, define

the element C,;, of the algebra (End CV)®™ by

N
Cup = Z Cii 1960-1) g ¢ @ 190=0-1) @ ¢y @ 18(m=),
i kl=1

The tensor factors e; and ej; belong to the a-th and b-th copies

of End C", respectively.



For any m > 2 introduce the rational function R(u;, . ..

values in the tensor product algebra (End CV)®™ by

, Uy ) With

R(ui, ... ;um) = (Rn—1,m) (Rm—2,mRm—2m—1) - - (Rim ... R12),



For any m > 2 introduce the rational function R(uy, . .., u,,) with

values in the tensor product algebra (End CV)®™ by

R(”lv cee 7um) - (Rm—l,m)(Rm—Z,mRm—Z,m—l) cee (le .. -R12)7
where uy, ..., u,, are independent complex variables and we
abbreviate

Pab

Raup = Rab(ua - ub) =1-

Ug — Up



Using the Yang—Baxter equation, we also get

R(M], ce 7um) = (R12 o -le) cee (Rm—Z,m—lRm—Z,m)(Rm—l,m)

P,
-2
Ug — Up

20



Using the Yang—Baxter equation, we also get

R(M], cee 7um) = (R12 .. -le) cee (Rm—Z,m—lRm—Z,m)(Rm—l,m)

P,
=110 .20)
Ug — Up

with the lexicographical order of the pairs (a, b).

20



Using the Yang—Baxter equation, we also get

R(M], cee 7um) = (R12 .. -le) cee (Rm—Z,m—lRm—Z,m)(Rm—l,m)

P,
=110 .20)
Ug — Up

with the lexicographical order of the pairs (a, D).

We used the observation that R, and R.;, commute, if the

indices a, b, ¢, d are all distinct.

20



Applying the RTT relation repeatedly, we come

to the fundamental relation for the Yangian Y(gly),

R(uy, ... um) Ty(ur) ... To(tm) = Ton(tt) - .. Ty (u1) R(uy, . ..

’”m)-

21



Applying the RTT relation repeatedly, we come

to the fundamental relation for the Yangian Y(gly),

R(uy, ... um) Ty(ur) ... To(tm) = Ton(tt) - .. Ty (u1) R(uy, . ..

For m = 3 we have R(ul, us, u3) = Ry3 R13 Ry».
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Applying the RTT relation repeatedly, we come

to the fundamental relation for the Yangian Y(gly),

R(up, ... um) Ty(u1) ... Toy(t) = Ton(tty) - .. Ty (uy) R(uy,y ..y thy).

For m = 3 we have R(ul, us, u3) = R»3 Ri3 Ry». Hence, omlttlng

the arguments, we get

R(uy,up,uz) Ty To T3 = Ri3R13R12 T Tr T
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Applying the RTT relation repeatedly, we come

to the fundamental relation for the Yangian Y(gly),

R(up, ... um) Ty(u1) ... Toy(t) = Ton(tty) - .. Ty (uy) R(uy,y ..y thy).

For m = 3 we have R(ul, us, u3) = R»3 Ri3 Ry». Hence, omlttlng

the arguments, we get
R(ui,up,u3) T1 o T3 = Ri3Ri3R12 T1 > T3
which equals

Ry Ri3Th TiRpT3 =Ry ThRi3T1 T5 R

21



Applying the RTT relation repeatedly, we come

to the fundamental relation for the Yangian Y(gly),

R(up, ... um) Ty(u1) ... Toy(t) = Ton(tty) - .. Ty (uy) R(uy,y ..y thy).

For m = 3 we have R(ul, us, u3) = R»3 Ri3 Ry». Hence, omlttlng

the arguments, we get
R(ui,up,u3) T1 o T3 = Ri3Ri3R12 T1 > T3
which equals

Ry Ri3Th TiRpT3 =Ry ThRi3T1 T5 R

=Ry3To T3 T1 Ri3R12 = T3 T, T1 Ry3 Ri3 Rys.

21



Lemma. We have

R(u,u —

l,...,u—m+1)

Am;

22



Lemma. We have
Ruyu—1,...;,u—m+1) =A,,
the image of the anti-symmetrizer

ay = Z sgnp -p € C[6,,].
pPEGH
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Lemma. We have
Ruyu—1,...;,u—m+1) =A,,
the image of the anti-symmetrizer

ay = Z sgnp -p € C[6,,].
pPEGH

Equivalently,

An = H (1 B bP—aba)

a<b

22



Lemma. We have
Ruyu—1,...;,u—m+1) =A,,
the image of the anti-symmetrizer

ay = Z sgnp -p € C[6,,].
pPEGH

Equivalently,

An =11 (1 B bp—aba)'

a<b

Remark. This is a particular case of the fusion procedure

going back to [A. Jucys 1966].



Proof. We use induction on m. Case m = 2 is obvious for

Ay = Rlz(l) =1-— Pys.

23



Proof. We use induction on m. Case m = 2 is obvious for
Ay =Rpp(1)=1-Pp.
By the induction hypothesis we have for m > 2
Ruyu—1,...,u—m+1)=(Ri2...Rin)A,

m—1>

where A’

m—1

denotes the anti-symmetrizer over {2,...,m}.

23



Calculate

(Riz...Rim)A

! _
m—1 —

(1 —Plz)(l

24



Calculate

Pi3
(Riz - Rin) Ay = (1= Pr2) (1= 22 ..

Expand the product and write

!
P],‘l Pliz .. 'PlikAmfl = PlikPikil ..

.P

ikik—1

!
m—1

24



Calculate

Pi3
(Riz - Rin) Ay = (1= Pr2) (1= 22 ..

Expand the product and write

!
P],‘l Pliz .. 'PlikAmfl = PlikPikil ..

which equals
k—1
(=) Py, A

m—1-

.P

ikik—1

!
m—1

24



Therefore,

(RIZ---le) :11—1 = (1 —ay Py —--- _amplm)A;n—l

25



Therefore,
(RIZ- . .R]m) :11—1 = (1 —apPpp—- — O‘mplm)A;n—l

with

25



Therefore,
(RIZ- . .le) :11—1 = (1 —apPpp—- — O‘mplm)A;n—l

with

Finally, note that

(1=Pia—- = Pim)A,_y = An.

25



Hence, by the Lemma and the fundamental relation

R(uy, ... um) Ty(ur) ... To(tm) = Ton(tt) - .. Ty (uy) R(uy, . ..

7”m)7

26



Hence, by the Lemma and the fundamental relation
R(up, ... um) Ty(ur) ... To(tm) = Ton(tt) - .. Ty (uy) R(uy,y . ..y thy),
we have

ApTi(u) ... Tyu—m+1)=Tu(u—m+1)...Ti(u)Ap.

26



Hence, by the Lemma and the fundamental relation
R(up, ... um) Ty(ur) ... To(tm) = Ton(tt) - .. Ty (uy) R(uy,y . ..y thy),
we have

ApTi(u) ... Tyu—m+1)=Tu(u—m+1)...Ti(u)Ap.

Observe that if m = N, then the operator Ay on (CV)®N has a

one-dimensional image.

26



We have

unless (i, ...

AN(eil X ... ®€,‘N) =0

,iy) is a permutation of (1,...,N).

27



We have

AN(eil X ... ®€,‘N) =0

unless (i, ..., iy) is a permutation of (1,...,N).
Moreover, in that case,

An(eq1) @ ... ®eqvy)) =sgnq - &,

where

27



We have

AN(eil X ... ®€,‘N) =0

unless (i, ..., iy) is a permutation of (1,...,N).
Moreover, in that case,

An(eq1) @ ... ®eqvy)) =sgnq - &,

where

&= Z SENT - er() @ ... K erNy-

TEGN

27



Since A% = N Ay,

28



Since A% = N Ay, both sides of the relation
ANTl(u)...TN(u—N—l— 1) = TN(u—N+ 1)T1<M)AN

are equal to Ay d(u) for a series d(u) with coefficients in Y(gly),

28



Since A% = N Ay, both sides of the relation
ANTl(u) .. .TN(u — N+ 1) = TN(u — N+ 1) . T1<M)AN
are equal to Ay d(u) for a series d(u) with coefficients in Y(gly),

duw)=1+dyu ' +dyu™>+....

28



Since A% = N Ay, both sides of the relation
ANTl(u) .. .TN(u — N+ 1) = TN(u — N+ 1) . Tl(u)AN
are equal to Ay d(u) for a series d(u) with coefficients in Y(gly),

duw)=1+dyu ' +dyu™>+....

Definition. The series d(u) is called the quantum determinant of

the matrix 7(u) and denoted qdet 7'(u).

28



Proposition. For any permutation ¢ € Gy we have
qdetT(u) = sgngq Z sgnp - tp(l)q(l)(”) - Ip(N) g(N) (u—N+1)
PEGN

= sgngq Z sgnp -ty p(1y (U = N+ 1) .ty pvy (1)
peGy

29



Proposition. For any permutation ¢ € Gy we have

qdetT(u) = sgngq Z sgnp - tp(l)q(l)(”) - Ip(N) g(N) (u—N+1)
PEGN

= sgngq Z sgnp -ty p(1y (U = N+ 1) .ty pvy (1)

peGy

In particular,
qdetT(u) = Z sgnp -ty (u) . tywyn(w—N+1)
pEGN

= Z sgnp -ty py(u =N+ 1) ..ty ) (1)
pESN

29



Proof. By definition,

An Tl(u) ... TN(M —N+ 1) :AquetT(u).

30



Proof. By definition,

An Tl(u) ... TN(M —N+ 1) = Ay qdet T(I/l)

Apply both sides to the basis vector e;(;) @ ... @ ;-
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Proof. By definition,

An Tl(u) ... TN(M —N+ 1) = Ay qdet T(I/l)

Apply both sides to the basis vector e;(;) @ ... @ ;-

The right hand side yields sgnq - qdet T'(u) .

30



Proof. By definition,

AvTi(u)...Ty(u — N + 1) = Ay qdet T'(u).
Apply both sides to the basis vector e;(;) @ ... @ ;-
The right hand side yields sgnq - qdet T'(u) .
For the left hand side we get

AN Z Tiy q(1) iy g(N )(u—N+1)(eil ®...Qe),

T

proving the first formula.

30



Assuming that m < N is arbitrary, define

the m x m quantum minors ¢! ;" (u) so that each side of
AnTi(u) .. Ty(u—m+1)=Tp(u—m+1)...T(u)Ap

equals
Z ealbl ® eambW ® t bm( )

summed over the indices a;,b; € {1,...,N}.

31



Skew-symmetry properties: for any p € &,, we have

(1) Ap(m o
Loty () = sgnp - 137750 (u)

32



Skew-symmetry properties: for any p € &,, we have

(1) Ap(m o
Loty () = sgnp - 137750 (u)

and

aj...dm

ey oy (1) = SEOP 1 (1),

- Um

32



Skew-symmetry properties: for any p € &,, we have

(1) Ap(m o
Loty () = sgnp - 137750 (u)

and

ap...dm o a1 an
tbP(l)"'bp(m)(u) = sgnp tb]...bm(u)'

As with the quantum determinant, we have

tyl o (u) = Z SENP - oy (1) -y (0 — M+ 1)
pEGH

= Z sgnp - layp, (U —m+1) .. ta,p,, ().

pEGm

32



Proposition. The images of quantum minors under the

coproduct are given by

Afrgimu) = > 8-S w) @15 (u),

c1<--<Cm

summed over all subsets of indices {ci,...,cn} from {1,...
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Proposition. The images of quantum minors under the

coproduct are given by

Afrgimu) = > 8-S w) @15 (u),

c1<--<Cm

summed over all subsets of indices {ci,...,cn} from {1,...

Proof. Apply A to the product

AnTy(u)...Tp(u—m+1)

N

33



Proposition. The images of quantum minors under the

coproduct are given by

Alrgimu) = > td o) @ty g (u),

c1<--<Cm

summed over all subsets of indices {ci,...,cn} from{1,...,

Proof. Apply A to the product

AnTy(u)...Tp(u—m+1)

to get the element of the algebra (End CV)®™ @ Y (gly)[[u

A Ty )Ty () - Ty (e = m + )Ty (u —m4-1).

71]]®2:

N}

33



Write A,, = -1, A2, and starting from the expression

A Tlm(u) . ..Tmm(u—m—l— 1)T1[2](M) ...Tm[z](u—m—i— 1),

34



Write A,, = -1, A2, and starting from the expression
A Tlm(u) . Tm[1]<u —m—+ 1) T][z](u) R Tm[z](u —m—+ l),
apply the fundamental relation to get

1
%Am Tm[l}(” —m+ 1) ce Tl[l}(u)Am Tl[l](u) s Tm[Z](u —m+ 1)
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Write A,, = -1, A2, and starting from the expression
A Tlm(u) cen Tm[1]<u —m—+ 1) T][z](u) - Tm[z](u —m—+ l),
apply the fundamental relation to get
1

%Am Tm[l}(” —m+ 1) ce Tl[l}(u)Am Tl[l](u) s Tm[Z](u —m+ 1)

which coincides with

1
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Write A,, = -1, A2, and starting from the expression
A Tlm(u) cen Tm[1]<u —m—+ 1) T][z](u) - Tm[z](u —m—+ l),
apply the fundamental relation to get
1

%Am Tm[l}(” —m+ 1) ce T][l}(u)Am Tl[l](u) s Tm[Z](u —m+ 1)

which coincides with

1
%Am Tl[l](”) ces Tmm(u —m+ I)Am Tlm(u) cee Tm[z](u —m+ 1).

Taking the matrix elements gives the formula. O
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Corollary. We have

A : qdetT(u) — qdet T(u) @ qdet T (u).
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Corollary. We have

A :qdetT(u) — qdet T(u) ® qdet T'(u).

Proof. Since
qdet T'(u) = 117 N (u),

this follows from the proposition.
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Center of Y(gly)
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Center of Y(gly)

Proposition. We have the relations
(=) [g(), 1550 (v)]
= Zta,-l(u) IZ: pdm(v) — ZIZ:...Z..(.Ibm(V) tp, (1)
i=1 j

where the indices k and [ in the quantum minors replace «; and

b;, respectively.
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Proof. The fundamental relation yields

Ru,viv—1,....v—m+1)To(u) T1(v) ... Tn(v —m+1)

=Tn(v—m+1)...Ti(v) To(u) R(u,v,v —1,...,v—m+1).
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=Tn(v—m+1)...Ti(v) To(u) R(u,v,v —1,...,v—m+1).
We have

Ru,v,v—1,....v—m+1) =A, Rom(u—v+m—1)...Ro1(u—v).
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Proof. The fundamental relation yields

R(uyvyv—1,....v—m+1)To(u) Ty (v) ... Tu(v —m+1)
=Tu(v—m+1)...Ty(v) To(u) R(u,v,v — 1,....,v —m+1).
We have
Ru,v,v—1,....v—m+1) =A, Rom(u—v+m—1)...Ro1(u—v).
The same argument as for the proof of the fusion formula gives

1
Ru,v,iv—1,....v—m+1) =4, (1—7(P01—|—---—|—P0m)>.
u—v
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Proof. The fundamental relation yields
Ru,viv—1,....v—m+1)To(u) T1(v) ... Tn(v —m+1)
=Tn(v—m+1)...Ti(v) To(u) R(u,v,v —1,...,v—m+1).

We have

Ru,v,v—1,....v—m+1) =A, Rom(u—v+m—1)...Ro1(u—v).
The same argument as for the proof of the fusion formula gives

1

Ruv,v—1,....v—m+1)=A, (1 - m(P01+---+130m)).

Apply both sides to the vector ¢; ® e, ® ... ® e, and compare

the coefficients of the vector ¢y ® e, ® ... ® ey, O
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Corollary. The coefficients d;, d», ... of the series
qdetT(u) =1+dyu ' +dou=>+ ...

belong to the center ZY(gly) of the algebra Y(gly).
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Corollary. The coefficients d;, d», ... of the series
qdetT(u) =1+dyu ' +dou=>+ ...
belong to the center ZY(gly) of the algebra Y(gly).

Proof. The proposition gives

(=) [1g(w), 17NV = g (w) 0770 (0) = 177N (0) ()
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Corollary. The coefficients d;, d», ... of the series
qdetT(u) =1+dyu ' +dou=>+ ...
belong to the center ZY(gly) of the algebra Y(gly).
Proof. The proposition gives
(u =) [1(u), 1320 W)] = 1g(0) 1775 0) = 1128 (V) 110 ()

and so
[1(u), qdet T(v)] =0,

as we wanted.
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Theorem. The coefficients d;, d,, ... are algebraically

independent and generate the center ZY (gly).
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Proof. Since the Yangian is a flat deformation of the universal
enveloping algebra U(gly[x]), it will be enough to verify the

corresponding claim for this algebra.
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Theorem. The coefficients d;, d,, ... are algebraically

independent and generate the center ZY (gly).

Proof. Since the Yangian is a flat deformation of the universal
enveloping algebra U(gly[x]), it will be enough to verify the

corresponding claim for this algebra.

It will be convenient to use another ascending filtration on

Y(gly) by setting deg’ti(j’) =r—1forevery r> 1.
Denote the corresponding graded algebra by gr’ Y(gly)-
Let?l.j(.’) be the image of ti(jr) in the (r — 1) component of

' Y(gly)-

39



Recalling the defining relations

min{r,s}

7= 3 (i

a=1

(r+s—a) (a—1)
— Iy Ly

)
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Recalling the defining relations

min{r,s}

) = 30 (T =),

a=1

we find that

~(r) ~(s r+s—1 r+s—1
[tij(' )’tk(l)] = Oyt 15 = it kg )
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Recalling the defining relations

min{r,s}
=S (g o),
a=1

we find that

~(r) ~(s r+s—1 r+s—1
[tij(' )7tlc(l)] = Oyt 15 = it kg )

Hence, the mapping
U(gly[x]) — gr' Y(gly), Ejx"! 1"
is an isomorphism.

40



Using the formula

qdet T(u) = > sgnp -ty (1) - Ly (= N+ 1),
pEGy
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Using the formula

qdet T(u) = > sgnp -ty (1) - Ly (= N+ 1),
pEGy

we derive that
d, =1+ 44 + terms of smaller degree.

Hence, the image of d, in the (r — 1)-th component of gr’ Y(gly)

can be identified with 7x~! where I = E;; + - - - + Eny.

However, the elements 7x"~! are algebraically independent

generators of the center of U(gly[x]). O
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