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Key points from the last lecture.

» The Yangian Y(gly) is a Hopf algebra with coproduct

A t(u Hzl‘;k @ tj(u

the antipode
S: T(u) — T (u),

and the counite : T(u) — 1.



» The coefficients dy, d, ... of the quantum determinant

qdet T(u) = Z sgnp -1,y (u) -,y n(u—N+1)
pEGy



» The coefficients dy, d, ... of the quantum determinant

qdet T(u) = Z sgnp -1,y (u) -,y n(u—N+1)
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qdetT(u) =1 +dyu' +dou™>+ ...
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The coefficients d;, d,, . .. of the quantum determinant

pEGy

defined by

qdetT(u) =1 +dyu' +dyu=>+

are algebraically independent and generate the center
ZY (gly) of the Yangian Y(gly).

Under the coproduct we have

A : qdetT(u) — qdet T(u) @ qdet T'(u).
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Yangian for sly

Recall the automorphisms of Y(gly) defined by

pr = Tu) = f(u) T(w),

where

f) € 1+ u”'Cllu"]).

Definition. The Yangian for sly is the subalgebra Y (sly) of
Y (gly) which consists of the elements stable under all

automorphisms .
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Theorem. We have the isomorphism
Y(aly) = ZY(gly) ® Y(sly).
In particular, the center of Y(sly) is trivial.
Proof. There exists a unique formal power series
du) =1+diu" +dyu™ +--- € ZY(gly)[[u™"]]

which satisfies

d(u)d(u—1)...d(u—N+1) = qdet T(u).
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we have

pr:qdetT(u) — f(u)f(u—1)...f(u—N+1)qdet T(u).



Since

qdetT(u) = Z sgnp -1,y (u) .. oy —N+1),
pEGyN

we have

pr:qdetT(u) — f(u)f(u—1)...f(u—N+1)qdet T(u).

Hence,
py 2 d(u) = f(w) d(w).



Since

qdet T(u Z sgnp -, - yn( =N+ 1),
pEGyN

we have

pr:qdetT(u) — f(u)f(u—1)...f(u—N+1)qdet T(u).

Hence,
= d(u) > f () d(u).

This implies that all coefficients of the series

Tii(u) = d(u) ™" 1;(u)

belong to Y(sly).
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Now observe that 7;(u) = d(u) 7;(u). This implies that every
element of the Yangian Y(gly) can be presented as a

polynomial in dy,ds, ... with coefficients in Y(sly).

To show that such presentation is unique, suppose on the
contrary, that for some minimal positive integer n there exists a

nonzero polynomial B with the coefficients in Y(sly) such that

B(dy,...,dy) =0.
Act by the automorphism ., where f(u) = 1 4+ cu" and ¢ € C:

B(Zl,...,dn—i—c):o

for every ¢ € C, contradiction. O
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Corollary. The algebra Y(sly) is isomorphic to the quotient of

Y(gly) by the ideal generated by the elements d;,d,, ..., i.e.,

Y(sly) = Y(gly)/(adet T(u) = 1).

Proof. Let I be the ideal of Y(gly) generated by the coefficients

di,dy, ... of qdet T(M).

The theorem implies the decomposition

Y(gly) = 1@ Y(sly),

O

which proves the claim.
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Proposition. The subalgebra Y (sly) of Y(gly) is a Hopf algebra
whose coproduct, antipode and counit are obtained by

restricting those from Y (gly).
Proof. As we proved before,
A :qdetT(u) — qdet T(u) ® qdet T'(u).

Hence,
A d(u) — d(u) ® d(u).



Therefore,

A d(u) yi(u) -



Therefore,

A d(w) (u) > d(w) T () @ d(u) " g (u)
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This proves that the image of Y(sly) under the coproduct on
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This proves that the image of Y(sly) under the coproduct on

Y(gly) is contained in Y(sly) ® Y(sly).

The image of qdet T(«) under the antipode S is (qdet T'(u)) !,



Therefore,

A d(w) (u) > d(w) T () @ d(u) " g (u)

M= 11-

Zk(“) ®7kj(l/t).

,\N
Il
—

This proves that the image of Y(sly) under the coproduct on

Y(gly) is contained in Y(sly) ® Y(sly).

The image of qdet T(«) under the antipode S is (qdet T'(u)) !,
and so

S:d(u)" T(u) — d(u) T~ (u).
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Drinfeld presentation

Consider the Yangian Y(gl,) first.

Apply the Gauss decomposition to the matrix 7'(u),

tll(u) tlz(u) _ 1 0 hl(u) 0 1 e(u) '
Zz](l/t) lzz(u) f(u) 1 0 hz(u) 0 1



Drinfeld presentation

Consider the Yangian Y(gl,) first.

Apply the Gauss decomposition to the matrix 7'(u),

tll(l/t) tlz(u) _ 1 0 hl(u) 0 1 e(u) .
ZQ](M) lzz(u) f(u) 1 0 hz(u) 0 1

This reads



Conversely,

t1(u),

hy (u)

ti (u) " 1o (u),

e(u)

tor(u) tyy ()™,

[ (u)
hz(u)

t(u) — a1 (u) tll(u)_l t12(u).



Conversely,

hi(u) = 111 (w),

e(u) = 111 (u) ™" 112 (u),

flu) = 121 () 111 ()™,

ho(u) = 12 (u) — t21 (1) 111 () ™" 12 ().

Proposition. The coefficients of the series e(u), f(«) and
k(u) = hy(u)~"hy(u) belong to the subalgebra Y(sly) of Y(gl,)

and generate this subalgebra.
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Proof. It suffices to show that the coefficients of the series
e(u),f(u) and k(u) together with the coefficients of qdet 7'(u)
generate Y(gl,).

This is because every element y € Y(sl,) has a unique

presentation y = 1 ® y in the decomposition
Y(gl) = ZY(gl,) ® Y(sh).
We have the relation

qdet T'(u) = hy(u) ho(u —1).



Indeed,
By () ho(u—1) = 111 (1) (m(u—n—rzl(u—nm(u—n* tlg(u—l)>,
so that the relation follows from

m(u) 121(14 — 1) = 1‘21(14) m(u — 1).



Indeed,
By () ho(u—1) = 111 (1) (m(u—n—rzl(u—nm(u—n* m(u—n),
so that the relation follows from

tii(u) oy (u—1) =tor(u) t1(u—1).

Hence,
hy(u)hi(u—1)k(u—1) = qdetT(u).

This shows that the coefficients of the series & («) and hy(u)

can be expressed in terms of those of k(u) and qdet 7'(u). O
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e(u) = Z eru 1
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Introduce the coefficients of the series by

[ee]
e(u) = Z eru 1

r=0

flu) = Zfr Wl
r=0

and

o0
k(u) =1+ Zk, w L
r=0
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Theorem. The Yangian Y(sl,) is isomorphic to the algebra with
generators e,, f, and k, with r > 0 subject to the defining

relations

[kra ks] =0, [ervfs] = ki, [k(), er] = —2e,, [kvar] =2f,

[er—&-lves} - [era es—i—l] = —€rls — €56y,
[fr—i—l)f_;] - [fhf?-‘rl] :frfs +fsfr7
[kr+laes} - [kra eerl] = —kres — ek,

[kﬂ”l’ﬁ] - [khfSJrl] = krfs +f:vkr
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Proof. The first step is to derive the relations for the series e(u),
f(u) and k(u). They have the form

k(u), k(W] =0,  [e(u),f(v)] = k(ui - ;v{(v)7
and
le(u), e(v)] = <e<u>u— ev<v>)2
(). ()] = (f<“>u—_fv<v>)2
[k(u), e(v)] = {k(u)veu(bi)v— e(v)}7
(), f(v)] = — k(). 0) =10}

u—v



Proof. The first step is to derive the relations for the series e(u),
f(u) and k(u). They have the form

k(u), k(W] =0,  [e(u),f(v)] = k(ulz - iw
and
le(u), e(v)] = <e<u>u— ev<v>)2
(). £ ()] = (f<“>u—_fv<v>)2
[k(u), e(v)] = {k(u)veu(bi)v— e(v)}7
k(). f()] = — {"(“%f; w v—f(V)} |

where we used the notation {a, b} = ab + ba.
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Since

and
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[h1(u), i (v)] = [f11(u), 11 (v)] =0,



Since

qdet T(u) = hy(u) hy(u — 1)

and
[h1(u), i (v)] = [f11(u), 11 (v)] =0,

the coefficients of the series h; (1) and hy(u) pairwise commute.



Since
qdet T(u) = hy(u) hy(u — 1)

and
[h1(u), i (v)] = [f11(u), 11 (v)] =0,

the coefficients of the series h; (1) and hy(u) pairwise commute.

This proves
[k(u), k(v)] = 0.



Furthermore, by the defining relations,

[llz(u), l‘]z(v)] =

0,



Furthermore, by the defining relations,
[112(1/!), l‘]z(v)] = 0,
and

(u—v) [t“(u), tlz(v)} =11(u) ti2(v) — t11(v) 12 (u).



Furthermore, by the defining relations,
[112(1/!), l‘]z(v)] = 0,

and

(u—v) [t“(u), tlz(v)} =11(u) ti2(v) — t11(v) 12 (u).

Therefore,

(u—v) [tll(u)_l, tlz(v)]

= t“(u)_] 111(\/) l‘12(u) tu(u)_l — l‘lz(v) tll(u)_l.



Hence, by calculating

[e(u),e(v)] = [tll(u)fl tlz(u),tn(v)il 1‘12(\/)]



Hence, by calculating

[e(u),e(v)] = [tll(u)fl tlz(u),tn(v)il 1‘12(\/)]

we derive



Hence, by calculating

[e(u),e(v)] = [tll(u)fl tlz(u),tn(v)il 1‘12(\/)]

we derive

Use the observation that under the anti-automorphism

t:T(u) — T'(u) we have
tre(u) = fu),  flu) —e(w),  hi(u) = hi(u)

fori=1,2.



Proposition. Under the coproduct map A, we have

Ace(u) =1 e(u +Z ) e(u) ™ @ k(u) f(u+ 1),

A f(u) ®1+Z "k(u) @ f (),

HZ e(u+ 1) k(u) ®k(u)fu+1)".

20



Proposition. Under the coproduct map A, we have

A e(u) = 1@ e(u +Z )'e(u)™* ! @ k(u) f(u+1)",
A f(u) ®1+Z "k(u) @ f (),
HZ e(u+ 1) k(u) @ k(u) f(u+1)".

Proof. Recall that e(u) = t11(u) " 't12(u).

20



Proposition. Under the coproduct map A, we have

A e(u) = 1@ e(u +Z )'e(u)™* ! @ k(u) f(u+1)",
A f(u) ®1+Z "k(u) @ f (),
HZ e(u+ 1) k(u) @ k(u) f(u+1)".

Proof. Recall that e(u) = #;1(u) ~'#12(u). We have

A1 () () = (01 () @ 111 () + 12() @ 121 ()~

X (tll(l/t) X llz(u) + tlz(u) & tgz(u)).

20



Write

1 (u) @ty (u) + t12(u) @ t21(u)

= (@) @t () (1 + e(w) @ f(u— 1)),

21



Write

1 (u) @ty (u) + t12(u) @ t21(u)

= (@) @t () (1 + e(w) @ f(u— 1)),

where we used the relation

tll(u)_ltzl(u) = l‘zl(u — l)tll(u — 1)_1 :f(u — 1).

21



Write

1 (u) @ty (u) + t12(u) @ t21(u)

= (tu(u) ® tll(u)) (1 +e(u) @f(u— 1)),
where we used the relation
tll(u)_ltzl(u) = l‘zl(u — l)tll(u — 1)_1 :f(u — 1).

Hence,

Ace(u) = (1+e(w) @ flu—1)"

x (1@ e(u) + e(u) @ ti1(u) 't (u)).

21



We have

tii(u) "' to(u) = k(u) + f(u — 1) e(u)
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We have
tii(u) "' to(u) = k(u) + f(u — 1) e(u)

and so

Ace(u) s (1+e(w) @ f(u—1))"

X (1@ e(u) +e(u) @ flu—1)e(u) +e(u) @ k(u))

22



We have
tii(u) "' to(u) = k(u) + f(u — 1) e(u)
and so
Ace(u)— (1+e(u) ®f(u— 1))7l
X (1@ e(u) +e(u) @ flu—1)e(u) +e(u) @ k(u))

which equals

+Z V)™ @ f(u— 1) k(w).

22



We have
tii(u) "' to(u) = k(u) + f(u — 1) e(u)

and so

Ace(u)— (1+e(u) ®f(u— 1))7l
X (1@ e(u) +e(u) @ flu—1)e(u) +e(u) @ k(u))
which equals
)+ Z Ye(u)™ @ flu— 1) k().

Finally, note that

Slu—1)k(u) =k(u)f(u+1).

22
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Theorem. The Yangian Y(sl,) is isomorphic to the Hopf algebra
with six generators e, f, h,J(e),J(f),J(h) subject to the defining
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J-presentation

Theorem. The Yangian Y(sl,) is isomorphic to the Hopf algebra
with six generators e, f, h,J(e),J(f),J(h) subject to the defining

relations

[evf] =h, [hve} = 2e, [hvf] = —2f,
e, J)] = J([x,y]),  J(ax) = aJ(x),

where x,y € {e,f,h},a € C, and

() 7] ()] = (I(e)f = eI (f)) h.

23



The Hopf algebra structure is defined by

1
A: x—=x®@1+1®x, J(x)»—>](x)®1—|—1®J(x)+§[x®1,C],
S: xm— —x, J(x) = —J(x) +x,

e x—=0, J(x) — 0,

24



The Hopf algebra structure is defined by

A: x—x1+1®x,
S: x+— —x,

e: x—0,

where

Jx)=»Jx)@1+1J(x)+ %[x@ 1,C],
J(x) = =J(x) + x,

J(x) — 0,

1
C:e®f—i—f®e+§h®h.

24



Proof. Verify that the following map is @ homomorphism:
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Proof. Verify that the following map is @ homomorphism:

e — fo, f = eo, h = ho,
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Proof. Verify that the following map is @ homomorphism:

e — fo, f = eo, h = ho,

and :
J(e) = fi — Z(foho + ho fo),

1
J(f) — e — Z(eOhO +h0€0),

1
J(h) = hi + E(eofo +foeo — ).

25



Proof. Verify that the following map is @ homomorphism:

e — fo, f = eo, h = ho,

and :
J(e) = fi — Z(foho + ho fo),

1
J(f) — e — Z(eOhO +h0€0),
1
J(h) = hi + E(eofo + fo eo — hg).

To prove the kernel is trivial, use the associated graded

algebras grY(sly) = U(sl[x]).

25



Drinfeld presentation of Y(gly)
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Drinfeld presentation of Y(gly)

Apply the Gauss decomposition to the matrix

-tu(u) tlz(u)

1 (u) l‘gz(u)

_tNl(u) th(u)

th(Lt)_

IZN(M)

tNN(M)

26



Drinfeld presentation of Y(gly)

Apply the Gauss decomposition to the matrix

tu(u) tlz(u) ... th(u)
T(u) _ 1 (u) l‘gz(u) . IZN(M) ’
_tNl (u) th(u) o ZNN(M)_

to write

for lower-triangular, diagonal and upper-triangular matrices.

26



These are uniquely determined matrices of the form

1 0 ... 0
Hiw) 1 .0

() faa(u) ... 1



These are uniquely determined matrices of the form

1 0
fi(w) 1

i () fva(u)

1 en(u)
0 1
0 0

0
0

ein(u)

€2N(u)

27



These are uniquely determined matrices of the form

and H(u) = diag [h;(u), ..., hy(u)].

1
fo1(u)

1 en(u)
0 1
0 0

0
1

vt (u) vz (u)

0
0

ein(u)

€2N(u)

27



Set
ei(u) = ejiv1(u)

fori=1,...,N—1.

and

fi(u) = fiy1i(u)

28



Set
ei(u) =eiipr1(u) and  fi(u) = fir1i(u)

fori=1,...,N—1.

Introduce the coefficients of the series by

[e.9]

Ze(r) - and  fi(u) = Zfl-(r)u_’.

r=1

28



Set
ei(u) = ejiy1(u) and  fi(u) = fiy1i(u)
fori=1,...,N—1.

Introduce the coefficients of the series by

[e.9]

Ze(r) - and  fi(u) = Zfl-(r)u_’.

r=1

Also set

w=Yelu and )=
r=2 r=2

28



Introduce the root data associated with the Lie algebra sly.
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Introduce the root data associated with the Lie algebra sly.

Letey,..

.,y be an orthonormal basis of an Euclidean vector

space with the inner product ( , ).
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Introduce the root data associated with the Lie algebra sly.

Letey,..., ey be an orthonormal basis of an Euclidean vector

space with the inner product ( , ).

The simple roots are the vectors ay, ..., ay_1,

Qj =& —Ejt1-

29



Introduce the root data associated with the Lie algebra sly.

Let ey, ..., ey be an orthonormal basis of an Euclidean vector

space with the inner product ( , ).

The simple roots are the vectors ay, ..., ay_1,

O =& —Eiq1-

The Cartan matrix C = [c;] is defined by ¢;; = (i, o).

29



Theorem. The Yangian Y(gly) is generated by the coefficients
of the series h;(u) fori =1,...,N, and e;(u), f;(u) for

i=1,...,N — 1, subject only to the following relations:
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Theorem. The Yangian Y(gly) is generated by the coefficients
of the series h;(u) fori =1,...,N, and e;(u), f;(u) for

i=1,...,N — 1, subject only to the following relations:

[ei(u),ﬁ(v)] = b hi(”)_th—l(”) - hi(V)_ll/li+1 (v)

u—v
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Theorem. The Yangian Y(gly) is generated by the coefficients
of the series h;(u) fori =1,...,N, and e;(u), f;(u) for

i=1,...,N — 1, subject only to the following relations:

[ei(u),ﬁ(v)] = b hi(”)_th—l(”) - hi(v)_lhi+1 (v)

u—v

30



Moreover,

31



Moreover,
(ei() — e(v))?

u—v

lei(u), ei(v)] =

i\u) — Jil\v 2
), i) = — ) =SW)”

and for i < j we have
ulef (u), i(v)] — vlei(u),ef (v)] = —(cu, ) ei(u) ¢;(v),
ulf? (), (V)] = v[fi(u) . f7 V)] = (cu, o) (V) fi(w).
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Finally, we have the Serre relations

> leilua), [eita@); - [eiluuw), ()] .. ]] =0,

oeSy

S [hlto)s filto@)s - [filtaw) s0)] - 1] =0,

ceS;

fori#jwithk =1—cy;.
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Proof. The argument is split into three steps:
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Step 1. Show that the coefficients of the series &;(u), ¢;(u) and

fi(u) generate the algebra Y(gly).
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Proof. The argument is split into three steps:

Step 1. Show that the coefficients of the series &;(u), ¢;(u) and

fi(u) generate the algebra Y(gly).

Step 2. Show that all the relations hold in Y(gly). This will imply
that there is an epimorphism Y (gly) — Y(gly) from the abstract

algebra defined in the theorem.
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Step 1. Show that the coefficients of the series &;(u), ¢;(u) and

fi(u) generate the algebra Y(gly).

Step 2. Show that all the relations hold in Y(gly). This will imply

that there is an epimorphism Y (gly) — Y(gly) from the abstract

algebra defined in the theorem.

Step 3. Show that the epimorphism is injective.
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Proof. The argument is split into three steps:

Step 1. Show that the coefficients of the series &;(u), ¢;(u) and

fi(u) generate the algebra Y(gly).

Step 2. Show that all the relations hold in Y(gly). This will imply
that there is an epimorphism Y (gly) — Y(gly) from the abstract

algebra defined in the theorem.

Step 3. Show that the epimorphism is injective. This will imply

that there are no other relations.

33



Step 1
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Step 1

Use quasideterminants of matrices over an arbitrary ring.
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Step 1

Use quasideterminants of matrices over an arbitrary ring.
The ij-th quasideterminant |A[; of an N x N matrix A is denoted

by boxing the entry a;;,

all Cllj aiN

|A’U: (275 aij| ... an|-

aNy ... CINJ' ... 4NN



If the matrix A is invertible and the (j, i) entry of A~! is invertible,

then the quasideterminant is found by

ALy = (A7)~
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If the matrix A is invertible and the (j, i) entry of A~! is invertible,

then the quasideterminant is found by

ALy = (A7)~

In particular,
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If the matrix A is invertible and the (j, i) entry of A~! is invertible,

then the quasideterminant is found by

ALy = (A7)~

In particular,

N—1

Alwy = ayy — Z ay; [Ail],-j ajy
ij=1

where A = [ay] ).
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If the matrix A is invertible and the (j, i) entry of A~! is invertible,

then the quasideterminant is found by

—1

Al = (A7)
In particular,
N—1
Ay = ayy — Z ay; [Ail],-j ajy,
ij=1

where A = [ay] ).

The quasideterminants are stable under permutations of rows

or columns.

35



Example. We have
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Example. We have

Indeed, if

=d—ca'b.
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Example. We have

Indeed, if

then

abl +bd' =0

and

=d—ca'b.

cb' +dd = 1.
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Example. We have

Indeed, if
a b _1_ a b
c d B d d 7
then
ab' +bd'=0 and b +dd' =1.
Hence

(d—ca'b)d' =1.

36



Lemma. For any ¢ < N the map

Yo oty (u) —

tll(u)

171 (u)

i1 (u)

t1e(u)

tgg(u)

tio(u)

tj(u)

)

(+1<i,j<N,
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Lemma. For any ¢ < N the map

tll(u)

Yo oty (u) —
tgl(u)

i (I/t)

t1e(u)

lge(bt)

tio(u)

tj(u)

ti(u)

tij(u)

defines an injective homomorphism

, {+1<i,j<N,

Y°(aly—e) — Y(gly),
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Lemma. For any ¢ < N the map

tll(u) .. l‘]g(u) tlj(u)

@Z)gt;(u)p—) 7 (r1<ij<N.
tgl(u) Ce lgg(bt) tgj(u)
i (Z/t) R l‘,‘g(bt) IU(M)

defines an injective homomorphism

Y°(aly—e) — Y(gly),

where the 7;(u) denote the generating series of

YO (aly_r) = Y(gly_p)-

37



Proof. Recall that the map w : T(u) — T~'(—u) defines an

automorphism of Y(gly).
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Proof. Recall that the map w : T(u) — T~'(—u) defines an

automorphism of Y(gly).

Write the block partition

a b
T(u) = |: ]
c d

according to the split N = ¢+ (N — ¢) of the row and column

numbers.
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Proof. Recall that the map w : T(u) — T~'(—u) defines an

automorphism of Y(gly).

Write the block partition

a b
T(u) = |: ]
c d

according to the split N = ¢+ (N — ¢) of the row and column

numbers. Hence,
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Now apply w to the (N — ¢) x (N — ¢) submatrix to conclude that
the matrix elements of the matrix 4 — ca~'b satisfy the Yangian

defining relations.
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Now apply w to the (N — ¢) x (N — ¢) submatrix to conclude that
the matrix elements of the matrix 4 — ca~'b satisfy the Yangian

defining relations.

However, its (i,j) entry coincides with ¢ (7 (u)).
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Now apply w to the (N — ¢) x (N — ¢) submatrix to conclude that
the matrix elements of the matrix 4 — ca~'b satisfy the Yangian

defining relations.
However, its (i,j) entry coincides with ¢ (7 (u)).

The injectivity is verified by passing to the associated graded
algebras, where the ascending filtrations on the extended

Yangians are defined by setting deg tfj’) =r—1. O

39



Lemma. We have the formulas for the Gaussian generators in

terms of quasideterminants:
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Lemma. We have the formulas for the Gaussian generators in

terms of quasideterminants:

tll(u) . 1 i_l(u) l‘]i(u)
h,’(l/t) =
ticni(u) oo ticrici(u) tiogi(u)
til(u) L. l‘iifl(u) tii(u)

fori=1,...,N.



Moreover,

tll(u)

ti—1 1(u) ..

t,-l(u)

ti—1(u)

ticti—1(u) ti—lj(u)

tii—1(u)

tj(u)

tij(u)
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Moreover,

and

fi(u) =

t11(u)

tjl(u)

l‘i_11(u)

tll(u)

ti—1 1(14) ..

t,-l(u)

ti—1(u)

Lii—1 (u)

ti—1(u)

tii—1(u)

l‘],‘(u)

tiovici(u)  tio1i(u)

tji(u)

tlj(u)

ticti—1(u) ti—lj(u)

tij(u)

41



Moreover,

and

fi(u) =

t11(u)

tjl(u)

for1 <i<j<N.

l‘i_11(u)

tll(u)

ti—1 1(14) ..

t,-l(u)

ti—1(u)

Lii—1 (u)

ti—1(u)

tii—1(u)

l‘],‘(u)

tiovici(u)  tio1i(u)

tji(u)

tlj(u)

ticti—1(u) ti—lj(u)

tij(u)

41



Lemma. Under the anti-automorphism r we have

t:ej(u) — fi(u), fi(u) — ej(u),

fori <,
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Lemma. Under the anti-automorphism r we have

t:ej(u) — fi(u), fi(u) — ej(u),

for i < j, while h;(u) — h;(u) for all i.
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Lemma. Under the anti-automorphism r we have

L: el](u) %ﬁi(u)a ﬁl(u) = Eij(u),
for i < j, while h;(u) — h;(u) for all i. O
It follows from the Gauss decomposition that the algebra Y (gly)

is generated by the coefficients of the series h;(u) for

i=1,...,N together with e;;(x) and fj;(u) for 1 <i < j < N.
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Lemma. Under the anti-automorphism r we have

t:ej(u) — fi(u), fi(u) — ej(u),

for i < j, while h;(u) — h;(u) for all i. O

It follows from the Gauss decomposition that the algebra Y (gly)
is generated by the coefficients of the series h;(u) for

i=1,...,N together with e;;(x) and fj;(u) for 1 <i < j < N.

On the other hand, by the lemma above,

oD = )

M=di, and AV =)

il

42



Lemma. Under the anti-automorphism r we have

L: el](u) %ﬁi(u)a ﬁl(u) = Eij(u),
for i < j, while h;(u) — h;(u) for all i. O
It follows from the Gauss decomposition that the algebra Y (gly)
is generated by the coefficients of the series h;(u) for
i=1,...,N together with e;;(x) and fj;(u) for 1 <i < j < N.
On the other hand, by the lemma above,

ef!) = tz(ill and £ = ti(Jlr)l,r

Therefore, Step 1 is completed by noting that for any i < j,

eijai(u) = legu), ¢V]and  fora(u) = (£, filw)].

42



Step 2
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Step 2

The quantum comatrix 7'(«) is defined by

T(u)T(u— N+ 1) = qdet T(u).
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Step 2

The quantum comatrix 7'(«) is defined by

T(u)T(u— N+ 1) = qdet T(u).

Proposition. The entries 7;;(u) of the matrix T(u) are given by

() = (=)} 1N,

where the hats on the right hand side indicate the indices to be

omitted.

43



Proof. By definition,

AN Tl(u) ... TN,I(M —N+ 2) TN(M — N+ 1) :AquetT(u).

a4



Proof. By definition,
AN Tl(u) ... TN,I(M —N+ 2) TN(M — N+ 1) = Ay qdet T(I/t)

Hence

ANTi(u) .. . Ty—1(u—N~+2) = Ay Ty(u).

Taking the matrix elements we obtain the formula for 7;(u).

O

a4



By definition,
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By definition,

Since

T(u)T(u— N+ 1) = qdet T(u),
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By definition,

Since
T(u)T(u— N+ 1) = qdet T(u),

we have

T7'u)=T(@+N—1)(qdetT(u+N—1)) .

1
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By definition,

Since
T(u)T(u— N+ 1) = qdet T(u),
we have
T (u) = T(u+N—1) (qdet T(u+N — 1)) .
By taking the (N, N) entry, we get

hy(u) =t N w+N— 1) N+ N - 1).

45



Similarly,
hi(w) = (e} Dl i= 1)) e+ i— 1),
f)y =y T =) (i - 1)

i . —1 i .
ei(w) = (t1iu+i—1)" -ty (wti—1).



Similarly,
hilu) = (172 ki = D)7 (ki = 1),
O A R B VR (A UE A §)
ei(w) = (t1i+i= 1) ol i 1),

Proposition. We have the decomposition

qdetT(u) = hy(u) hoy(u — 1) .. .hy(u — N 4+ 1).
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Similarly,
hi(w) = (e} Dl i= 1)) e+ i— 1),
O A R B VR (A UE A §)
ei(w) = (e} iu+i—1)"" ell et i—1).

Proposition. We have the decomposition

qdetT(u) = hy(u) hoy(u — 1) .. .hy(u — N 4+ 1).

The coefficients of all series h;(u) fori =1,..., N commute.
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Similarly,
hiw) = (17T i = D) i = 1),
filw) =ty T i 1) (i - 1)
ei(w) = (t1i(u+i= 1)l i = 1),
Proposition. We have the decomposition
qdetT(u) = hy(u) hoy(u — 1) .. .hy(u — N 4+ 1).

The coefficients of all series h;(u) fori=1,...,N commute. [J

By employing the homomorphism 1,, checking the remaining

relations reduces to two particular cases: Y(gl,) and Y(gls).
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Step 3
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Step 3

Prove that the epimorphism Y (gly) — Y(gly) is injective.

47



Step 3

Prove that the epimorphism Y (gly) — Y(gly) is injective.

We claim that the set of ordered monomials in 4" and elg.’),ﬁ’)

(with i < j) is linearly independent in the Yangian Y(gly).



Step 3

Prove that the epimorphism Y (gly) — Y(gly) is injective.

We claim that the set of ordered monomials in 4" and e,(j’),ﬁ’)

(with i < j) is linearly independent in the Yangian Y(gly).

Indeed, the images of the elements A", efj’) and ]3.5’) in the
(r — 1)-th component of the graded algebra gr’ Y(gly)

respectively correspond to the elements
E;; )Cril, E,'j xril and Ej,‘ xril

of the universal enveloping algebra U(gly[x]).
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Step 3

Prove that the epimorphism Y (gly) — Y(gly) is injective.

We claim that the set of ordered monomials in 4" and e,(j’),ﬁ’)

(with i < j) is linearly independent in the Yangian Y(gly).

Indeed, the images of the elements A", efj’) and ]3.5’) in the
(r — 1)-th component of the graded algebra gr’ Y(gly)

respectively correspond to the elements
E;; )Cril, E,'j xril and Ej,‘ xril

of the universal enveloping algebra U(gly[x]).

Hence the claim follows from the PBW theorem for U(gly[x]).
47



Forany 1 <

i<j<

N define elements e
(r) (r)

inductively by the relations ¢; ;| = ¢;"’, f;

e
¢ ,j+1

= [el(jr)

I

1 r 1
VL D=1,

andf of Y(gly)

-i;:)l i _f and

(r)]

i for j>i.
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Forany 1 <i < j < N define elements e( r) andf of Y(gly)

inductively by the relations el( l)+1 — " fll)ll _f ) and

l L]

e

zH—] :[6’

r 1 r (1 r i 1
l(j)v e} )]7 ];(—&-)lz: [f : jg )]a for J=>t

It is enough to prove that the algebra Y(gly) is spanned by the

monomials in h(’), (’) andf taken in some fixed order.
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Forany 1 <i < j < N define elements e( r) andf of Y(gly)

inductively by the relations el( l)+1 = efr),f,H ; — 1" and

e

zH—] :[6

l(j”j e]m], ];(i)l =1 (1) J;E’)], for j>i.

It is enough to prove that the algebra Y(gly) is spanned by the

monomials in h(’), (’) andf taken in some fixed order.

Let e( ") be the i image of e( " in the (r — 1)-th component of the

graded algebra gr’ Y (gly).
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Forany 1 <i < j < N define elements e( r) andf of Y(gly)

inductively by the relations el( l)+1 — " fll)ll _f ) and

l L]

e

zH—] :[6’

r 1 r (1 r i 1
l(j)v e} )]7 ];(—&-)lz: [f : jg )]a for J=>t

It is enough to prove that the algebra Y(gly) is spanned by the

monomials in h(’), (’) andf taken in some fixed order.

Let e( ") be the i image of e( " in the (r — 1)-th component of the

graded algebra gr’ Y (gly).

Verify that these images satisfy

—_(r) =(s r+s—1 _(rt+s—1
[615' )76151)] - (5/(] z(l ) 6[1 ]E] ) L]
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Drinfeld presentation of Y(sly)
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Drinfeld presentation of Y(sly)

Define the series with coefficients in Y(sly) by

1

ki) =hi(u—(i—1)/2)" hip1(u— (i—1)/2)
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Drinfeld presentation of Y(sly)

Define the series with coefficients in Y(sly) by

1

ki) =hi(u—(i—1)/2)" hip1(u— (i—1)/2)

and

G =filu=(-1072), &W=e(uw-(i-1)/2)

fori=1,...,N—1.

49



Define the elements x;, and &£ withi=1,....N —landr >0

by the relations

ki(u) =1+ Zﬁir w

r=0
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Define the elements x;, and &£ withi=1,....N —landr >0

by the relations

ki(u) =1+ Z rpu L
r=0
and

=Y &u" Gw=> &u "

r=0 r=0

50



Theorem. The algebra Y(sly) is generated by the elements «,,
and & with i =1,...,N — 1 and r > 0, subject only to the

relations:
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Theorem. The algebra Y(sly) is generated by the elements «,,

and & withi=1,...,N — 1 and r > 0, subject only to the

128

relations:
["@'r? K/js] =0,
[ z—i;:’g]_;] = 51]' Kirtss

+
[HiO?gjs] = =+ (o, o) s

(i, o) + +
[Kirg1s j:?] — [k j:l;+l] =+ ”2 : (“ir js T8 “if>’
+ + + o+ (i, o) + o+ + o+
[ i1 js] - [ ir j5+1] =+ ”2 ! ( irSjs + ji s ir)’

Z [gz'j;p(l)7 [gijip(zy .- '[é.;l;p(m) ’ g]:l;] .- H =0,

PEGH

with i # jand m = 1 — ¢;; in the last relation.
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Proof. The relations are deduced from the Drinfeld presentation

of Y(gly) in terms of the generating series.
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Proof. The relations are deduced from the Drinfeld presentation

of Y(gly) in terms of the generating series.

This yields an epimorphism from the algebra Y (sly) defined in
the theorem to the Yangian Y(sly), which takes the generators
k;, and & of Y (sly) to the elements of Y(sly) denoted by the

same symbols.
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Proof. The relations are deduced from the Drinfeld presentation

of Y(gly) in terms of the generating series.

This yields an epimorphism from the algebra Y (sly) defined in
the theorem to the Yangian Y(sly), which takes the generators

+

k;, and &£ of Y(sly) to the elements of Y(sly) denoted by the

same symbols.

The injectivity of the epimorphism follows from the observation
that Y (sly) coincides with the subalgebra of Y (gly) which

consists of the elements stable under all multiplication

automorphisms arising from T'(u) — f(u)T (u). O
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Yangians in arbitrary types
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Yangians in arbitrary types

Let a be a simple Lie algebra over C of rank n.
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Yangians in arbitrary types

Let a be a simple Lie algebra over C of rank n.

Let C = [c;]},_, be the associated Cartan matrix,
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Yangians in arbitrary types

Let a be a simple Lie algebra over C of rank n.

Let C = [c;]},_, be the associated Cartan matrix,

and let ay, . .., a, be the simple roots. They belong to a

Euclidean space with the inner product ( , ).
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Definition. The Yangian Y(a) is the associative algebra
generated by elements «,, and & withi=1,...,nand r > 0,

subject to the relations:
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Definition. The Yangian Y(a) is the associative algebra
generated by elements «,, and & withi=1,...,nand r > 0
subject to the relations:

[’Qir’ K’js] =0,

(&7 &) = 0 5

ir? ij "Virts»

+ +
[’fmyfjs] = =+ (o, o) s

[’{ir—i-laé]%]*[l{ira ]%Jrl]::l:(ai’zaj) ("{ i+ is lr>7
€t 65— 65,65, 1=+ (O‘”O")(g g eteh),

+ + + +
Z [ i’pm?[ i’p<2)""[ iTp(m)’ isl---11=0,

PEGny

with i # jand m = 1 — ¢;; in the last relation.
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