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Drinfeld’s definition

Let g be a simple Lie algebra over C with

a fixed invariant bilinear form ().

Definition. The Yangian Y(g) is the associative algebra with
generators {X,J(X) | X € g} and the following defining relations.
> XY —YX = [X,Y],,
» (X, J(Y)] =J(X,Y]), J(X)islinearinX,
» If g=sl, = (e,f,h) then
[(e), TN, ()] = (J(e)f — e () h.
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If g +# sl, then consider a root space decomposition
g=0bD O ga,
acd

where | is a Cartan subalgebra, @ is the root system.
Choose positive roots, ® = &+ U (—®*) and for each « € ¢+
choose root vectors x: € g+, such that (x},x;) = 1.

Then the remaining defining relations are

[J(h),J(h’)]:% S a(hB0) [t xg],

a,Bedt

forallh, i’ € h. [Guay—Nakajima—Wendlandt, 2017].
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The algebra Y(g) is a quantization of U(g|z]) in the class of
Hopf algebras. The coproduct A on Y(g) is

AX)=X®1+1®X,
A(JX)=JX)®1+1 ®J(X)+%[X® 1,9,

for all X € g, where

d
0= ZXk ® X, {X;} is an orthonormal basis of g,

k=1
the antipode S is an anti-automorphism of Y(g),
1
4

S(X) = —X, S(J(X)) = —J(X) + — cgX,

¢, is the eigenvalue of w = >>¢_, X2 in the adjoint module.
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For any ¢ € C the map
T X =X, J(X) = J(X)+cX
is a Hopf algebra automorphism. Set 7,, = 7, ® 7,.
Theorem [Drinfeld, 1985]. There exists a unique series
R(u) =1+ iRku_k, Ri € Y(g) ® Y(g),
k=1

such that
(id® A)R(u) = Riz(u) Ri3(u), and

TouAP(Y) = R(u) " (70, A(Y))R(w)  forall ¥ € Y(g).
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R(u) is the universal R-matrix.

It is a solution of the Yang—Baxter equation

R]z(u — V) 7?,13(u) R23 (V) = R23 (V)R13(M)R12(M — v).

Let p:Y(g) — EndV be a finite-dimensional irreducible

representation. Set R(u) = (p® p)R(—u) € EndV ® End V.
Theorem [Drinfeld, 1985]. R(u) is a unique solution of
(0 ) (Tin A (X)) ) Rl = v) = R(u = v)(p @ p) (rin AP (J(X)) ),

for all X € g, up to a factor from C[[z~']]. The factor can be

chosen to make R(u) a rational function in u.
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Example. g = sly. Take V = C" with J(X) acting as 0.
Solving the equation, one recovers the Yang R-matrix given by

R(u)=1-

)

P
u
where
N
P = Z ejj ¥ eji € End CV &® EndCN

ij=1

is the permutation operator

P:CVNocCVN > cVNecCh.
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Example. Let g = gy which will denote
the orthogonal Lie algebra oy (with N =2n or N =2n+1)

or symplectic Lie algebra spy (with N = 2n).
Take V =C¥ with J(X) acting as 0.

Solving the equation, we get the R-matrix

P
Ruw=1-++-2
u u—~K

originally found for oy by [A. & Al. Zamolodchikov, 1979].
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The operator Q is defined by the formulas

N N
0= Zeij@)e,vjr and 0= Zsiajeij®e,~rj/,

ij=1 ij=1

in the orthogonal and symplectic case, respectively.

We use the notation i’ = N — i + 1, and set
g=1fori=1,...,nand
gg=—1fori=n+1,...,2n.
The parameter  is

N/2—1 for oy

n+1 for sp,,.
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Choose a basis ej,...,ey of Vsothat e; isabasis of EndV.

Definition. The extended Yangian X(g) is generated by
elements tl.(j’) with 1 <i,j < Nandr=1,2,... subject to the

defining relations
Rlz(u — v) T1 (Lt) Tz(v) = Tz(v) T] (Lt) Rlz(u — V),
(the RTT-relation), where the T-matrix is given by

Ze,]®tl] ) € EndV ® X(g)[[u"]]
ij=1

with

}
) =5, + 3
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The subscripts indicate copies of End V of the tensor product

algebra

EndV ® End V © X(g).

In type A we have X(sly) = Y(gly), the Yangian for gly,

The defining relations take the form

L) 1109] =~ (1500) 1Y) = 110 1))
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[t5(a), (7)) = - () 100) = 150) )

1
- m(% Zazpfpj u) ty(v) — 8y Zejpfkp v) tip (u )
p=1

where

1 for oy

€I for sp,, .
J 2n
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The extended Yangian X(g) is a Hopf algebra with the
coproduct

A t(u »—>Ztm @ toi(u

the antipode S: T(u) — T(u)~! and the counit e: T(u) —

Definition. The Yangian in the R-matrix presentation is the

algebra Y% (g) defined by

Y¥(g) = {y € X(g) | w(y) =y forall py},

where the automorphism 1 : X(g) — X(g) is defined by

pr o T(u) = f(u)T(u), fu) e 1+u'Clu ).

1.
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Theorem [Wendlandt, 2017].
SHT(w) T(u+cg/2) " =2z(u)1

for a series z(u) =1 +z,u 2+ zzu > +--- € X(g)[[u"]].
The coefficients z,,z;,... are free generators of the center

ZX(g) of X(g). Moreover,
X(9) = ZX(g) ® Y¥(g).
We have the isomorphism Y®(g) = Y(g),

X(g)/(z(u) = 1) =Y(g),  T()— (p&@1)R(-u).
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Drinfeld presentation

Suppose that g is a simple Lie algebra of rank n and let A = [q;j]
be the associated Cartan matrix.

Let ay, ..., «, be the corresponding simple roots. Set

o = € — €41, i=1,....,n—1, for A,_;.

In addition, in types B, C,, and D,, respectively set

Qp = €, ap =2¢, and Qp = €41 + €,

Here ¢1,. .., ¢, is an orthonormal basis of an Euclidian space

with the bilinear form (., .).
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The Drinfeld Yangian Y?(g) is generated by elements &;,, fl.ir

withi=1,...,nand r =0, 1,... subject to the defining relations

[’{ir’ K’js] =0,
[ ztagis] 61] Ki r+s?

+ +
[HiO?gjs] = =+ (o, o)) s

+ +
Kir g]s + g]s H’ir)’

["iir—i-lagjjs:] - [ zr?g s—i—l] - 2
[61r+17§ ] [&r’g s—i—l] (a” aj) (

+ + + +
Z [ ”p(l)’[ i’p<2>""’[ iTp(m)’ isl---11=0,

pEGm

Grés+ 6567,

where the last relation holds for all i # j with m = 1 — a;;.
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Combine the generators of Y?(g) into power series in u~!,

[e.9] o0
ki(u) =1+ Zniru_’_l and e (u) = Z Eyrt
r=0 r=0

for i=1,...,n.
Theorem [Drinfeld, 1988]. Every finite-dimensional irreducible
representation L of the algebra Y?(g) contains a unique (up to

constant factor) nonzero vector ¢ (the highest vector) such that

& ()¢ =0,

) ¢ = Tt )

Pi(u) G, di = (i, ) /2,

fori=1,...,n, where Pi(u),...,P,(u) are monic polynomials.
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Next goal: to construct an isomorphism Y®(g) = Y (g).

Type A is known: [Drinfeld, 1985, Brundan—Kleshchev, 2005].
The construction is based on the natural embedding

Y(gly—1) = Y(gly),  fij(u) = 1ij(w),
for1 <i,j<N-—1.

Main sticking point for types B, C, D:

There is no natural embedding of X(gy—_2) into X(gw).
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Quasideterminants

Consider a k x k matrix of the form

C D

with entries in a ring, where D is an element of the ring.

Then its (k, k)-quasideterminant is defined by

A B
=D - CA™'B.

c [p]

[Gelfand—Retakh, 1991].



Theorem [Jing—Liu—M., 2017].  The mapping

tij(u) — i

i1 (u)

with 2 <i,j < 2/,

tj(u)

tij(u)

= tij(u) — 12 () try ()~ 10(u)
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Theorem [Jing—Liu—M., 2017].  The mapping

o | )~ ) i) )

tin(u) | tij(u)

with 2 < i,j < 2/, defines an injective algebra homomorphism

X(gn—2) — X(gn)-

We will use this embedding to regard X(gn_2)

as a subalgebra of X(gy).

It is consistent with the embedding gy_> < gn.

20



Let m <n fortype B and m <n—1 fortypes C and D.
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Let m <n fortype B and m <n—1 fortypes C and D.

Theorem [JLM, 2017]. The mapping

l]](u) . l]m(u) l]j(u)
&N):tij(u),_) 7

tml(u) R tmm(u) tmj(u)

Zi](l/t> R t,-m(u) tij(u)

with m + 1 < i,j < (m+ 1)’ defines an injective homomorphism

X(gn—2m) — X(gn)-
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Let m <n fortype B and m <n—1 fortypes C and D.

Theorem [JLM, 2017]. The mapping

)

withm +1 <

ILj <

L ij(u) =

(m

X(gn—2m) — X(gn)-

l]](u) l]m(u) l]j(u)

tml(u) R tmm(u) tmj(u)

i1 (lxi) R t,-m(u) tij(u)

+ 1)’ defines an injective homomorphism

Moreover, we have the equality of maps

%(N) © w(N 2 — wl—&—m

21
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Apply the Gauss decomposition to the matrix 7'(u),
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Gaussian generators

Apply the Gauss decomposition to the matrix 7'(u),

1 ... 0 1
Fwy=| ¢ | Ew=

fwi(w) ...01 0

and  H(u) = diag [hi(u), ..., hy(u)].
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The entries of the matrices F(u), H(u), E(u) are expressed in

terms of quasideterminants of submatrices of 7'(«) as follows.
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The entries of the matrices F(u), H(u), E(u) are expressed in

terms of quasideterminants of submatrices of 7'(«) as follows.

We have
tl](l/t) 1 l'_1(l/t) l]i(u)
h,»(u) = N
ticii(u) oo ticpioi(u)  timri(u)
i1 (l/t) e tii—1 (u) tii(u)

fori=1,...,N.



Moreover, for 1 <i < j < N we have

tll(u) R n ,‘_1(1/!) tlj(u)
eij(u) = hi(u) !
ti—1 1(14) R | ,‘_1(u) l‘,'_lj(u)
til(u) . li,‘_l(u) tl-j(u)




Moreover, for 1 <i < j < N we have

eij(u) = hi(u)™!

and

fii(u) =

tll(u)

t,-,ll(u) ..

tj1(u)

m(w) fic1 (1)
fio1 ()
t (1) fie ()
o) i)
fimvica () o)

24



Use the Gauss decomposition T(u) = F(u) H(u) E(u) to
introduce generators of the extended Yangian X(gy) by the

formulas
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Use the Gauss decomposition T(u) = F(u) H(u) E(u) to

introduce generators of the extended Yangian X(gy) by the

i1\ i—1
“i(”)_h’(”_ 2) h”*‘(“_ 2)

fori=1,...,n—1,and

formulas

n—1y\-I n—1
hy, (u — 5 ) hn—H <u — > ) for 02541
-1
K, (U) = 9 h, (u — g) Byt (u - g) for sp,,
AN -2
hy—1 (Lt _n ) hn—H (u _n 2 ) for 02;

25



Furthermore, fori=1,...,n — 1 set

G =fimni(u—"30), &) = e (u-

i—1
2

).

26



Furthermore, fori=1,...,n — 1 set

&

and

W) =firri(u— "5,

2

fn+1n(u— n; 1)

ﬁz+1n(” - n/Z)
n—2
2

fn—H n—1 (Lt -

n—1
enn+1<u_ ) )

1/2epns1(u—n/2)
n—2
2

€n—1n+1 (Lt -

)

)

for

for

for

& (u) :eii-i-l(”_ - 1>7

2

02541

5F'Zn

02

02541

5pZn

02p.
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Introduce elements of X(gy) by the respective expansions into

power series in u~!,

o0 [e.e]
ki(u) = 1—|—Z/<;iru_r_l and £ (u) :Z !
r=0 r=0

fori=1,...,n.
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Introduce elements of X(gy) by the respective expansions into

power series in u~!,

o0 [e.e]
ki(w) =1+ Z"%’r w ! and 5 (u) = Z !
r=0 r=0

fori=1,...,n.

Theorem [JLM, 2017]. The mapping which sends the
generators r;, and &= of Y?(gy) to the elements of X(gy) with

the same names defines an isomorphism Y?(gy) = Y®(gy).
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Applications: coproduct and representations
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Applications: coproduct and representations

The coproduct formula for the extended Yangian X(gy),
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Applications: coproduct and representations

The coproduct formula for the extended Yangian X(gy),
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Applications: coproduct and representations

The coproduct formula for the extended Yangian X(gy),

and the isomorphism Y?(gy) = Y®(gy) can be used to
calculate the coproduct in terms of the Drinfeld presentation

(which has not been explicitly described).
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A representation V of the algebra X(gy) is called a highest

weight representation
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A representation V of the algebra X(gy) is called a highest
weight representation if there exists a nonzero vector £ € V

such that V is generated by ¢,

tij(u) =0 for 1<i<j<N, and

lii(l/t)§ = )\l(u)g for 1<i< N,
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A representation V of the algebra X(gy) is called a highest
weight representation if there exists a nonzero vector £ € V

such that V is generated by ¢,

tij(u) =0 for 1<i<j<N, and

lii(l/t)§ = )\l(u)g for 1<i< N,

for some formal series

M) =1+ 20 APz AP ec.



Every finite-dimensional irreducible representation of X(gy) is
isomorphic to the highest weight representation L(\(u)) for a

certain N-tuple of formal series A\(u) = (A1 (u), ..., Av(u)) with
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Every finite-dimensional irreducible representation of X(gy) is
isomorphic to the highest weight representation L(\(u)) for a
certain N-tuple of formal series A\(u) = (A1 (u), ..., Av(u)) with

A,(u) _ P,(u—i—l) i1 n_1

Ai1(u) Pi(u)
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Every finite-dimensional irreducible representation of X(gy) is
isomorphic to the highest weight representation L(\(u)) for a
certain N-tuple of formal series A\(u) = (A1 (u), ..., Av(u)) with

A,(u) _ P,(u—i—l) i1 n_1

Ai1(u) Pi(u)

and
An (1) B P,(u+1/2)
Ant1(u) B Py(u)
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Every finite-dimensional irreducible representation of X(gy) is
isomorphic to the highest weight representation L(\(u)) for a
certain N-tuple of formal series A\(u) = (A1 (u), ..., Av(u)) with

A,(u) P,(u—i— 1)

= . di=1,...,n—1,
M) Py(u) "
and
An (1) P,(u+1/2)
= for 02,41,
X1 (u) Po(u) 2
An (1) _ Py(u+2) for spy.

An1(u) Py(u)
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Every finite-dimensional irreducible representation of X(gy) is
isomorphic to the highest weight representation L(\(u)) for a
certain N-tuple of formal series A\(u) = (A1 (u), ..., Av(u)) with

A,(u) P,(u—i— 1)

>\i+1(u): Pilu) i=1,...,n—1,
and
An (1) P,(u+1/2)
= for o0g,11,
s (1) Py () 2
An (1) Py(u+2)
= for sp,,,
Mot (W) Palu) Pan
Moaw) _ Palet )

Ant1(u) a Py (u)

30



where Py (u),...,P,(u) are monic polynomials in « called the
Drinfeld polynomials of the representation

[Arnaudon—M.—Ragoucy, 2006].
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where Py (u),...,P,(u) are monic polynomials in « called the
Drinfeld polynomials of the representation

[Arnaudon—M.—Ragoucy, 2006].

Hence, by applying the isomorphism Y?(gy) = Y®(gn) we thus
obtain the Drinfeld classification theorem for finite-dimensional

irreducible representations of Y2 (gy).
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Centers of the Yangians

The center ZY(gly) of the Yangian Y(gly) is generated by the

coefficients of the quantum determinant

qdet T'(u Z sgnp -ty (u+N—1)...t,wn(u).
pEGyN
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Centers of the Yangians

The center ZY(gly) of the Yangian Y(gly) is generated by the
coefficients of the quantum determinant
qdet T'(u Z sgnp -ty (u+N—1)...t,wn(u).
pEGyN

The Wendlandt series z(u) is given by

qdetT(u+ 1)

z(u)_lz%trT(LH—N)T(u)_l: R
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Centers of the Yangians

The center ZY(gly) of the Yangian Y(gly) is generated by the
coefficients of the quantum determinant
qdet T'(u Z sgnp -ty (u+N—1)...t,wn(u).
pEGyN

The Wendlandt series z(u) is given by

qdetT(u+ 1)

z(u)*:%trT(HN)T(u)—l: Y

the last equality is the quantum Liouville formula

[Nazarov, 1991].
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The center ZY(gy) of the extended Yangian X(gy) is generated

by the coefficients of the series

C(w) = %trT(u FRYT@),  k=N2F1,
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The center ZY(gy) of the extended Yangian X(gy) is generated

by the coefficients of the series
C(w) = %tr Tu+r)Tw), k=N/27F1,

[Drinfeld 1985, Arnaudon et al. 2003, 2006].
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