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1. If V is any inner product space then the length of a vector v
˜
∈ V is the

quantity ‖v
˜
‖ defined by ‖v

˜
‖ =

√
(v
˜
, v
˜
).

Use the axioms IP1, IP2, IP3 and IP4 to prove that

‖x
˜
− y

˜
‖2 + ‖x

˜
+ y

˜
‖2 = 2‖x

˜
‖2 + 2‖y

˜
‖2

for all x
˜
, y
˜
∈ V .

Solution.

The axioms IP1 to IP4 say that the inner product is commutative (that is,
(x
˜
, y
˜
) = (y

˜
, x
˜
) for all vectors x

˜
and y

˜
in the space V ), linear in the first variable

((x
˜

+ y
˜
, z
˜
) = (x

˜
, z
˜
)+ (y

˜
, z
˜
) and (λx

˜
, y
˜
) = λ(x

˜
, y
˜
) for all vectors x

˜
, y
˜

and z
˜

and
all scalars λ) and positive definite ((x

˜
, x
˜
) ≥ 0, with equality only if x

˜
= 0

˜
).

It follows readily from the commutativity and linearity in the first variable
that it is also linear in the second variable ((x

˜
, y
˜

+ z
˜
) = (x

˜
, y
˜
) + (x

˜
, z
˜
) and

(x
˜
, λy

˜
) = λ(x

˜
, y
˜
)). For the purposes of questions like this one, students are

permitted to use this as though it were an axiom, although strictly speaking
it is not. Similarly it is easy to show that (x

˜
− y

˜
, z
˜
) = (x

˜
, z
˜
) − (y

˜
, z
˜
), and

students may use this also as though it were an axiom.

Now for all x
˜
, y
˜
∈ V ,

‖x
˜
− y

˜
‖2 + ‖x

˜
+ y

˜
‖2 = (x

˜
− y

˜
, x
˜
− y

˜
) + (x

˜
+ y

˜
, x
˜

+ y
˜
)

= (x
˜
, x
˜
− y

˜
)− (y

˜
, x
˜
− y

˜
) + (x

˜
, x
˜

+ y
˜
) + (y

˜
, x
˜

+ y
˜
)

= (x
˜
, x
˜
)− (x

˜
, y
˜
)− (y

˜
, x
˜
) + (y

˜
, y
˜
)

+ (x
˜
, x
˜
) + (x

˜
, y
˜
) + (y

˜
, x
˜
) + (y

˜
, y
˜
)

= 2(x
˜
, x
˜
) + 2(y

˜
, y
˜
)

= 2‖x
˜
‖2 + 2‖y

˜
‖2

as required.

If one wished to strictly use just IP1 to IP4, the expansion of (x
˜
− y

˜
, x
˜
− y

˜
)
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could be done as follows:

(x
˜
− y

˜
, x
˜
− y

˜
) = (x

˜
+ (−y

˜
), x

˜
+ (−y

˜
))

= (x
˜

+ (−1)y
˜
, x
˜

+ (−1)y
˜
)

= (x
˜
, x
˜

+ (−1)y
˜
) + ((−1)y

˜
, x
˜

+ (−1)y
˜
)

= (x
˜

+ (−1)y
˜
, x
˜
) + (−1)(y

˜
, x
˜

+ (−1)y
˜
)

= (x
˜
, x
˜
) + ((−1)y

˜
, x
˜
) + (−1)(x

˜
+ (−1)y

˜
, y
˜
)

= (x
˜
, x
˜
) + (−1)(y

˜
, x
˜
) + (−1)((x

˜
, y
˜
) + ((−1)y

˜
, y
˜
))

= (x
˜
, x
˜
)− (y

˜
, x
˜
)− ((x

˜
, y
˜
) + (−1)(y

˜
, y
˜
))

= (x
˜
, x
˜
)− (y

˜
, x
˜
)− (x

˜
, y
˜
) + (y

˜
, y
˜
))

as expected.

2. Let A be the following 4× 4 matrix:

A =


1 3 3 3
3 1 3 3
3 3 1 3
3 3 3 1

 .

(i) The characteristic equation of A is (λ + 2)3(λ − 10) = 0. (You are not
required to prove this.) Find a basis for the −2-eigenspace of A. That is,
find the general solution of the system of linear equations (A+2I)v

˜
= 0

˜
.

(You should find that the basis consists of three vectors.)
(ii) Find a 10-eigenvector of A, and show that it is orthogonal to all three

basis vectors that you found in Part (i).
(iii) Apply the Gram-Schmidt process to the basis you found in Part (i), and

hence find an orthogonal basis for the −2-eigenspace of A.
(iv) Use Parts (ii) and (iii) to write down an orthogonal basis of R4 made

up of three −2-eigenvectors of A and a 10-eigenvector of A. Normalize
this basis to obtain an orthonormal basis of R4.

(v) Let P be the matrix whose columns constitute the orthonormal basis of
R4 that you found in Part (iv). Check that P is an orthogonal matrix
and that PT AP is diagonal.

Solution.

(i) The −2-eigenspace is the solution space of the homogeneous system of
equations 

3 3 3 3
3 3 3 3
3 3 3 3
3 3 3 3




x
y
z
w

 =


0
0
0
0

 .



3

Applying row operations to the augmented matrix quickly leads to the fol-
lowing echelon form: 

1 1 1 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .

There is only one leading entry, and it occurs in the column that corresponds
to the variable x. So y, z and w are free. So the general solution is obtained
by letting y = r, z = s and w = t, where r, s and t are arbitrary parameters.
The equation corresponding to the nonzero row of the echelon matrix yields
x = −r − s− t. So the general solution is

x
y
z
w

 =


−r − s− t

r
s
t

 = r


−1
1
0
0

 + s


−1
0
1
0

 + t


−1
0
0
1

 ,

and we deduce that

{
v1 =


−1
1
0
0

 , v2 =


−1
0
1
0

 , v3 =


−1
0
0
1

}

is a basis for the −2-eigenspace.
(ii) To find a 10-eigenvector, find a nonzero solution of

−9 3 3 3
3 −9 3 3
3 3 −9 3
3 3 3 −9




x
y
z
w

 =


0
0
0
0

 .

Applying row operations to the augmented matrix leads to the following ech-
elon form: 

1 0 0 −1 0
0 1 0 −1 0
0 0 1 −1 0
0 0 0 0 0

 .

This time there is only one free variable, and the general solution is
x
y
z
w

 =


t
t
t
t

 = t


1
1
1
1

 .
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The question asked for an eigenvector; this means that we should specify a
value for t. Any nonzero value will do. So (for example) we can put t = 1.
Thus the column vector v4 whose four entries are all equal to 1 is a 10-
eigenvector.
We must show that v4 is orthogonal to each of v1, v2 and v3. That is, we
must show that v1 · v4 = v2 · v4 = v3 · v4 = 0. Now

v1 · v4 =


−1
1
0
0

 ·


1
1
1
1

 = (−1)× 1 + 1× 1 + 0× 1 + 0× 1 = −1 + 1 = 0;

similarly, v2 · v4 = −1 + 0 + 1 + 0 = 0 and v2 · v4 = −1 + 0 + 0 + 1 = 0.
(iii) The formulas for the Gram-Schmidt process are

u1 = v1

u2 = v2 −
v2 · u1

u1 · u1
u1

u3 = v3 −
v3 · u1

u1 · u1
u1 −

v3 · u2

u2 · u2
u2

Now we have that

v2 · u1 = v2 · v1 =


−1
0
1
0

 ·


−1
1
0
0

 = 1,

and

u1 · u1 = v1 · v1 =


−1
1
0
0

 ·


−1
1
0
0

 = 2,

and therefore

u2 =


−1
0
1
0

− 1
2


−1
1
0
0

 =


−1/2
−1/2

1
0

 .

We find that v3 · u1 = 1 and v3 · u2 = 1/2, while u1 · u1 = 1 and u2 · u2 = 3/2.
So

u3 = v3 − 1
2u1 − 1/2

3/2u2 =


−1
0
0
1

− 1
2


−1
1
0
0

− 1
3


−1/2
−1/2

1
0

 =


−1/3
−1/3
−1/3

1

 .
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(iv) The vectors u1, u2, u3 and v4 comprise an orthogonal basis of R4, since
they are nonzero and orthogonal to each other. (This guarantees that they
are linearly independent, and since there are four of them—and four is the
dimension of R4—they must also span R4.) To get an orthonormal basis we
must divide each vector in the orthogonal basis by its length, (the square root
of the dot product of the vector with itself). Now ‖u1‖ =

√
u1 · u1 =

√
2,

and similarly ‖u2‖ =
√

3/2, ‖u3‖ =
√

4/3 and ‖v4‖ = 2. So the orthonormal
basis is 

−1/
√

2
1/
√

2
0
0

 ,


−1/

√
6

−1/
√

6√
2/
√

3
0

 ,


−1/2

√
3

−1/2
√

3
−1/2

√
3√

3/2

 ,


1/2
1/2
1/2
1/2

 .

(v) The matrix P is

P =


−1/

√
2 −1/

√
6 −1/2

√
3 1/2

1/
√

2 −1/
√

6 −1/2
√

3 1/2
0

√
2/
√

3 −1/2
√

3 1/2
0 0

√
3/2 1/2

 .

The (i, j) entry of PT P is the dot product of the ith and jth columns of P ,
and since the basis is orthonormal this is 0 if i 6= j and 1 if i = j. So PT P = I,
which means that P is orthogonal. Since the first three columns of P are −2-
eigenvectors of A and the fourth column is a 10-eigenvector it follows that
the columns of AP are just the same as the columns of P multiplied by the
scalars −2, −2, −2 and 10 (respectively). So PT AP = PT (AP ) is

−1√
2

1√
2

0 0
−1√

6
−1√

6

√
2√
3

0
−1
2
√

3
−1
2
√

3
−1
2
√

3

√
3

2
1
2

1
2

1
2

1
2




√
2 2√

6
1√
3

5

−
√

2 2√
6

1√
3

5

0 −2
√

2√
3

1√
3

5

0 0 −
√

3 5



=


−2 0 0 0
0 −2 0 0
0 0 −2 0
0 0 0 10

 .

3. (To be done using MAGMA.)

(i) Let A be the matrix in Question 2 above. Define W to be the left nullspace
of A + 2I, and get MAGMA to print W. (You should find that W has di-
mension 3.)
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(ii) MAGMA’s names for the three basis vectors it has found for the space W
are W.1, W.2 and W.3. Print these. Then apply the Gram-Schmidt process
to these three vectors, to find an orthogonal basis for W. (You may wish
to load the file t3defs.m before doing this part.)

(iii) Use MAGMA to find the 5th degree polynomial of best fit for the following
ten points:

(−2, 100), (−1.5, 40), (−1, 12), (−0.5, 3), (0, 1), (0.5, 0.5),
(1, 0), (1.5,−3), (2,−14), (3,−125).

(Note: This will involve entering a certain 6× 10 matrix, whose entries
are numbers such as the square of −1.5, etc.. Do not forget the necessary
brackets when entering this: (-1.5)∧2, not -1.5∧2.)

(iv) Evaluate this 5th degree polynomial at −7.

Solution.

> R:=RealField();
> M:=KMatrixSpace(R,4,4);
> A:=M![1,3,3,3,3,1,3,3,3,3,1,3,3,3,3,1];
> A;
[1 3 3 3]
[3 1 3 3]
[3 3 1 3]
[3 3 3 1]
> I:=M!0;
> for i in [1..4] do
for> I[i,i]:=1;
for> end for;
> I;
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]
> W:=NullSpace(A+2*I);
> W;
Vector space of degree 4, dimension 3 over Real Field
Echelonized basis:
( 1 0 0 -1)
( 0 1 0 -1)
( 0 0 1 -1)
> u1:=W.1;
> u2:=W.2-(InnerProduct(W.2,u1)/InnerProduct(u1,u1))*u1;
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> u3:=W.3-(InnerProduct(W.3,u1)/InnerProduct(u1,u1))*u1
> -(InnerProduct(W.3,u2)/InnerProduct(u2,u2))*u2;
> u1;
( 1 0 0 -1)
> u2;
(-1/2 1 0 -1/2)
> u3;
(-1/3 -1/3 1 -1/3)
> MM:=KMatrixSpace(R,6,10);
> B:=MM![1,1,1,1,1,1,1,1,1,1,
> -2,-1.5,-1,-0.5,0,0.5,1,1.5,2,3,
> (-2)^2,(-1.5)^2,(-1)^2,(-0.5)^2,0^2,(0.5)^2,1^2,(1.5)^2,
> 2^2,3^2,
> (-2)^3,(-1.5)^3,(-1)^3,(-0.5)^3,0^3,(0.5)^3,1^3,(1.5)^3,
> 2^3,3^3,
> (-2)^4,(-1.5)^4,(-1)^4,(-0.5)^4,0^4,(0.5)^4,1^4,(1.5)^4,
> 2^4,3^4,
> (-2)^5,(-1.5)^5,(-1)^5,(-0.5)^5,0^5,(0.5)^5,1^5,(1.5)^5,
> 2^5,3^5];
> B;
[1 1 1 1 1 1 1 1 1 1]
[-2 -1.5000000000000000 -1 -0.50000000000000000 0

0.50000000000000000 1 1.5000000000000000 2 3]
[4 2.2500000000000000 1 0.25000000000000000 0

0.25000000000000000 1 2.2500000000000000 4 9]
[-8 -3.3750000000000000 -1 -0.12500000000000000 0

0.12500000000000000 1 3.3750000000000000 8 27]
[16 5.0625000000000000 1 0.062500000000000000 0

0.062500000000000000 1 5.0625000000000000 16 81]
[-32 -7.5937500000000000 -1 -0.031250000000000000 0

0.031250000000000000 1 7.5937500000000000 32 243]
> V:=VectorSpace(R,10);
> y:=V![100,40,12,3,1,0.5,0,-3,-14,-125];
> y;
(100 40 12 3 1 0.50000000000000000 0 -3 -14 -125)
> x:=Solution(B*Transpose(B),y*Transpose(B));
> x;
(0.49609214315096668037844508432743729396

-1.9442719045660222130810366104483752030
4.4834258878376525435348964760729466078
-3.5976621417797888386123680241327299796
1.5309886192239133415604003839297957074
-0.76892911010558069381598793363499246428)
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> P<t>:=PolynomialAlgebra(R);
> f:=P![x[i]:i in [1..6]];
> f;
-0.76892911010558069381598793363499246428*t^5 +

1.5309886192239133415604003839297957074*t^4 -
3.5976621417797888386123680241327299796*t^3 +
4.4834258878376525435348964760729466078*t^2 -
1.9442719045660222130810366104483752030*t +
0.49609214315096668037844508432743729396

> Evaluate(f,-7);
18067.087206910736322501028383381324670
> quit;


