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1. For each of the following operations, determine whether or not the set Z of
integers is a group under the operation: addition, subtraction, multiplication,
division.

Solution.

Remember that an operation on a set S is, by definition, a rule that takes
pairs of elements of S as input, and yields an element of S as output. The
question asserts that addition, subtraction, multiplication and division are
operations on Z, but this is something that ought to be checked. In fact,
division is not an operation on Z: for one thing, x/y is not defined for all
pairs of integers x and y—specifically, it is not defined when y is zero—and,
for another, the result of dividing an integer by an integer is not necessarily
an integer.
Since division does not even determine an operation on Z, it is certainly not
true that Z is a group under division.
It is true that Z is a group under addition. The associative law is satisfied
((x + y) + z = x + (y + z) for all x, y, z ∈ Z), and the number 0 satisfies the
requirements of the second axiom: x + 0 = 0 + x = x for all x ∈ Z, and for
all x ∈ Z there is a y ∈ Z (namely, y = −x) such that x + y = y + x = 0.
It is not true that Z is a group under subtraction, since the associative law
does not hold for subtraction. For example, 3−(2−1) = 2 but (3−2)−1 = 0.
It is not true that Z is a group under multiplication. The number 1 is an
identity element for this operation, and it is the only identity element since
(as was proved in lectures) an operation can have at most one identity element.
But now the second part of the second axiom is not satisfied: it is not true
that for all x ∈ Z there is a y ∈ Z such that xy = 1. This can be proved by
taking x = 2: there is no y ∈ Z such that 2y = 1 (since 1

2 /∈ Z).

2. Check that the set C\{0} (the set of all nonzero complex numbers) is a group
under multiplication of complex numbers (defined in the usual way).

Solution.

The properties of complex numbers that are needed here should be familiar
from junior level maths. However, we shall write out proofs based on the even
more familiar properties of real numbers.
Every complex number can be uniquely expressed in the form a + bi, where a
and b are real numbers, i being a fixed square root of −1. Multiplication of
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complex numbers is given by the formula
(a + bi)(c + di) = (ac− bd) + (ad + bc)i (1)

for all a, b, c, d ∈ R. This unambiguously defines αβ for all α, β ∈ C, since
we can uniquely write α as a + bi and β as c + di. For this question, we
need to show that it defines an operation on C\{0}. In other words, we need
to show that if α and β are arbitrary nonzero complex numbers then αβ is
defined and is a nonzero complex number. Since Eq. (1) above defines αβ as
a complex number, we need to prove that it is nonzero. However, we shall
prove some other things first.
We start by proving that multiplication of complex numbers is associative.
Let α, β and γ be arbitrary complex numbers. Then we have α = p + qi,
β = r + si and γ = t + ui for some p, q, r, s, t, u ∈ R, and (1) gives

α(βγ) = (p + qi)((r + si)(t + ui))
= (p + qi)((rt− su) + (ru + st)i)
= (p(rt− su)− q(ru + st)) + (p(ru + st) + q(rt− su))i
= (prt− psu− qru− qst) + (pru + pst + qrt− qsu)i
= ((pr − qs)t− (ps + qr)u) + ((pr − qs)u + (ps + qr)t)i
= ((pr − qs) + (ps + qr)i)(t + ui)
= ((p + qi)(r + si))(t + ui) = (αβ)γ.

Hence the associative law is satisfied.
Next, observe that 1 = 1 + 0i is an identity element for complex multipli-
cation: if we put a = 1 and b = 0 in (1) then the right hand side becomes
(1c−0d)+(1d+0c)i = c+di, showing that 1β = β for all β ∈ C, and similarly
putting c = 1 and d = 0 in (1) shows that α1 = α for all α ∈ C.
If α ∈ C\{0} then α = a + bi for some a, b ∈ R that are not both zero. Then
a2 + b2 > 0, and we may define c + di ∈ C by c = a

a2+b2 and d = −b
a2+b2 . This

gives ac− bd = a2

a2+b2 + b2

a2+b2 = 1, and ad + bc = −ab
(a2+b2 + ba

a2+b2 = 0, so that
Eq. (1) gives (a+bi)(c+di) = 1. Similarly, (c+di)(a+bi) = 1, and so we have
shown that for each α ∈ C\{0} there is an α−1 such that αα−1 = α−1α = 1.
Finally, we show that the product of two nonzero complex numbers is nonzero.
Let α, β ∈ C\{0}, and suppose (for a contradiction) that αβ = 0. Since α 6= 0
and β 6= 0, there exist α−1, β−1 ∈ C with α−1α = 1 and ββ−1 = 1. Since
the right hand side of (1) is zero if a = b = 0 or if c = d = 0, we know that
γδ = 0 if γ = 0 or if δ = 0. Now since αβ = 0 by hypothesis, we have
0 = α−10 = α−1(0β−1) = α−1((αβ)β−1) = α−1(α(ββ−1)) = (α−1α)(ββ−1),
by two applications of the associative law. Since this immediately gives 0 = 1,
we have obtained the desired contradiction.
This last paragraph shows that multiplication does define an operation on
C\{0}. The preceding calculations showed that it is associative and has an
identity element, and that each element of C\{0} has an inverse with respect
to this operation. Hence C\{0} is a group under the operation.



3

3. Consider a fixed row in the multiplication table of a group G. The row
contains all the products ax, where a is fixed and x varies.

(i) Show that no element occurs twice in the row. (Hint : if an element
occurred twice it would mean that ax = ay for some x and y with
x 6= y. Multiply both sides of this equation by a−1.)

(ii) Show that every element of G occurs in the row. (Hint : to show that b
occurs you must find an x such that ax = b; you should be able to find
a suitable formula for x in terms of a and b.)

(iii) Redo This question replacing “row” by “column”.

Solution.

(i) Suppose that b occurs twice in the row that contains all the products ax,
where x runs through the elements of G. Then there exist two distinct
elements x, y ∈ G with ax = ay = b. But now

x = ex = (a−1a)x = a−1(ax) = a−1(ay) = (a−1a)y = ey = y,

contradicting x 6= y.
(ii) Let b ∈ G be arbitrary, and put x = a−1b. Then

ax = a(a−1b) = (aa−1)b = eb = b,

showing that b occurs in the row corresponding to a.
(iii) Since b = be = b(a−1a) = (ba−1)a, we see that b occurs in the column

corresponding to a. If it occurred twice we would have xa = ya = b for
some x, y ∈ G with x 6= y, but then

x = xe = x(aa−1) = (xa)a−1 = (ya)a−1 = y(aa−1) = ye = y,

giving a contradiction.

4. Suppose that the vertices of an equilateral triangle lie at points labelled
1, 2 and 3 (anticlockwise). Let ρ be the symmetry given by an anticlock-
wise rotation of the triangle through 120◦, and let ρ′ similarly be given by a
clockwise rotation through 120◦. For each i ∈ {1, 2, 3}, let σi be the reflection
in the line through the point labelled i perpendicular to the line joining the
other two points.

(i) Determine the permutations associated with each of the symmetries of
the triangle.

(ii) Write out the full multiplication table for the group of symmetries of the
triangle. (List the symmetries in the following order: e ( = identity), ρ,
ρ′, σ1, σ2, σ3.)

(iii) Check that the composite of the symmetry associated with the permu-
tation (1, 2, 3) followed by the symmetry associated with (1, 2) is the
symmetry associated with (1, 2, 3)(1, 2) = (2, 3). (You may find it useful
to label the vertices of the triangle A, B and C. The symmetries move
A, B and C but leave the locations 1, 2 and 3 fixed.)
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Solution.

The identity symmetry corresponds to id, the identity permutation; ρ cor-
responds to (1, 2, 3) and ρ′ to (1, 3, 2), and σ1, σ2, σ3 to (2, 3), (1, 3), (1, 2)
respectively. The multiplication table is as follows:

e ρ ρ′ σ1 σ2 σ3

e e ρ ρ′ σ1 σ2 σ3

ρ ρ ρ′ e σ2 σ3 σ1

ρ′ ρ′ e ρ σ3 σ1 σ2

σ1 σ1 σ3 σ2 e ρ′ ρ
σ2 σ2 σ1 σ3 ρ e ρ′

σ3 σ3 σ2 σ1 ρ′ ρ e

The diagram shows that the composite of ρ followed by σ3 equals σ1—as

it should, since 1
(1,2,3)7−−→ 2

(1,2)7−−→ 1 = 1(2,3), 2
(1,2,3)7−−→ 3

(1,2)7−−→ 3 = 2(2,3) and

3
(1,2,3)7−−→ 1

(1,2)7−−→ 2 = 3(2,3). All entries of the table can be checked similarly.

A

1

B
2

C
3

C

1

A
2

B
3

A

1

C
2

B
3

(1,2,3)

ρ

(1,2)

σ3

(2,3), σ1

σ1

σ3 σ2

ρ

ρ′

1

2 3

5. For each element a of the group of symmetries of an equilateral triangle, find
the smallest positive integer n such that an = e.

Solution.

In any group, the order of an element a is defined to be the least positive
integer n such that an is the identity (or infinity if there is no such integer).
From the table we see that ρ2 = ρ′, and ρ3 = ρρ′ = e. Hence ρ has order 3.
The other orders are found similarly: Element e ρ ρ′ σ1 σ2 σ3

Order 1 3 3 2 2 2
.

6. Let S be the set {2, 4, 6, 8}. Define an operation ∗ on S as follows: for all
a, b ∈ S, let a ∗ b be the final digit in the standard base 10 notation for the
product ab. (Thus, 8 ∗ 8 = 4, since 8× 8 = 64.) Write out the multiplication
table for ∗, and determine whether or not S is a group under this operation.

Solution.

This operation does make S into a group. The multiplica-
tion table is the same as for the group of complex numbers
{1, i,−1,−i} under multiplication. The elements of the
group can be written as x0 = identity, x, x2, x3, where
x4 = identity. In this example we can take x = 2; the identity is 6. Groups
with this structure are said to be cyclic of order 4.

∗ 6 2 4 8

6 6 2 4 8
2 2 4 8 6
4 4 8 6 2
8 8 6 2 4


