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1. Use det(AB) = det Adet B and det*A = det A to prove that the de-
terminant of a real orthogonal matrix must be £1. (A 3 x 3 real
orthogonal matrix corresponds to a rotation of the coordinate axes if
its determinant is 1; orthogonal matrices of determinant —1 change
right-handed coordinate systems into left-handed ones.)

Solution.
1 =det I = det(*AA) = det *Adet A = (det A)?, and so det A = +1.

2. Find a rotation of the coordinate axes which changes the equation of
the given quadric surface to the form a(z)?+b(y')?+c(z')? = constant.

(1) 622+ 4y? — 422 4 20y — 622 + 2yz = 140
(i) 4x? — 14y + 1222 — 22y — 222 — 10yz = —780
(1) 42? + 12y% + 222 + 22y + 222 + 6yz = 104

Solution.

(i) The equation can be written as 'z Az = 140, where

x 6 1 -3
z=\|y | and A= 1 4 1
z -3 1 -4

A rotation of coordinate axes is a change of variable of the form
x = Pz’, where P is an orthogonal matrix of determinant 1, and
we need to choose P so that '*PAP is diagonal.

The first step is to find the eigenvalues and corresponding eigenspaces
of the matrix A. The characteristic polynomial of A (the determinant

of A—xal) is

(6 —2)((4-2)(-4-2)-1) -

(4 —2z)+3)—3(1+ 34 —2x))
(6 —z)(z*> —17) + x4+ 1+ 92 — 39
= — (2 — 622 — 27z + 140)
=—(x—=T7)(x+5)(x—4)

so that the eigenvalues are 7, —5 and 4.

To find the eigenspace corresponding to the eigenvalue 7 we must solve
the equations (A — 7I)x = Q. Applying the pivoting algorithm (row
operations) to A — 71 gives

~1 1 =3\ mycroan, (1 -1 3
1 -3 1 |Be=Ra=3Ri|(g —2 —2
R1Z:7R1
-3 1 —-11) — \0 -2 =2

RgZ:Rg—RQ
Rg::(—1/2)R2
R1:=R1+R>

S O =
O = O
S = o

and it follows that the column *(—4, —1, 1) spans the eigenspace. Sim-
ilarly, row operations applied to the matrices A + 51 and A — 41 give
the reduced echelon matrices

1 0 —2/7 10 1
01 1/7 |and [0 1 —5
00 0 00 0

respectively, and we see that *(2,—1,7) and *(—1,5,1) span the corre-
sponding eigenspaces. The theory tells us that the eigenspaces must
be orthogonal to each other relative to the dot product on R? (since
A is symmetric), and it is advisable (and quick) to check this at this
point. For instance,

—4 2
1| [-1]=(-49x2+(-1)x(-1)+1x7=-8+1+7=0.
1 7

Choose a unit vector in each of the eigenspaces and let P be the matrix
with these unit vectors as its columns. Then P will be orthogonal. Its
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determinant will be either 1 or —1; if it turns out to be —1 simply re-
placing one of the columns by its negative will change the determinant
to 1, thereby ensuring that P is a rotation matrix. There are exactly
24 suitable matrices P, one of which is

—4/V/18  2/VB4  —1/\/27
P=|-1/V18 —1/V/54 5/\/27
1/V18  7/V/54  1/V/27

(The other possibilities are obtainable by writing the columns down in
some other order and/or changing the signs of some of the columns.)
Our choice of P converts the equation to 7(z’)? —5(y’)% +4(z")? = 140.
Such a surface is known as a “hyperboloid of one sheet”. The intersec-
tion of our surface with any of the planes y’ = constant (that is, planes
parallel to the z’z’-plane) is an ellipse 7(z')? +4(2")? = constant whose
size increases rapidly as y' goes to +oo. The planes 2’ = constant
and z/ = constant intersect the surface in hyperbolas. The effect is
somewhat like rotating the hyperbola 7(z')? — 5(y')?> = 140 about
the y/-axis, although the “rotation” is elliptical rather than circular.
(More exactly, rotate X? — Y2 = 1 about the Y-axis, to obtain the
surface X? — Y2+ Z2 = 1, then stretch the coordinate axes by putting

' =+/20X,y = +/28Y and 2’ = /357.)

(i) The calculations are totally analogous to those in the first part.
The characteristic polynomial is

4-—z)((-14—2)(12—2)—25)+ (—(12—2) —=5) — (b + (14 —2))
=(4—2)(2?+22-193) +z— 17T+ +9
= (4 — z)(2* + 2z — 195)
=—(x —4)(x + 15)(x — 13)

giving eigenvalues of 4, —15 and 13. Applying row operations to A—41,
A+ 151 and A — 131 one easily obtains the reduced echelon matrices

10 —13 10 -1/3 1 0 1/11
01 1 |,(o0o 1 —16/3]and [0 1 2/11
00 0 00 0 00 0

respectively. The following matrix P has determinant 1 and unit vec-
tors from the three eigenspaces as its columns:

13/V/171  1/y/266 —1//126
P=|-1/V/171 16/v/266 —2/v/126
1/vV171  3/4/266  11/y/126
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Putting x = Pg’ gives the equation 4(z')% — 15(y)? + 13(2")? = —780.
The surface is a hyperboloid of two sheets, obtained by rotating the
hyperbola X? — Y2 = —1 about the Y-axis and then stretching the
axes. (“T'wo sheets” because the surface has two parts which are not
connected to each other, on opposite sides of the plane Y = 0.)

(éi1) This time the characteristic polynomial is
A-—z)((12-2)2-2)—9)—(2—-2)—3)+(3—(12—2))
=4-2)(2* -4z +15)+x+1+2—9
= (4—x)(2® — 14z + 13)
=—(z—4)(x —1)(z — 13)

so that the eigenvalues are 4, 1 and 13. Row operations applied to
A—4I, A—1T and A — 131 yield the reduced echelon matrices

1 0 -5 1 0 1/4 10 —1/2
01 1],]l0 1 1/4)and [0 1 —7/2],
00 0 00 0 00 0

and consequently we find that a suitable rotation matrix is

5/V27  1/V/18  1/V/54
P=|-1/v27 1/V/18 7/\/54
1/V27  —4/V18 2/v/54

The equation of the surface becomes 4(z')? + (y')? + 13(2')? = 104,
and we see that it is an ellipsoid (like a severely maltreated sphere).

A square complex matrix A is said to be normal if it commutes with

A*. (That is, AA* = A*A. Here A* ef YA.) Prove that if A is normal
and U is unitary then U* AU is normal.

Solution.

Since the transpose conjugate operation * reverses products we see
that (U*AU)* = U*A*(U*)* = U*A*U. Since U is unitary we have
that UU* = I, and now
(UAU)"(U*AU) =U*A"UUAU = U*A*AU
=U"AA"U =UAUU*A*U = (U*AU)(U*AU)*,

showing that U* AU is normal.
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4. Let A be a complex nxn matrix and suppose that there exists a unitary

matrix U such that U* AU is diagonal. Prove that A(A*) = (A*)A.
(Hint: Let D = U*AU, and prove first that D(D*) = (D*)D.)

Solution.

It is trivial that D1 Do = DsDq if Dy and D, are both diagonal
matrices. If D is diagonal then so is D*, whence we deduce that
DD* = D*D. Now since U* = U~! the equation D = U*AU gives
A=UDU*, and (as in Exercise 3)

A*A = (UDU*)*(UDU*) = UD*U*UDU* = UD*DU*
= UDD*U* = UDU*UD*U* = (UDU*)(UDU*)* = AA*.

(i) Suppose that A € Mat(n x n,C) is normal and upper triangular.
Prove that A is diagonal.
(Hint: ‘Upper triangular’ means A;; = 0 for ¢ > j. Prove that
the (1,1)-entry of A(A*) is Y1, |A1;|> whereas the (1,1)-
entry of (A*)A is |A11]?, and deduce that A;; = 0 for all
j > 1. Then consider the (2,2)-entries of A(A*) and (A*)A,
then (3,3), and so on.)

(ii) Tt can be shown that for any A € Mat(n x n,C) there exists
a unitary matrix U such that U*AU is upper triangular. (The
proof of this is very similar to the proof of Theorem 5.19.) Use
this fact together with Exercise 3 and Part (i) to prove that
for every normal matrix A there exists a unitary U with U* AU
diagonal.

Solution.

(i) We use induction on ¢ to prove

($) A;j = 0 for all j > i.

Let us use the notation X, ¢ for the (r, s)-entry of a matrix X. Then
(1,1)-entry of AA* is given by

(AA ) =) Ay(AN)j =D AyAy =) Ayl
j=1 j=1 j=1

while the (1, 1) entry of A*A is

n

(A"A) =D (Adn =Y AnAn =) |Aal
i=1 =1

i=1
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Since A;; = 0 for i > 1 it follows that (4*A);; = |A;1|>. But
(A*A)1; = (AA*)11 (since A is normal), and so

n

0= (A4%)1 — (A"A) Z A7) = 1Au P =) 1Ay

j=1 §>1

Since each |A;;|? is real and nonnegative, the only way that this sum
can be zero is if each term is zero. So A;; = 0 for all j > 1, proving
that ($) is satisfied in the case i = 1.

Let k > 1 and assume that ($) is satisfied for all ¢ < k. In particular,
putting j = k in ($) this gives A;; = 0 for all i < k. We also have that
A = 0 for all ¢ > k since A is upper triangular. So A;, = 0 for ¢ # k,

and
n

(A" A =D (A" ridi = Y A A = | A *.

i=1 i=1

Furthermore, Ay; = 0 for all j < k (since A is upper triangular), and
S

(AA ) =D Agj(A%)jk = Y Ak Ar;
j=1

=1
n n

=Y AP =D 1Akl
7j=1 =k

Normality of A gives (A*A)gr = (AA™)kx; therefore

0= (AA")r — (A" A = O 1Aki [*) — 1Ak =D 1Ak,

j=k j>k

and this forces Ay; = 0 for all j > k. So ($) holds for i = k, and our
induction is complete.

So ($) holds for all 4, whence A is lower triangular as well as upper
triangular. So A is diagonal.

(i) Let A be normal and choose a unitary U such that T'= U*AU
is upper triangular. Exercise 3 says that T is normal; so by Part (i) it
must be diagonal.



