
The University of Sydney

MATH2902 Vector Spaces
(http://www.maths.usyd.edu.au/u/UG/IM/MATH2902/)

Semester1, 2001 Lecturer: R. Howlett

Tutorial 11

1. Let θ: R3 → R2 be defined by θ

(
x

y

z

)
=
(

1 1 1

2 0 4

)( x

y

z

)
. Calculate the matrix

of θ relative to the bases

d =
((

1

−1

1

)
,

(
3

−2

2

)
,

(−2

4

−3

))
and c =

((
0

1

)
,
(

1

1

))
of R3 and R2.

Solution.

θ

 1
−1
1

 =
(

1 1 1
2 0 4

) 1
−1
1

 =
(

1
6

)
= 5

(
0
1

)
+
(

1
1

)

and so the first column of the matrix of θ relative to these bases is
(

5
1

)
.

Similarly

θ

 3
−2
2

 = 11
(

0
1

)
+ 3

(
1
1

)
and

θ

−2
4
−3

 = −15
(

0
1

)
−
(

1
1

)

and so the matrix of θ is (
5 11 −15
1 3 −1

)
.

2. (i) Let φ: R2 → R be defined by φ

(
x
y

)
= ( 1 2 )

(
x
y

)
. Calculate the

matrix of φ relative to the bases

c =
((

0

1

)
,
(

1

1

))
and b = (−1)

2

of R2 and R.
(ii) With φ as in (i) and θ as in Exercise 1 calculate φθ and its matrix relative

the two given bases. Hence verify that Mbd(φθ) = Mbc(φ) Mcd(θ).

Solution.

(i) Since φ

(
0
1

)
= 2 = (−2)× (−1) and φ

(
1
1

)
= (−3)× (−1) the required

matrix is (−2 −3 ).
(ii)

(φθ)

x
y
z

 = ( 1 2 )
(

1 1 1
2 0 4

)x
y
z

 = ( 5 1 9 )

x
y
z

 .

Hence we find that

(φθ)

 1
−1
1

 = ( 5 1 9 )

 1
−1
1

 = 13 = (−13)× (−1),

and similarly

(φθ)

 3
−2
2

 = (−31)× (−1) (φθ)

−2
4
−3

 = 33× (−1)

so that the matrix of φθ relative to 1
−1
1

 ,

 3
−2
2

 ,

−2
4
−3

 and (−1)

is (−13 −31 33 ). Now according to Theorem 7.5 this should equal the
matrix of φ multiplied by the matrix of θ; that is, by our answers above,

(−2 −3 )
(

5 11 −15
1 3 −1

)
.

Calculation shows that it is.

3. Suppose that θ: R6 → R4 is a linear transformation with kernel of dimension 2.
Is θ surjective?

Solution.

(Dimension of image) = (dimension of domain)− (dimension of kernel); thus
dim(im θ) = 6−2 = 4. So the image is a 4-dimensional subspace of R4, hence
equals the whole of R4. Hence θ is surjective.
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4. For each of the following linear transformations calculate the dimensions of
the kernel and image, and check that your answers are in agreement with the
Main Theorem on Linear Transformations.

(i) θ: R4 → R2 given by θ

( x

y

z

w

)
=
(

2 −1 3 5

1 −1 1 0

)( x

y

z

w

)
.

(ii) θ: R2 → R3 given by θ
(

x

y

)
=
(

4 −2

−2 1

−6 3

)(
x

y

)
.

(iii) θ:V → V given by θ(p(x)) = p′(x), where V is the space of all polyno-
mials over R of degree less than or equal to 3.

Solution.

(i). To find the kernel we must solve the equations

(3)
(

2 −1 3 5

1 −1 1 0

)( x

y

z

w

)
=
(

0

0

)
.

Row reduction gives the reduced echelon matrix
(

1 0 2 5

0 1 1 5

)
. Assigning the

arbitrary values λ and µ to the free variables z and w gives the general solution

(4)

( x

y

z

w

)
=

(−2λ−5µ

−λ−5µ

λ

µ

)
= λ

(−2

−1

1

0

)
+ µ

( 5

5

0

1

)

so that the kernel is a 2-dimensional space. The image of θ is the column-
space of the matrix and it can be seen that the first two columns (those
corresponding to the non-free variables) form a basis for this columnspace.
To see that they span, observe that since λ = 1 and µ = 0 in (4) gives a

solution to (3), we have
(

2 −1 3 5

1 −1 1 0

)(−2

−1

1

0

)
=
(

0

0

)
, which can alternatively

be written as
(

3

1

)
= 2

(
2

1

)
+
(
−1

−1

)
, showing that the third column is a

linear combination of the first two. Similarly putting λ = 0 and µ = 1
shows that the fourth column is a linear combination of the first two; so the
third and fourth columns are in the space spanned by the first two. To see
that the first two columns are linearly independent, observe that if we had

α
(

2

1

)
+ β

(
−1

−1

)
=
(

0

0

)
then

( α

β

0

0

)
would be in the kernel of θ; however,

from our description of the kernel above we see that the only element of the
kernel which has zeros in the third and fourth entries is obtained by putting
λ = µ = 0, and this gives α = β = 0. So the image has dimension 2, and
dim(im(θ))+dim(ker(θ)) = 2+2 = 4 = dim(R4), in agreement with the Main
Theorem, since R4 is the domain of θ.
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(ii). Use the same method as in the previous part. The row-reduced echelon

matrix is
(

1 −1/2

0 0

0 0

)
. Thus the kernel has dimension 1,

(
2

1

)
being a basis,

and the image has dimension 1, the first column of the given matrix being a
basis. This checks, since the domain of θ is R2.
(iii) dim V = 4, since (1, x, x2, x3) is a basis. The kernel of θ is the set of
all polynomials in V with derivative zero; this is just the set of all constant
polynomials, and is a one dimensional space. The image of θ is
im θ = { θ(a0 + a1x + a2x

2 + a3x
3) | ai ∈ R } = { a1 + 2a2x + 3a3x

2 | ai ∈ R }
which is the set of all polynomials of degree less than or equal to 2, and has
dimension 3. This checks, since 3 + 1 = 4. Observe that we could also have
used the same method as in parts (i) and (ii), using the fact that the matrix

of θ relative to the above basis of V is

( 0 1 0 0

0 0 2 0

0 0 0 3

0 0 0 0

)
.

5. Is it possible to find a 3 × 2 matrix A, a 2 × 2 matrix B and a 2 × 3 matrix
C such that

ABC =

 2 2 2
3 3 0
4 0 0

?

Solution.

No. The general theory shows that the rank of XY is always less than or
equal to the rank of X and less than or equal to the rank of Y . So the
rank(ABC) ≤ rank(B) (for example). Since B is 2× 2 its rank is at most 2.
However, the given 3× 3 matrix clearly has rank 3, since its rows are linearly
independent.

6. Let V and W be finitely generated vector spaces of the same dimension and
let θ:V → W be a linear transformation. Use the Main Theorem on Linear
Transformations to prove that θ is injective if and only if it is surjective.

Solution.

Let n = dim V = dim W . The Main Theorem gives
dim ker θ + dim im θ = n,

and so we conclude that dim ker θ = 0 if and only if dim im θ = n.
A linear transformation is injective if and only if its kernel is 0 (Proposi-
tion 3.15), and {0} is the one and only subspace of V of dimension zero (see
4.1.5). So θ is injective if and only if dim ker θ = 0.
The one and only n dimensional subspace of an n dimensional space is the
space itself (see 4.11), and so dim im θ = n if and only if im θ = W . Since
by definition θ is surjective if and only if im θ = W , we conclude that θ is
surjective if and only if dim im θ = n.
Combining the conclusions of these three paragraphs completes the proof.


