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1. Let A be an n × n matrix whose rank is less than n. Prove that 0 is an
eigenvalue of A.

Solution.

Since the rank of A plus the nullity of A is n, the assumption that the rank
is less than n gives that the nullity is nonzero. Hence the (right) null space
of A contains a nonzero vector. If v

˜
is any such, then Av

˜
= 0

˜
= 0v

˜
, which

shows that v is an eigenvector of A with 0 the corresponding eigenvalue.

2. Let V be a vector space and S and T subspaces of V such that V = S ⊕ T .
Prove or disprove the following assertion:

If U is any subspace of V then U = (U ∩ S) ⊕ (U ∩ T ).

Solution.

Let V = R2, let S be the set of all scalar multiples of
(

1

0

)
and let T be the

set of all scalar multiples of
(

0

1

)
. Then V = S ⊕ T . (We have chopped the

standard basis of R2 into two pieces and defined S and T to be the spaces
spanned by these pieces.) Now if we define U to be the set of all scalar
multiples of

(
1

1

)
we see that U ∩S and U ∩ T both consist of the zero vector

alone, and so it is certainly not true that U = (U ∩ S)⊕ (U ∩ T ).

3. (i) Let A, B and C be n× n matrices, and suppose that the column space
of B equals the column space of C. Prove that the column space of AB
equals that of AC. (Hint: Use Proposition 7.16 of the text.)

(ii) Let A be an n× n matrix and suppose that the rank of A4 is the same
as the rank of A3. Prove that A5 and all higher powers of A also have
this same rank. (Hint: Apply Part (i) with B = A3 and C = A4.)

Solution.

(i) Proposition 7.16 says that u 7→ Au defines a surjective map from CS(B)
to CS(AB). Hence

(1) CS(AB) = {Au | u ∈ CS(B) }.
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Applying the same proposition with C in place of B gives

(2) CS(AC) = {Au | u ∈ CS(C) }.

Since CS(B) = CS(C) the right hand side of (1) equals the right hand side of
(2), and so the left hand sides are equal too, as required.

(ii) Recall that the rank of a matrix is the dimension of its column space.
Thus we are given that the column spaces of A3 and A4 have the same di-
mension. But Proposition 3.21 tell us that the column space of A4 is con-
tained in the column space of A3. (You can see it as follows. The equation
A4 = A3A shows that the jth column of A4 is A3aj , where aj is the jth col-
umn of A. Hence the columns of A4 are linear combinations of the columns
of A3.) A subspace whose dimension equals that of the whole space must
equal the whole space (see Proposition 4.11), and so we can conclude that
CS(A4) = CS(A3). Now Part (i) gives CS(A5) = CS(A4), and applying it
again gives CS(A6) = CS(A5), and so on. Taking dimensions gives the result.

4. Let V and W be vector spaces over the field F and let b = (v1, v2, . . . , vn)
and c = (w1, w2, . . . , wm) be bases of V and W respectively. Let L(V,W )
be the set of all linear transformations from V to W , and let Mat(m× n, F )
be the set of all m × n matrices over F . We know that Mat(m × n, F ) is
a vector space over F , and we have seen in Question 3 of Tutorial 5 that
L(V,W ) is too. Let Ω: L(V,W ) → Mat(m× n, F ) be the function defined by
Ω(θ) = Mcb(θ) for all θ ∈ L(V,W ).

(i) Prove that Ω is a linear transformation. (Hint: The task is to prove
that Mcb(φ + θ) = Mcb(φ) + Mcb(θ) and Mcb(λφ) = λ Mcb(φ). Now the
jth column of Mcb(φ + θ) is cvc((φ + θ)(vj)) while the jth columns of
Mcb(φ) and Mcb(θ) are cvc(φ(vj)) and cvc(θ(vj)). Use the definition of
φ + θ and fact that x 7→ cvc(x) is linear to prove that the jth column of
Mcb(φ + θ) is the sum of the jth columns of Mcb(φ) and Mcb(θ).)

(ii) Prove that the kernel of Ω is {z}, where z:V → W is the zero function.

(iii) Prove that Ω is a vector space isomorphism. (Hint: By the first two
parts we know that Ω is linear and injective; so surjectivity is all that
remains. That is, given a m × n matrix M we must show that there is
a linear transformation θ from V to W having M as its matrix. Now
the coefficients of M determine what θ(vi) has to be for each i, and
Theorem 4.18 guarantees that such a linear transformation exists.)

(iv) Find a basis for L(V,W ). (Hint: (Find a basis of Mat(m × n, F ) first.
The corresponding linear transformations will give the desired basis of
L(V,W ).)
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Solution.

Let φ, θ ∈ L(V,W ) and let λ ∈ F . For each j (from 1 to n) we have

cvc((φ + θ)(vj)) = cvc(φ(vj) + θ(vj)) (by definition of φ + θ)
= cvc(φ(vj)) + cvc(θ(vj))

since the mapping cvc:W → Fm given by x 7→ cvc(x) an isomorphism. Hence
the jth column of Mcb(φ + θ) is the sum of the jth columns of Mcb(φ) and
Mcb(θ); hence Mcb(φ+θ) = Mcb(φ)+Mcb(θ). That is, Ω(φ+θ) = Ω(φ)+Ω(θ).
Similarly, for each j the jth column of Mcb(λφ) is cvc((λφ)(vj)), which equals
cvc(λ(φ(vj))) = λ cvc(φ(vj)) (by definition of λφ and linearity of the mapping
cvc). Hence Mcb(λφ) = λ Mcb(φ); that is, Ω(λφ) = λΩ(φ). This proves (i).
The kernel of Ω is the set of all φ in L(V,W ) such that Mcb(φ) is the zero
matrix. The fact that Ω is linear guarantees that z, the zero of L(V,W ), is
in the kernel. If φ is an arbitrary element of the kernel then cvc(φ(vj)) = 0
for each j, since cvc(φ(vj)) is the jth column of Mcb(vj). Since cvc is an
isomorphism we deduce that φ(vj) = 0 for all j, and it follows by linearity of
φ that φ(v) = 0 for all v ∈ V . That is, φ = z. So z is the only element of the
kernel.
Let A ∈ Mat(m × n, F ) be arbitrary and for each j let αj ∈ Fm be the jth

column of A. Since cvc is an isomorphism there exist wj ∈ W such that
cvc(wj) = αj , and since linear transformations can be defined arbitrarily on
a basis (Theorem 4.18) there is a φ ∈ L(V,W ) such that φ(vj) = wj for each
j. Clearly now Mcb(φ) = A; that is, Ω(φ) = A. So Ω is surjective.
If Ekl is the matrix in Mat(m × n, F ) which has 1 as the (k, l)th entry and
zeros elsewhere then the matrices (Ekl | 1 ≤ k ≤ m, 1 ≤ l ≤ n ) form
a basis for L(V,W ). In fact if A ∈ Mat(m × n, F ) has (i, j)th entry αij

then A =
∑

αijEij , and this is the unique way of expressing A as a linear
combination of the Ekl. It is a general fact that an isomorphism of vector
spaces will map a basis of one space to a basis of the other. (See Theorem 4.19
and Exercise 3 of Tutorial 4.) So to find a basis of L(V,W ) it suffices to find
linear transformations φkl:V → W such that Ω(φkl) = Ekl (for 1 ≤ k ≤ m,
1 ≤ l ≤ n). By Theorem 4.18 we know that (for each k and l) there is a linear
transformation φkl satisfying

φkl(vj) =
{

0 if j 6= l
wk if j = l

and, by the definition of the matrix of a linear transformation, we see that
the matrix of φkl relative to b and c has its jth column equal to zero unless
j = l, while the lth column is cvc(vk), which has 1 as its kth entry and
all other entries zero. Thus Mcb(φkl) = Ekl, and, by the remarks above,
( φkl | 1 ≤ k ≤ m, 1 ≤ l ≤ n ) is a basis for L(V,W ).


