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1. Let A be an n x n matrix whose rank is less than n. Prove that 0 is an
eigenvalue of A.

Solution.

Since the rank of A plus the nullity of A is n, the assumption that the rank
is less than n gives that the nullity is nonzero. Hence the (right) null space
of A contains a nonzero vector. If v is any such, then Ay = Q = Ov, which
shows that v is an eigenvector of A with 0 the corresponding eigenvalue.

2. Let V be a vector space and S and T subspaces of V such that V =S¢ T.
Prove or disprove the following assertion:

If U is any subspace of V then U = (UNS)® (UNT).

Solution.
Let V = R2, let S be the set of all scalar multiples of (é) and let T be the

set of all scalar multiples of ((1)) Then V =S @®T. (We have chopped the

standard basis of R? into two pieces and defined S and T to be the spaces
spanned by these pieces.) Now if we define U to be the set of all scalar

multiples of (1) we see that U NS and U NT both consist of the zero vector
alone, and so it is certainly not true that U = (UNS)® (UNT).

3. (i) Let A, B and C be n X n matrices, and suppose that the column space
of B equals the column space of C'. Prove that the column space of AB
equals that of AC. (Hint: Use Proposition 7.16 of the text.)

(7i) Let A be an n x n matrix and suppose that the rank of A* is the same
as the rank of A3. Prove that A® and all higher powers of A also have
this same rank. (Hint: Apply Part (i) with B = A% and C = A%)
Solution.

(7) Proposition 7.16 says that u — Au defines a surjective map from CS(B)
to CS(AB). Hence

(1) CS(AB) = { Au | u € CS(B) }.
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Applying the same proposition with C' in place of B gives
(2) CS(AC) ={Au|ue CS(C)}.

Since CS(B) = CS(C) the right hand side of (1) equals the right hand side of
(2), and so the left hand sides are equal too, as required.

(i) Recall that the rank of a matrix is the dimension of its column space.
Thus we are given that the column spaces of A% and A* have the same di-
mension. But Proposition 3.21 tell us that the column space of A* is con-
tained in the column space of A3. (You can see it as follows. The equation
A* = A3 A shows that the j' column of A% is A%a;, where a; is the j'™ col-
umn of A. Hence the columns of A% are linear combinations of the columns
of A3.) A subspace whose dimension equals that of the whole space must
equal the whole space (see Proposition 4.11), and so we can conclude that
CS(A%) = CS(A3). Now Part (i) gives CS(A4%) = CS(A?), and applying it
again gives CS(A%) = CS(A%), and so on. Taking dimensions gives the result.

Let V and W be vector spaces over the field F' and let b = (vq,va,... ,v,)
and ¢ = (wy,ws, ... ,wy,) be bases of V and W respectively. Let L(V, W)
be the set of all linear transformations from V' to W, and let Mat(m x n, F')
be the set of all m x n matrices over F. We know that Mat(m x n, F) is
a vector space over F', and we have seen in Question 3 of Tutorial 5 that
L(V,W) is too. Let Q:L(V,W) — Mat(m x n, F') be the function defined by
Q(0) = Mep(0) for all 6 € L(V, W).

(i) Prove that 2 is a linear transformation. (Hint: The task is to prove
that Meb (¢ +6) = Meb(¢) + Meb(0) and Meb(Ad) = AMep(¢). Now the
J™ column of Mep(¢p + 0) is cve((¢ + 0)(vj)) while the j*® columns of
Meb(¢) and Mep(0) are cve(P(v;)) and cve(0(v;)). Use the definition of
¢+ 0 and fact that x +— cv(z) is linear to prove that the j** column of
Meb(¢ + 0) is the sum of the j** columns of Mep(¢) and Mep(6).)

(i) Prove that the kernel of Q is {z}, where z: V' — W is the zero function.

(iii) Prove that € is a vector space isomorphism. (Hint: By the first two
parts we know that {2 is linear and injective; so surjectivity is all that
remains. That is, given a m X n matrix M we must show that there is
a linear transformation 6 from V to W having M as its matrix. Now
the coefficients of M determine what 6(v;) has to be for each 4, and
Theorem 4.18 guarantees that such a linear transformation exists.)

(iv) Find a basis for L(V,W). (Hint: (Find a basis of Mat(m x n, F) first.
The corresponding linear transformations will give the desired basis of

L(V,W).)



Solution.
Let ¢, 8 € L(V,W) and let A € F. For each j (from 1 to n) we have

cvel(6+0)(v)) = eve(6(v) + 0(v;)) (b definition of ¢ + )
— Cvc((b(’l}j)) + CVC(Q(Uj))

since the mapping cve: W — F™ given by « — cv.(x) an isomorphism. Hence
the j*® column of Mep(¢ + ) is the sum of the j** columns of Mep(¢) and
Mep(8); hence Mep(d+0) = Men(¢)+Mep (). That is, Q(¢+6) = Q(¢)+Q(6).
Similarly, for each j the 5" column of Mcp(A@) is cve((Ad)(v;)), which equals
cve(A(P(vj))) = Aeve(d(v;)) (by definition of A¢ and linearity of the mapping
cve). Hence Mep(Ad) = A Mep(); that is, Q(Ap) = AQ(¢). This proves (i).
The kernel of Q is the set of all ¢ in L(V, W) such that Meb(¢) is the zero
matrix. The fact that  is linear guarantees that z, the zero of L(V, W), is
in the kernel. If ¢ is an arbitrary element of the kernel then cve(¢(v;)) =0
for each j, since cve(¢(v;)) is the j' column of Mep(vj). Since cve is an
isomorphism we deduce that ¢(v;) = 0 for all j, and it follows by linearity of
¢ that ¢(v) =0 for all v € V. That is, ¢ = z. So z is the only element of the
kernel.

Let A € Mat(m x n, F) be arbitrary and for each j let a; € F™ be the j*™
column of A. Since cv. is an isomorphism there exist w; € W such that
cve(w;) = «j, and since linear transformations can be defined arbitrarily on
a basis (Theorem 4.18) there is a ¢ € L(V, W) such that ¢(v;) = w; for each
j. Clearly now Mep(¢) = A; that is, Q(¢) = A. So  is surjective.

If Ejy; is the matrix in Mat(m x n, F) which has 1 as the (k,1)*" entry and
zeros elsewhere then the matrices (Ep | 1 < k < m,1 <[ < n) form
a basis for L(V,W). In fact if A € Mat(m x n,F) has (i,7)™® entry ay;
then A = )" «;;F;;, and this is the unique way of expressing A as a linear
combination of the Ey;. It is a general fact that an isomorphism of vector
spaces will map a basis of one space to a basis of the other. (See Theorem 4.19
and Exercise 3 of Tutorial 4.) So to find a basis of L(V, W) it suffices to find
linear transformations ¢g;: V- — W such that Q(¢g) = Eg (for 1 < k < m,
1 <1< n). By Theorem 4.18 we know that (for each k and [) there is a linear
transformation ¢y; satisfying
oute) = {4, 1721

and, by the definition of the matrix of a linear transformation, we see that
the matrix of ¢y, relative to b and ¢ has its j** column equal to zero unless
j = 1, while the I*® column is cve(vy), which has 1 as its ™ entry and

all other entries zero. Thus Mecp(Pri) = Exi, and, by the remarks above,
(P |1 <Ek<m,1<1<n)is a basis for L(V,W).



