
WEEK 2

Summary of week 2 (lectures 4, 5 and 6)

Lecture 4 was concerned with the concept of linearity. This material appears
§3a of the text Vector Space Theory (referred to as [VST] below).

Definition Let V and W be vector spaces over the same field F . A function
f :V → W is said to be linear if

f(x
˜

+ y
˜
) = f(x

˜
) + f(y

˜
)

and
f(λx

˜
) = λf(x

˜
)

for all x
˜
, y
˜
∈ V and λ ∈ F .

Examples

1) Let V = R3 (the set of all 3-component column vectors whose entries are real
numbers) and W = R2. The V and W are both vector spaces over R. Let
f :V → W be defined by

f

 a
b
c

 =
(

a + b + c
3a + 2c

)
.

It is left to the reader to verify that f is linear. Note that the definition of f
could alternatively be written as

f

 a
b
c

 =
(

1 1 1
3 0 2

)  a
b
c

 ,

and the fact that f is linear is thus a consequence of well known properties
of matrix multiplication: see (ii) and (iv) on p.21 of [VST]. These properties
were covered in 1st year.

2) Let D be the set of all differentiable functions from R to R, and F be the
set of all functions from R to R. Then D and F are vector spaces over R.
Define a function T :D → F as follows: if f ∈ D then Tf ∈ F is given by

(Tf)(t) = f ′(t) + t3f(t) for all t ∈ R.

Then T is linear. This is proved by showing that T (f + g) = Tf + Tg and
T (λf) = λ(Tf) for all f, g ∈ D and λ ∈ R.
Recall that addition and scalar multiplication for functions are defined by the
formulas

(f + g)(t) = f(t) + g(t)
and

(λf)(t) = λ(f(t)).
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It is a theorem of calculus that if real-valued functions f and g are differen-
tiable at some point t ∈ R then so is f+g, and d

dt (f(t)+g(t) = d
dtf(t)+ d

dtg(t).
Thus if f, g ∈ D then, for all t ∈ R,

(T (f + g))(t) = (f + g)′(t) + t3((f + g)(t)) (by the definition of T )

= f ′(t) + g′(t) + t3(f(t) + g(t))

= (f ′(t) + t3f(t)) + (g′(t) + t3g(t))
= (Tf)(t) + (Tg)(t)
= (Tf + Tg)(t).

So the functions T (f + g) and Tf + Tg take the same value at all t ∈ R, and
so T (f + g) = Tf + Tg. The proof that T (λf) = λ(Tf) is similar. See also
the example on p.51 of [VST].

3) Let C be the set of all continuous functions R → R, and define S:C → F by

(Sf)(t) =
∫ t

0

f(u) du.

Then S is linear; this is simply a statement of the following standard theorems
of calculus: ∫ t

0

f(u) + g(u) du =
∫ t

0

f(u) du +
∫ t

0

g(u) du

and ∫ t

0

λf(u) du = λ

∫ t

0

f(u) du

for all continuous functions f and g and all λ ∈ R.

The importance of vector spaces derives from the fact that many problems
that arise naturally in science or engineering involve linear functions, and vector
space theory provides the framework to analyse linear functions. Linear equations
of various kinds—equations of the form T (x) = c, where T is a linear function—are
particularly common. Here are some examples of linear equations.
1) Find all x, y and z such that

(
1 1 1
3 0 2

)  x
y
z

 =
(

0
0

)
.

(You should know from 1st year how to solve systems like this.)
2) Find all differentiable functions f : R → R satisfying

f ′(t) + t3f(t) = e−t3 .
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(This is an example of a linear differential equation.)
3) Find f : {x ∈ R | x > 0 } → R satisfying∫ ∞

t

f(u) du = 1
t .

(Solving this simply amounts to differentiating 1/t; nevertheless, it is a linear
equation.)

The above examples, and all other linear equations, share the following im-
portant property, sometimes called the principle of superposition: if x1 and x2

are solutions of the equations T (x) = c1 and T (x) = c2 respectively, then x1 + x2

is a solution of T (x) = c1 + c2. The following theorem is essentially a statement
of this principle.

Theorem. Let T :V :W be a linear function, where V and W are vector spaces
over the same field F , and let a

˜
∈ W be fixed. Let 0

˜
W denote the zero element of

W , and set

H = {x
˜
∈ V | T (x

˜
) = 0

˜
W }

and
S = {x

˜
∈ V | T (x

˜
) = a

˜
}.

If x
˜
0 is some fixed element of S then

S = {x
˜

+ z
˜
| z
˜
∈ H }.

Alternatively put, if x
˜
0 is a solution of the linear equation T (x

˜
) = a

˜
then the

general solution of this equation consists of all elements of the form x
˜

= x
˜
0 + z

˜
,

where z
˜

is a solution of the “homogeneous” equation T (x
˜
) = 0

˜
W .

A proof of the above theorem was given in Lecture 5. The argument is es-
sentially that given in Example #1 on p.51 of [VST]. To see that the argument
does apply for any linear function T from one vector space to another, it is neces-
sary to prove some elementary consequences of the vector space axioms, such as
Propositions 3.4, 3.5, 3.6 and 3.7 of [VST]. Student should read through the proofs
of these.

Lecture 5 also dealt with Theorem 2.2 of [VST], and multiplication of par-
titioned matrices (pp. 22, 23 of [VST]). The latter was illustrated by considering
2n× 2n matrices of the form (

I A
0 I

)
where here I and 0 denote (respectively) the n × n identity and zero matrices,
and A can be any n× n matrix. It can be verified that(

I A
0 I

) (
I B
0 I

)
=

(
I A + B
0 I

)
(∗)
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for all A and B. So, in particular,(
I A
0 I

) (
I 8
0 I

)
=

(
I B
0 I

) (
I A
0 I

)
.

Furthermore, if we put B = −A then the right hand side of (∗) is just the 2n×2n
identity matrix, and so (

I A
0 I

)−1

=
(

I −A
0 I

)
.

For example, 
1 0 2 5
0 1 −4 3
0 0 1 0
0 0 0 1


−1

=


1 0 −2 −5
0 1 4 −3
0 0 1 0
0 0 0 1

 .

Lecture 5 also included a brief reminder of the properties of determinants,
and dealt with in 1st year. The relevant properties are stated on pp. 36, 37 and
in Theorem 8.13 on p. 181 of [VST]. We shall study determinants in more detail,
including a revision of the 1st year material, later in the semester.

Lecture 6 commenced with an account of elementary matrices and elementary
row operations. If m is a positive integer and r, s ∈ {1, 2, . . . ,m} then we define
Ers to be the m×m matrix whose (i, j)-entry is given by

(Ers)ij =


δij if i 6= r and j 6= s
δsj if i = r
δrj if i = s

for all i, j ∈ {1, 2, . . . ,m}. Here δij is the Kronecker delta, defined by

δij =
{

1 if i = j
0, if i 6= j.

Thus δij is the (i, j)-entry of the identity matrix I. The formula for (Ers)ij says
that the i-th row of the matrix Ers is the same as the i-th row of the identity
matrix if i 6= r and i 6= s, while the r-th row of Ers is the s-th row of I and the
s-th row of Ers is the r-th row of I.

The matrices Ers comprise one of three types of elementary matrices. The
others are given as follows: if r ∈ {1, 2, . . . ,m} and λ is a nonzero scalar then
E

(λ)
r is the matrix given by

(E(λ)
r )ij =

{
δij if i 6= r
λδrj if i = r
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and if r, s ∈ {1, 2, . . . ,m} and λ is any scalar then E
(λ)
rs is given by

(E(λ)
rs )ij =

{
δij if i 6= s
δsj + λδrj if i = s.

It can be seen that E
(λ)
r is obtained by multiplying the r-th row of I by λ, while

E
(λ)
rs is obtained by adding λ times the r-th row of I to the s-th row.

Corresponding to the three kinds of elemntary matrices there are three kinds
of elementary row operations. These can be regarded as functions defined on
the set of all m × n matrices (where m and n are some fixed positive integers).
Specifically, define ρrs, ρ

(λ)
r and ρ

(λ)
rs from Mat(m× n, F ) to Mat(m× n, F ) by

ρrs(A) = ErsA

ρ(λ)
r (A) = E(λ)

r A

ρ(λ)
rs (A) = E(λ)

rs A

for all A ∈ Mat(m × n, F ). (Here, as always, F is the field of scalars; it remains
fixed in any given context.)

We have the following theorem:

Theorem. In the above notation, ρrs(A) is the result of swapping the r-th and
s-th rows of A, while ρ

(λ)
r (A) is the result of multipying the r-th row of A by λ,

and ρ
(λ)
rs (A) is the result of adding λ times the r-th row of A to the s-th row.

The last part of this was proved in the lecture. Here is a proof of the second
part. Let r ∈ {1, 2, . . . ,m} and 0 6= λ ∈ F . Then for all i ∈ {1, 2, . . . ,m} and
j ∈ {1, 2, . . . , n},

(ρ(λ)
r (A))ij = (E(λ)

r A)ij

=
m∑

k=1

(E(λ)
r )ikAkj

=
{ ∑m

k=1 δikAkj if i 6= r∑m
k=1 λδrkAkj if i = r

=
{

Aik if i 6= r
λArk if i = r.

This shows that the i-th row of ρ
(λ)
r (A) is the same as the i-th row of A if i 6= r,

while the r-th row of ρ
(λ)
r (A) is λ times the r-th row of A, as required.

Note that in the course of this proof we used the following “substitution
property” of the Kronecker delta:

∑
j δijaj = ai. The truth of this is easily seen,
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since the only nonzero term in the sum occurs when j (the index of summation)
is equal to i. (It is assumed that i lies in the range of values that j runs through.)

Elementary matrices and elementary row operations are discussed on pp. 32,
33 of [VST]. However, [VST] takes a slightly different approach from that taken in
lectures, in that the statement of Theorem 2.6 of [VST] was taken in lectures as
the definition of the elementary row operations, and consequently Definition 2.3
of [VST] became a theorem.

The discussion of elementary matrices was followed by the proof of the impor-
tant fact that det(AB) = (detA)(detB) for all m×m matrices A and B. Again,
this is revision of 1st year material. The proof can also be found on pp. 184–186
of [VST] (Proposition 8.14 through to Theorem 8.20).

Lecture 6 concluded with a revision of eigenvalues and eigenvectors (see Def-
inition 2.11 of [VST]). In particular, diagonalization of a square matrix A was
discussed: given A, find (if possible) an invertible matrix T such that

T−1AT =


λ1 0 0 . . . 0
0 λ2 0 . . . 0
0 0 λ3 . . . 0
...

...
...

...
0 0 0 . . . λn


for some scalars λ1, λ2, . . . , λn. Writing D for the diagonal matrix on the right
hand side, it is easily seen that the above equation is equivalent to AT = TD (given
that T is invertible). Now if we write c

˜
i for the i-th column of the matrix T then

the i-column of AT is Ac
˜

i. On the other hand, the i-th column of TD is

T


0
...
λi
...
0

 =
(

c
˜
1 . . . c

˜
i . . . c

˜
n

)


0
...
λi
...
0

 = c
˜
10 + · · ·+ c

˜
iλi + · · ·+ c

˜
n0 = λic

˜
i.

Thus we conclude that the matrix equation above holds if and only if Ac
˜

i = λic
˜

i

for all i. It follows that A is diagonalizable if and only if there is an invertible
matrix T whose columns are all eigenvectors of A.
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