
WEEK 4

Summary of week 4 (lectures 10, 11 and 12)

We have seen that if F is any field then Fn, the set of all n-tuples of scalars,
is a vector space over F . The aim of this week’s lectures was, roughly speaking,
to show that there are essentially no other vector spaces besides these.

Really, of course, there are other vector spaces. But they are, in a natural
sense, equivalent to the spaces Fn. If some set S has the property that there is
a one-to-one correspondence between the elements of S and the elements of Fn

then one can use the addition and scalar multiplication operations on Fn and the
one-to-one correspondence to define addition and scalar multiplication operations
on S, and thereby give S the structure of a vector space. But the vector space
created by this process is really just a copy of the space Fn. The names of the
elements have been changed, but the vector space structure is the same. It turns
out to be true that every vector space is a copy, in this sense, of some space Fn.

A proviso needs to be inserted at this point. The last sentence of the previous
paragraph is not true if n is only allowed to take finite values. But since this course
is not primarily about set theory, a discussion of infinite numbers is beyond the
scope of the course. So our discussion is restricted to cases in which n is finite.

You are, no doubt, very familiar with the fact that the set

R2 = {
(

x
y

)
| x, y ∈ R }

can be identified (via Cartesian coordinates) with the Euclidean plane. We know
that R2 is a vector space over R, and so it follows that the Euclidean plane
is a vector space over R. However, it should be noted that the Euclidean plane
was an object of mathematical interest before cartesian coordinates were invented;
furthermore, the addition and scalar multiplication operations that make the plane
into a vector space can be defined without reference to a coordinate system. One
needs only to choose an origin O, to be the zero element in the vector space
structure, and then addition and scalar multiplication are defined using concepts
of Euclidean geometry. It is customary to identify the vector corresponding to
a point P in the plane with the directed line segment −−→OP . See Example #2 on
p. 53 of [VST].

Now choose any points X, Y in the plane such that O, X and Y are not
collinear. It is easy to see that for any P in the plane there are scalars λ, µ such
that −−→OP = λ

−−→
OX + µ

−−→
OY . The values of λ and µ are found by by drawing lines

−−→

OX

−−→

OY
−−→

OP

λ
−−→

OX

µ
−−→

OY

through P parallel to OY and OX, as shown in the diagram. The points where
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these lines cut OX and OY correspond to scalar multiples of −−→OX and −−→
OY whose

sum is −−→OP . The scalars λ and µ are called the coordinates of −−→
OP relative to the

basis (−−→OX,
−−→
OY ).

Definition. Let V be a vector space over the field F . We say that vectors
v1, v2, . . . , vd ∈ V form a basis of V if they are linearly independent and span V .

If, as above, X and Y are points in the plane such that O, X and Y are not
collinear then −−→

OX is not a scalar multiple of −−→OY and −−→
OY is not a scalar multiple

of −−→OX. It follows readily that −−→OX and −−→
OY are linearly independent and (as we

saw above) span the plane. So they do indeed form a basis in the sense of the
above definition.

Definition. A vector space V is said to be finitely generated or finitely spanned
if there is some finite sequence v1, v2, . . . , vn of vectors in V with the property
that V = Span(v1, v2, . . . , vn).

Our discussion above showed that the Euclidean plane is a finitely generated
vector space, having a basis consisting of two vectors. Note that there are many
different bases: any choice of X and Y such that O, X and Y are not collinear
gives a basis. However, every basis for the plane has exactly two elements. More
generally, if a vector space V has a basis with d elements then all other bases
for V will also have d elements. The number of elements in a basis is called the
dimension of the space.

Three dimensional Euclidean space is quite analogous to the Euclidean plane.
After choosing a point O as the origin, addition and scalar multiplication are
defined exactly as for the plane. If X, Y and Z are any points such that O, X, Y
and Z are not coplanar, then −−→

OX,
−−→
OY and −→

OZ form a basis.
The space Rn, consisting of all n-tuples of real numbers, is easily seen to be

a finitely generated vector space over R. The n vectors
1
0
0
...
0

 ,


0
1
0
...
0

 ,


0
0
1
...
0

 , . . . ,


0
0
0
...
1


form a basis of Rn. As we shall see later, there are many other bases of Rn besides
this one.

As was mentioned in an earlier lecture, Rn can be identified with the space
of real valued functions on the set {1, 2, . . . , n}. Observe that the dimension is n.
To find an example of a vector space that is not finitely generated we only have
to consider the space of scalar valued functions on some infinite set. Thus F , the
vector space consisting of all functions from R to R is not finitely generated.

For each nonnegative integer i let us define fi ∈ F by fi(x) = xi for all x ∈ R.
A polynomial function (over R) is a function that can be expressed as a linear
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combination of fi’s for various i. Let us write P for the set of all polynomial
functions over R. That is, P is the set of all functions f : R → R such that for
some integer n ≥ 0 and some coefficients a0, a1, . . . , an,

f = a0f0 + a1f1 + · · ·+ anfn.
That is,

f(x) = a0 + a1x + a2x
2 + · · ·+ anxn for all x ∈ R.

It is not hard to show that this formula defines the zero function if and only if all
the coefficients ai are zero. If f is a nonzero polynomial then the degree of f is by
definition the largest n such that the coefficient of xn is nonzero. We shall adopt
the convention that the degree of the zero polynomial is −∞.

Let d be a nonnegative integer, and define Pd to be the set of all polyno-
mials of degree at most d (including the zero polynomial). Then Pd is a finitely
generated vector space, and it is easily seen that f0, f1, . . . , fd form a basis of
Pd. Thus Pd has dimension d + 1. The space P of all polynomial functions is
not finitely generated.

Lectures 10, 11 and 12 included proofs of the following results from [VST]:
Lemma 4.2, Corollary 4.3, Lemma 4.4, Proposition 4.13, Theorem 4.14, Propo-
sition 4.6, Proposition 4.7, Proposition 4.8 and Proposition 4.11. Students are
strongly urged to read the proofs given in [VST], and to learn all the results listed
in §4b.

The following definition (6.1 of [VST]) was stated at the end of Lecture 12:

Definition. Let V and W be vector spaces over F . A linear function φ:V → W
that is bijective is called an isomorphism. If there is an isomorphism from V to W
then we say that V and W are isomorphic.

Isomorphic vector spaces can be regarded as copies of each other: for each
element of one of the spaces there is a unique corresponding element in the other
space, and the addition and scalar multiplication operations are preserved by this
correspondence (in the sense that if v corresponds to w and v′ to w′ then v + w
corresponds to v′ + w′, and λv corresponds to λv′ for all scalars λ).

Theorem. Let V be a vector space over F and v1, v2, . . . , vd a basis for V .
Then the function T :F d → V defined by

T


λ1

λ2
...

λd

 = λ1v1 + λ2v2 + · · ·+ λdvd

is an isomorphism.

Informally, this theorem says that V is a copy of F d. The fact that T is
a bijective function (that is, a one-to-one correspondence) is Proposition 4.15
of [VST]. The fact that T is linear is part of Theorem of [VST]. We shall have some
more to say about these matters in the next one or two lectures.
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