
Week 4 Summary

Lecture 7

The least common multiple of two nonzero integers a and b is a positive integer
m with the following two properties:

(i) a|m and b|m;
(ii) for all c ∈ Z, if a|c and b|c then m|c.

In words, Property (i) says that m is a multiple of both a and b, while Property (ii)
says that every integer that is a multiple of both a and b is a multiple of m.
In the first question of the homework assignment you are asked to show that
lcm(a, b) = ab/d, where d = gcd(a, b).
If a, b and c are given integers then the Diophantine equation xa + yb = c has
no solution unless d|c, where d = gcd(a, b). If this condition is satisfied then a
solution x0, y0 can be found via the Euclidean Algorithm, as explained last time.
The general solution is then

x = x0 + t(b/d)
y = y0 − t(a/d)

where t is a parameter that can take arbitrary integer values.
Whilst on the topic of gcd’s and lcm’s, there are three more properties we should
note. First of all, let a and b be fixed positive integers, and consider the following
two sets:

S = {n ∈ Z
+

∣∣ n|a and n|b },
T = {n ∈ Z

+
∣∣ n = pa + qb for some p, q ∈ Z }.

Every element of S is a divisor of every element of T , and so every element of S
is less than or equal to every element of T . The gcd of a and b is in both sets: it
is the largest element of S and the smallest element of T .
You should be able to prove the following two elementary propositions.
*Proposition Let a, b be integers, not both zero, and let d = gcd(a, b). Then a

d

and b
d are integers, and gcd(a

d , b
d ) = 1.

*Proposition If n|ab and gcd(n, a) = 1 then n|b.
We wish to investigate some problems to do with expressing integers as sums of
two squares. For example, it is well known that 32 +42 = 52. Is it possible to find
the general solution of the Diophantine equation x2 + y2 = z2? More generally,
given any integer a, can we solve the Diophantine equation x2 + y2 = a?
It turns out to be very useful to use complex numbers when discussing these
problems. The basic reason for this is that, using complex numbers, we can write
x2 + y2 as (x + iy)(x − iy). This enables us to view the problem of solving
x2 + y2 = a as being concerned with factorization of a. Although the original
problem appeared to have nothing to do with complex numbers, and although its
final solution can be stated without mentioning complex numbers, nevertheless
the easiest way to get to the solution is via complex numbers.
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We define Z[i] = { a + bi | a, b ∈ Z }, a subset of C, the field of all complex
numbers. As is well known, elements of C can be represented as points in the
plane, the point with Cartesian coordinates (x, y) corresponding to the complex
number x + iy. (This is called the Argand diagram, or complex plane.) The set
Z[i] consists of the points with integer coordinates (forming a square lattice in the
complex plane); it is called the ring of Gaussian integers. People who have not
done the Rings and Fields course need not be concerned about the word “ring”
here: all that it means is that the sum of two Gaussian integers is a Gaussian
integer, and the product of two Gaussian integers is a Gaussian integer.
Gaussian integers are very much the complex analogue of ordinary integers, and
we shall see that Z[i] has many properties that are similar to properties of Z.
Most importantly, we shall see that the Euclidean Algorithm (suitably modified)
works in Z[i], and from this it follows that a unique factorization theorem holds
in Z[i].
If α = a+bi ∈ C, where a is the real part of α and b the imaginary part, we define
N(α) = a2 + b2. This is called the norm of α. It is the same as the square of the
modulus of α.
We shall prove that if x, y ∈ Z[i] with y 6= 0, then there exist q, r ∈ Z[i] with
x = qy + r, and N(r) ≤ 1

2N(y). Here is an example of how to do this. Suppose
that x = 7− 5i and y = 2 + 3i. The aim is to divide y into x and get a quotient
q which is a whole (complex) number and a remainder r that is, in some sense,
small compared to y. So we do the obvious thing: we work out x/y as a complex
number, finding the real and imaginary parts, and then find an element of Z[i]
whose real and imaginary parts are as close to those of x/y as we can make them.

7− 5i

2 + 3i
=

(7− 5i)(2− 3i)
(2 + 3i)(2− 3i)

=
(14− 15) + (−10− 21)i

13
= − 1

13
− 31

13
i.

the closest integer to −1/13 is zero, and the closest integer to −31/13 is −2. So
we define q = 0− 2i. The remainder r is

x− qy = (7− 5i)− (−2i)(2 + 3i) = (7− 5i)− (6− 4i) = 1− i.

We can check that N(r) ≤ 1
2N(y). Indeed, N(r) = 12 + (−1)2 = 2, and

N(y) = 22 + 32 = 13.

Lecture 6

The following result is revision of first year mathematics.
*Proposition Let α, β ∈ C. Then N(αβ) = N(α)N(β).
We wish to investigate factorization in Z[i]. First, we define a unit of Z[i] to be
an element α ∈ Z[i] such that 1/α ∈ Z[i]. It is fairly easy to see—and it is a
question in Tutorial 4—that Z[i] has just four units: 1, −1, i and −i. These are
exactly the Gaussian integers with norm 1. Two Gaussian integers are said to be
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associates of each other if you can get from to the other by multiplying by a unit.
The associates of α are thus α itself, −α, iα and −iα.
We define a Gaussian integer α to be reducible if it can be expressed as a product,
α = βγ, where β, γ ∈ Z[i] and neither β nor γ is a unit. A Gaussian integer that
is not reducible and not a unit is said to be irreducible. The irreducible elements
of Z[i] are the complex analogue of prime numbers.
*Proposition Suppose that α ∈ Z[i] has the property that N(α) is a prime
integer. Then α is irreducible.
This is quite easy to prove: a factorization α = βγ in Z[i] would lead to a factor-
ization N(α) = N(β)N(γ) in Z, contrary to the fact that N(α) is prime.
Example: N(4 + i) = 42 + 11 = 17 is prime; so 4 + i is irreducible.
Although the integer 17 cannot be factorized as a product of two integers, apart
from the trivial factorizations 17 = 1 × 17 and 17 = (−1) × (−17), it can be
factorized nontrivially in Z[i] as (4 + i)(4 − i). (These two factors areboth irre-
ducible, by the proposition above.) By contrast, the integer 3, which also has no
nontrivial factorization in Z, cannot be factorized nontrivially in Z[i]. (This is
another question in Tutorial 4.) The prime integer 2, like 17, can be factorized
in Z[i]: indeed, 2 = (1 + i)(1 − i). The prime 11, like 3, cannot. The following
theorem, which we shall prove in due course, says exactly what is happening.
Theorem (a) Let p ∈ Z be a prime such that p ≡ 3 (mod 4). Then p is irreducible
as an element of Z[i].
(b) Let p ∈ Z be a prime such that p 6≡ 3 (mod 4), so that either p = 2 or p ≡ 1
(mod 4). Then there exist integers x and y such that p = x2 + y2, and in Z[i] we
have the factorization p = (x + yi)(x− yi), both factors being irreducible.
(c) If α ∈ Z[i] is irreducible then so are its associates (−α, iα and −iα). Further-
more, α is either of the form p, −p, ip or −ip for some prime integer p that is
congruent to 3 modulo 4, or else p = x + yi for some integers x and y such that
x2 + y2 is prime.
For example, the prime number 113 is congruent to 1 modulo 4; so it must be
the sum of two squares. Indeed, it is 49 + 64. Correspondingly there are eight
irreducible Gaussian integers, ±7 ± 8i and ±8 ± 7i (which fall into two sets of 4
associates). The prime number 107 is congruent to 3 modulo 4; so 107, −107,
107i and −107i are irreducible Gaussian integers.
*Proposition Let x, y ∈ Z[i] with y 6= 0. There exist q, r ∈ Z[i] with x = qy + r
and N(r) ≤ 1

2N(y).
To prove this, note first that given any real number θ there exists at least one
integer n with |θ − n| ≤ 1

2 . So, writing x
y as θ1 + θ2i, we can define q = n1 + n2i,

where n1 and n2 are chosen such that |θ1 − n1| and |θ2 − n2| are both at most 1
2 .

Then N(x
y − q) ≤ ( 1

2 )2 +( 1
2 )2 = 1

2 , and it follows easily that r = x− qy = (x
y − q)y

satisfies N(r) ≤ 1
2N(y).
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