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1. Let X = (X, d) be a metric space. Let (xn) and (yn) be two sequences in X
such that (yn) is a Cauchy sequence and d(xn, yn) → 0 as n →∞. Prove that

(i) (xn) is a Cauchy sequence in X, and
(ii) (xn) converges to a limit x if and only if (yn) also converges to x.

Solution.

(i) Let ε > 0. Since d(xn, yn) → 0 as n → ∞, there is N1 such that
d(xk, yk) < ε/3 for all k > N1. Since (yn) is a Cauchy sequence, there is
N2 such that d(ym, yn) < ε/3 for all m, n > N2. Put N = max{N1, N2}.
Then, by the triangle inequality, for all m, n > N we have

d(xm, xn) ≤ d(xm, ym) + d(ym, yn) + d(yn, xn) <
ε

3
+

ε

3
+

ε

3
= ε.

Hence (xn) is a Cauchy sequence.
(ii) Suppose that (yn) converges to x. Then d(yn, x) → 0 as n → ∞. Now

by the triangle inequality,

0 ≤ d(xn, x) ≤ d(xn, yn) + d(yn, x) −→ 0 + 0 = 0

as n →∞; so d(xn, x) → 0 as n →∞. So (xn) converges to x. Similarly,
if (xn) converges to x then 0 ≤ d(yn, x) ≤ d(yn, xn) + d(xn, x) → 0 as
n →∞, whence (yn) converges to x also.

2. Prove that every Cauchy sequence in a metric space (X, d) is bounded.

Solution.

(This was proved in lectures). Let (xn) be a Cauchy sequence of (X, d). By
the definition of Cauchy sequence, applied with ε = 1, there exists N such
that d(xm, xn) < 1 for all m, n ≥ N ; so xn ∈ B(xN , 1) for all n ≥ N . Now
define r = 1 + max{1, d(x1, xN ), d(x2, xN ), . . . , d(xN−1, xN )}. We see that
xn ∈ B(xN ; r) for all n; so (xn) is bounded.

3. Show that the set X of all integers, with metric d defined by d(m,n) = |m−n|,
is a complete metric space.

Solution.

Note that d is the metric induced by the Euclidean metric (the usual metric)
on R. Since closed subspaces of complete spaces are complete, it suffices to
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show that Z is closed in R. The complement of Z in R is the union of all the
open intervals (n, n+1), where n runs through all of Z, and this is open since
every union of open sets is open. So Z is closed.
Alternatively, let (an) be a Cauchy sequence in Z. Choose an integer N such
that d(xn, xm) < 1 for all n ≥ N . Put x = xN . Then for all n ≥ N we have
|xn − x| = d(xn, xN ) < 1. But xn, x ∈ Z, and since two distinct integers
always differ by at least 1 it follows that xn = x. This holds for all n > N .
So xn → x as n → ∞ (since for all ε > 0 we have 0 = d(xn, x) < ε for all
n > N).

4. (i) Show that if D is a metric on the set X and f :Y → X is an injective
function then the formula d(a, b) = D(f(a), f(b)) defines a metric d
on Y , and use this to show that d(m,n) = |m−1−n−1| defines a metric
on the set Z+ of all positive integers.

(ii) Show that (Z+, d), where d is as defined in Part (i), is not a complete
metric space.

Solution.

(i) This is obvious, since we can regard f as identifying Y with X. Neverthe-
less, let us write out the details. If a, b, c ∈ Y , then f(a), f(b), f(c) ∈ X.
Since D is a metric on X, we have

D(f(b), f(c)) ≤ D(f(a), f(b)) + D(f(a), f(c))
and
D(f(a), f(b) = D(f(b), f(a)) ≥ 0 with equality only if f(a) = f(b).

Thus for all a, b, c ∈ Y ,

d(b, c) = D(f(b), f(c)) ≤ D(f(a), f(b))+D(f(a), f(c)) = d(a, b)+d(a, c),

which shows that d satisfies the triangle inequality. Similarly, for all
a, b ∈ Y

d(a, b) = D(f(a), f(b) = D(f(b), f(a)) = d(a, b),
and

d(a, b) = d(f(a), f(b)) ≥ 0 with equality only if f(a) = f(b).

Since f is injective, f(a) = f(b) if and only if a = b; so we deduce that
d(a, b) = d(b, a) ≥ 0 with equality only if a = b, as required.
The astute reader will have noticed that it was necessary only to assume
that f is injective, rather than bijective.
The function f : Z+ → R defined by f(n) = n−1 for all n ∈ Z+ is
certainly injective, and if we take D to be the usual metric on R and
apply the principle we have been discussing, we obtain that

d(m,n) = D(f(m), f(n)) = D(m−1, n−1) = |m−1 − n−1|
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defines a metric on Z, as claimed. (Or, observe that n → n−1 gives a
bijection from Z+ to {n−1 | n ∈ Z+ }, which has a metric induced from
the usual metric on R.)

(ii) The sequence (an)∞n=1 defined by an = n is a Cauchy sequence with
respect to the metric described in Part (i). To see this, let bn ∈ R be
defined by bn = f(an) = n−1 for all n ∈ Z+. Since (bn) is a convergent
sequence in R (with limit 0), it is a Cauchy sequence. Furthermore,
since d(an, am) = D(f(an), f(am)) = D(bn, bm) for all n, m ∈ Z+, the
fact that (bn) is Cauchy implies that (an) is Cauchy also.
Of course, a direct proof is trivial: given ε > 0, if we define N = 1/ε
then it follows that n−1, m−1 ∈ (0, ε), and so |n−1 −m−1| < ε, for all
n, m > N .

5. Let c be the set of all sequences x = (xk) of complex numbers that are
convergent in the usual sense, and let d be the metric on c induced from the
space `∞. (That is, d(x, y) = supk∈N |xk − yk|). Show that the metric space
(c, d) is complete. [Hint: Show that c is closed in `∞.]

Solution.

Since C is complete, a sequence in C is convergent if and only if it is a Cauchy
sequence. So c can be described as the set of all Cauchy sequences in C. Recall
that `∞ is the set of all bounded sequences in C, with the sup metric. Every
Cauchy sequence is bounded; so (c, d) is indeed a subspace of `∞. The space
`∞ is complete, by Example 2.6 on p. 41 of Choo’s notes. Since a closed
subspace of a complete space is complete, it suffices to show that c is a closed
subset of `∞. So it suffices to show that c ⊆ c.
Let x ∈ c. Then there exists a sequence (x(k))∞k=1 of points of c converging
in `∞ to the point x. Our task is to prove that x ∈ c. Since points of `∞ are
themselves sequences, let us write x

(k)
i for the i-th term of x(k) and xi for the

i-th term of x. That is,

x(1) = (x(1)
1 , x

(1)
2 , x

(1)
3 , . . . ),

x(2) = (x(2)
1 , x

(2)
2 , x

(2)
3 , . . . ),

x(3) = (x(3)
1 , x

(3)
2 , x

(3)
3 , . . . ),

· · · · · · · · ·
x = (x1, x2, x3, . . . ).

We are given that each x(k) is a Cauchy sequence, and the aim is to prove
that x is a Cauchy sequence. We are also given that (x(k)) converges in the
`∞ metric—that is, uniformly—to x. So our task can be restated as follows:
prove that the uniform limit of a sequence of Cauchy sequences is Cauchy.
This is somewhat analogous to the fact that the uniform limit of a sequence
of continuous functions is continuous (cf. Q.4 of Tutorial 4.)
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Let ε > 0. Choose K ∈ Z+ such that d(x(k), x) < ε/3 for all k ≥ K. Choose
N ∈ Z+ such that |x(K)

m − x
(K)
n | < ε/3 for all n, m > N . Then for all

n, m > N we have

|xm − xn| ≤ |xm − x(K)
m |+ |x(K)

m − x(K)
n |+ |x(K)

n − xn|

< sup
i∈Z+

|xm − x(K)
m |+ ε

3 + sup
i∈Z+

|x(K)
i − xi|

= d(x, x(K)) + ε
3 + d(x(K), x)

< ε
3 + ε

3 + ε
3 = ε.

This shows that (xi) is a Cauchy sequence, as required.

6. Let X = (0, 1) with the Euclidean metric d. Give an example of a nested
sequence (An) of non-empty closed sets in X with diam(An) → 0 as n →∞,

but
∞⋂

n=1
An = ∅. (The diameter, diam(A), of a subset A of a metric space, is

the supremum of the set { d(x, y) | x, y ∈ A }, if this set is bounded.)

Solution.

Note that X = (0, 1) is not complete, because it is not closed in R. For
example, a sequence in (0, 1) converging in R to the point 0 will be a Cauchy
sequence in (0, 1) with no limit in (0, 1).
Put An = (0, 1

n ]. This gives a nested sequence of subsets of X. Each
An = [0, 1] ∩ X is closed in X as [0, 1] is closed R. (Recall that if Y is a
subspace of a topological space X then the closed sets of Y are all sets of
the form Y ∩ C, where C is a closed subset of X). Also d(An) = 1

n → 0 as

n →∞. However
∞⋂

n=1

An = ∅.

7. Let X = (X, d) be a metric space and CS(X) the collection of all Cauchy
sequences in X. For (xn) and (yn) in CS(X), define

(xn) ∼ (yn) if and only if lim
n→∞

d(xn, yn) = 0.

Show that ∼ is an equivalence relation on CS(X).

Solution.

If (xn) is any Cauchy sequence then d(xn, xn) = 0 → 0 as n → ∞. So
the relation is reflexive. It is symmetric, since if (xn) and (yn) are Cauchy
sequences with (xn) ∼ (yn) then d(yn, xn) = d(xn, yn) → 0 as n → ∞.
Finally, it is symmetric, since if (xn), (yn) and (zn) are Cauchy sequences with
(xn) ∼ (yn) and (yn) ∼ (zn) then limn→∞ d(xn, yn) = limn→∞ d(yn, zn) = 0,
so that by the triangle inequality

0 ≤ d(xn, zn) ≤ d(xn, yn) + d(yn, zn) → 0 + 0 = 0

as n →∞, giving limn→∞ d(xn, zn) = 0 by the squeeze law.


