
Metric Spaces Lecture 10

Let C be the set of all continuous real-valued functions on the closed interval [0, 1].
Let d and d′ be the metrics on C defined as follows: for all f, g ∈ C,

d(f, g) = sup
x∈[0,1]

|f(x)− g(x)|,

d′(f, g) =
∫ 1

0

|f(x)− g(x)|.

At the end of last lecture we posed the following two questions:
(1) Does convergence in (C, d) imply convergence in (C, d′)?
(2) Does convergence in (C, d′) imply convergence in (C, d)?

The answer to Question (1) is yes. For suppose that (fn) converges to (f) in (C, d),
and let ε > 0. Choose N ∈ Z such that d(fn, f) < ε for all n > N . Now whenever n > N
we have |fn(x)− f(x)| < ε for all x ∈ [0, 1], and so∫ 1

0

|fn(x)− f(x)| dx <

∫ 1

0

ε dx = εx
]x=1

x=0
= ε.

That is, d′(fn, f) < ε. So we have shown that for all ε > 0 there exists N ∈ Z such that
d′(fn, f) < ε for all n > N . That is, (fn) converges to f in (C, d′).

The answer to Question (2) is no. In fact, convergence in (C, d′) does not even imply
pointwise convergence on [0, 1], as the following example illustrates. For each n ∈ Z+ we
define the function fn on [0, 1] as follows:

fn(x) =
{

nx if 0 ≤ x ≤ 1/n,
1 if 1/n < x ≤ 1.

It is easily checked that fn is continuous, the crucial point being that fn(1/n) = 1 equals
the limit of fn(x) as x approaches 1/n from above. Now if f is the constant function
given by f(x) = 1 for all x ∈ [0, 1], then for all n ∈ Z+,

d′(fn, f) =
∫ 1

0

|f(x)− fn(x)| dx

=
∫ 1/n

0

|f(x)− fn(x)| dx (since f(x)− fn(x) = 0 for 1/n ≤ x ≤ 1)

=
∫ 1/n

0

nx dx = 1/2n −→ 0 as n →∞.

So the sequence (fn) converges to f in (C, d′). However, fn(0) = 0 for all n, and so
lim

n→∞
fn(0) = 0 6= 1 = f(0). So it is not true that fn(x) → f(x) as n → ∞ for all

x ∈ [0, 1]. That is, (fn) does not converge pointwise to f on [0, 1].
Note that pointwise convergence does not imply convergence in (C, d′) either, as we

can show with another example. Let gn be the function defined by

gn(x) =

 n2x if 0 ≤ x ≤ 1/2n
n− n2x if 1/2n < x ≤ 1/n
0 if 1/2n < x ≤ 1.
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Then gn(0) = 0 for all n, so that lim
n→∞

gn(x) = 0 when x = 0, while for 0 < x ≤ 1 we see

that gn(x) = 0 whenever n > 1/x, and so again it follows that lim
n→∞

gn(0) = 0. Thus (gn)

converges pointwise to the zero function g on [0, 1]. However, a short calculation shows
that

d′(gn, g) =
∫ 1

0

|gn(x)| dx = 1/4

for all n, and so it is not true that d′(gn, g) → 0 as n →∞.

Completeness

Definition. Let (X, d) be a metric space. A sequence (xn)∞n=0 in X is called a Cauchy
sequence if for all ε > 0 there exist an N ∈ Z+ such that d(xn, xm) < ε for all n, m ∈ Z
with n > N and m > N .

The idea is that, in some sense, the terms of a Cauchy sequence get closer and closer
to each other as n →∞. Intuition might suggest that such sequences ought to converge.
However, if one takes as (X, d) the set Q of all rational numbers with the usual metric, then
one quickly sees that a Cauchy sequence in X need not have a limit in X. For example,
let x1 = 1, and for n > 1 define xn recursively, by the formula xn = (xn−1/2)+ (1/xn−1).
It is easily seen that xn ∈ Q for all n ∈ Z+, and that xn →

√
2 as n →∞. Since

√
2 /∈ Q

the sequence (xn) does not have a limit in Q. Since it does have a limit in R (with the
usual metric) it is not hard to show that (xn) is a Cauchy sequence. The metric space Q
is incomplete, in the sense that it does not have limits for all its Cauchy sequences.
Definition. A metric space X is said to be complete if every Cauchy sequence in X has
a limit in X.
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