Spectral theory and approximation of Koopman operators in chaos

Part 1: smooth functional analysis of dynamical operators

Caroline Wormell

The University of Sydney

July 24, 2024

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Trying to make sense of dynamical systems

The basic object of study in "dynamics" is a trajectory $\{x_t\}_{t=0,1,2,...}$ in a state space *D*.

- The set of trajectories of a dynamical system can be very complicated (like people)
- Tendency to study mean behaviour (or expected behaviour with respect to some loss...)
- "Mean", "expectation" implies study with respect to probability. In dynamics, this is ergodic theory

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Smooth ergodic theory

$$\frac{1}{T} \sum_{t=0}^{T} \psi(x_t) \xrightarrow{T \to \infty} \int_D \psi(x_t) d\mu(x) \text{ for } \mu\text{-almost all } x$$

- Birkhoff ergodic theorem (true in many systems): time averages over orbit = spatial average
 - Means almost every orbit looks like every other orbit at some point in time ("almost all orbits are dense").
- We want to compute so want, e.g. stability to error, ideally with quantitative assurances.
- This suggests studying *smooth* ergodic theory.

・ コ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

Operators

So, we are interested in studying

- The Koopman operator
- The transfer operator (\approx Perron-Frobenius operator)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

on function spaces involving differentiability.

It is mostly a separate beast to the $L^{p}(\mu)$ theory.

Broadly are going to consider three kinds of dynamical system (on compact manifolds):

Noisy dynamics (SDEs...): theoretically easy, good starting point for comparison

Deterministic contractions: already known, but explains some of the questions in deterministic dynamics...

Deterministic chaos: harder and a bit obscure, main goal of this minicourse

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Broadly are going to consider three kinds of dynamical system (on compact manifolds):

Noisy dynamics (SDEs. . .): theoretically easy, good starting point for comparison

Deterministic contractions: already known, but explains some of the questions in deterministic dynamics...

Deterministic chaos: harder and a bit obscure, main goal of this minicourse

Objection! All real systems have a bit of noise in them!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Broadly are going to consider three kinds of dynamical system (on compact manifolds):

Noisy dynamics (SDEs. . .): theoretically easy, good starting point for comparison

Deterministic contractions: already known, but explains some of the questions in deterministic dynamics...

Deterministic chaos: harder and a bit obscure, main goal of this minicourse

Objection! All real systems have a bit of noise in them!

Then you commit to resolving down to the scale of the noise!

Broadly are going to consider three kinds of dynamical system (on compact manifolds):

Noisy dynamics (SDEs. . .): theoretically easy, good starting point for comparison

Deterministic contractions: already known, but explains some of the questions in deterministic dynamics...

Deterministic chaos: harder and a bit obscure, main goal of this minicourse

Objection! All real systems have a bit of noise in them!

Then you commit to resolving down to the scale of the noise! How can we believe lower-resolution numerics?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

(Markov, time-autonomous) stochastic dynamics $x_t \in D$ are typically studied using two linear operators, acting on functions on the state space $\psi, \varphi : D \to \mathbb{R}$:

The Chapman-Kolmogorov operator: predicting the expected future value of "observable" functions

$$(\mathcal{K}\psi)(x) = \mathbb{E}[\psi(x_{t+1})|x_t = x]$$

The Fokker-Planck operator: evolution of probabilities into future (= push-forward of measure density)

$$(\mathcal{L}\varphi)(x) = \int \varphi(y) \frac{\mathrm{d}\mathbb{P}}{\mathrm{d}x} [x_{t+1} = x | x_t = y] \mathrm{d}y$$

(Markov, time-autonomous) stochastic dynamics $x_t \in D$ are typically studied using two linear operators, acting on functions on the state space $\psi, \varphi : D \to \mathbb{R}$:

The Chapman-Kolmogorov operator: predicting the expected future value of "observable" functions

$$(\mathcal{K}^{\mathsf{n}}\psi)(x) = \mathbb{E}[\psi(x_{t+\mathsf{n}})|x_t = x]$$

The Fokker-Planck operator: evolution of probabilities into future (= push-forward of measure density)

$$(\mathcal{L}^{n}\varphi)(x) = \int \varphi(y) \frac{\mathrm{d}\mathbb{P}}{\mathrm{d}x}[x_{t+n} = x | x_t = y] \mathrm{d}y$$

(Markov, time-autonomous) stochastic dynamics $x_t \in D$ are typically studied using two linear operators, acting on functions on the state space $\psi, \varphi : D \to \mathbb{R}$:

The Chapman-Kolmogorov operator: predicting the expected future value of "observable" functions

$$(\mathcal{K}^{\mathsf{n}}\psi)(x) = \mathbb{E}[\psi(x_{t+\mathsf{n}})|x_t = x]$$

The Fokker-Planck operator: evolution of probabilities into future (= push-forward of measure density)

$$(\mathcal{L}^{n}\varphi)(x) = \int \varphi(y) \frac{\mathrm{d}\mathbb{P}}{\mathrm{d}x}[x_{t+n} = x | x_t = y] \mathrm{d}y$$

Define our transition kernel $k(x, y) = \frac{d\mathbb{P}}{dy}[x_{t+1} = y | x_t = x]$, then

$$(\mathcal{L}\varphi)(y) = \int \varphi(x) \, k(x,y) \, \mathrm{d}x$$

whereas

$$\begin{aligned} (\mathcal{K}\psi)(x) &= \mathbb{E}[\psi(x_{t+1})|x_t = x] \\ &= \int \psi(y) \mathrm{d}\mathbb{P}[x_{t+1} = y|x_t = x] \\ &= \int \psi(y) \, k(x,y) \, \mathrm{d}y. \end{aligned}$$

So, these operators are dual:

$$\int (\mathcal{L}\varphi)(y) \,\psi(y) \,\mathrm{d}y = \int \varphi(y) \,(\mathcal{K}\psi)(y) \,\mathrm{d}y.$$

These actually work with deterministic maps $f : D \rightarrow D$ as well (modulo "some" intricacies...)

 The Koopman operator: expected future value of functions (aka "observables")

$$(\mathcal{K}\psi)(x) = \psi(f(x))$$

The transfer operator, which gives you the evolution of probabilities into the future (= push-forward of measure density)

$$(\mathcal{L}\varphi)(x) = \int "\frac{\mathrm{d}\mathbb{P}}{\mathrm{d}x} [f(y) = x]" \varphi(y) \,\mathrm{d}y$$
$$= \sum_{f(y)=x} \frac{\varphi(y)}{|\det Df(y)|}$$

These two operators are also still dual!

$$\int \varphi(x) \, (\mathcal{K}\psi)(x) \, \mathrm{d}x = \int (\mathcal{L}\varphi)(x) \, \psi(x) \, \mathrm{d}x$$

Dynamics

dynamics, n. The study of trajectories as time goes to infinity. (You tell me if that's a good thing.)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Dynamics

dynamics, n. The study of trajectories as time goes to infinity. (You tell me if that's a good thing.)

- We can describe dynamics over long times by Kⁿ, Lⁿ, for n large.
- These are best described by the *spectrum* of \mathcal{K}, \mathcal{L} .
- Consequently, Koopman/transfer spectra can:
 - Provide reductions for the dynamics
 - Give you statistical information about the system
 - Make sense of the emergent dynamical geometry...

- ロ ト - 4 回 ト - 4 □

Koopman spectra

What are the spectra of these (infinite-dimensional, weirdly-posed) operators?

Generally computer approximations of the Koopman spectrum look like:

(日)

э

Koopman spectra

What are the spectra of these (infinite-dimensional, weirdly-posed) operators?

Generally computer approximations of the Koopman spectrum seem to be approximating

ヘロト 人間 ト 人 ヨト 人 ヨト

э

Koopman spectra

What are the spectra of these (infinite-dimensional, weirdly-posed) operators?

Generally computer approximations of the Koopman spectrum seem to be approximating

Structure

A lot of numerics around dynamical systems come down to studying the spectra of these operators numerically. This lecture series will talk about

- 1. A mathematical framework that explains quasi-compact operators
- 2. How different kinds of dynamics fit into the framework
- 3. How this translates to computation

(日) (四) (日) (日) (日)

Meaning of the spectrum

Quasicompactness (and $\sigma_d(\mathcal{K})$ with no Jordan blocks) gives:

$$\mathcal{K}^{n}\psi = \sum_{\substack{\lambda_{k} \in \sigma_{\mathrm{d}}(\mathcal{K})\\\mathcal{K}\psi_{k} = \lambda_{k}\psi_{k}}} c_{k}(\psi) \lambda_{k}^{n} \psi_{k} + \mathcal{O}(\rho_{\mathrm{ess}}(\mathcal{K})^{n})$$

Different parts of the spectrum have various interpretations:

$\lambda = 1$: ergodic components

Proposition

Suppose a function $\psi : D \to \mathbb{R}$ satisfies $\psi \circ f = \psi$. Then the level sets of ψ are invariant sets.

Proof.

If $x \in \psi^{-1}(c)$, then $\psi(f(x)) = \psi(x) = c$, so $f(x) \in \psi^{-1}(c)$.

$|\lambda| = 1$: periodicity

Proposition

Suppose a function $\psi : D \to \mathbb{R}$ satisfies $\psi \circ f = e^{i\theta\psi}$ for some $\theta \in [0, 2\pi]$. Let $E_z = \{x \in D : \psi(x) = z\}$. Then f maps E_z into $E_{e^{i\theta}z}$.

Proof.

If
$$x \in E_z$$
, then $\psi(f(x)) = e^{i\theta}\psi(x) = e^{i\theta}z$, so $f(x) \in E_{e^{i\theta}z}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$|\lambda| = 1$: periodicity

Proposition

Suppose a function $\psi : D \to \mathbb{R}$ satisfies $\psi \circ f = e^{i\theta\psi}$ for some $\theta \in [0, 2\pi]$. Let $E_z = \{x \in D : \psi(x) = z\}$. Then f^n maps E_z into $E_{e^{i\theta\varphi}z}$.

Proof.

If
$$x \in E_z$$
, then $\psi(f(x)) = e^{i\theta}\psi(x) = e^{i\theta}z$, so $f(x) \in E_{e^{i\theta}z}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proposition (à la Froyland and Stancevic '10)

Suppose ψ satisfies $\mathcal{K}\psi = \lambda\psi$ and $\sup |\psi| \leq 1$ for some $\lambda \in (0,1)$. Let

$$E_{+} = \{ x \in D : \psi(x) > 0 \}.$$

Then for some C > 0,

$$\int_{D} \mathbb{P}\left(f^{t}(x) \in E_{+} \text{ for } t = 1, \dots, n\right) \, \mathrm{d}x \geq C\lambda^{n-1}$$

That is, the Lebesgue measure of the set of points that don't leave E_+ within *n* steps decays as $\mathcal{O}(\lambda^n)$. In particular $n \sim 1/(1-\lambda)$, this set is of $\mathcal{O}(1)$ Lebesgue measure.

Proof.

We are interested in

$$P_n = \int_D \mathbb{P}\left(x_t \in E_+ \text{ for } t = 0 \dots, n-1 | x_t = x\right) \, \mathrm{d}x.$$

The interior probability we can rewrite as

$$\mathbb{E}\left(\prod_{t=0}^{n-1}\mathbb{1}_{E_+}(x_t)|x_0=x\right) \boxed{\mathbb{1}_{E_+}(x) = \begin{cases} 1 & x \in E_+\\ 0 & x \notin E_+ \end{cases}}$$

1

• If
$$n = 1$$
, this is $\mathbb{E}[\mathbb{1}(x_0 | x_0 = x] = \mathbb{1})(x)$.

▶ If n = 2, this is $\mathbb{E}[\mathbb{1}_{E_+}(x_0)\mathbb{1}_{E_+}(x_1)|x_0 = x] = \mathbb{1}_{E_+}(x)\mathcal{K}[\mathbb{1}_{E_+}](x)$.

• If
$$n = 3$$
, this is

$$\mathbb{E}[\mathbb{1}_{E_+}(x_0)\mathbb{1}_{E_+}(x_1)\mathbb{1}_{E_+}(x_2)|x_0 = x] = \mathbb{1}_{E_+}(x)\mathcal{K}[\mathbb{1}_{E_+}\mathcal{K}[\mathbb{1}_{E_+}]](x).$$

• By induction, we have $(\mathbb{1}_{E_+}\mathcal{K})^{n-1}[\mathbb{1}_{E_+}](x)$.

Proof (continued).

Now, \mathcal{K} is a positive operator (i.e. $a \ge b \implies \mathcal{K}a \ge \mathcal{K}b$), and $\mathbb{1}_{E_+} \ge \psi$, so

$$(\mathcal{K}\mathbb{1}_{E_+})^{n-1}[\mathbb{1}_{E_+}](x) \ge (\mathcal{K}\mathbb{1}_{E_+})^n[\psi](x)$$

Furthermore, $\mathbb{1}_{E_+}\mathcal{K}\psi = \lambda \mathbb{1}_{E_+}\psi \ge \lambda \psi$. So, inductively,

$$(\mathbb{1}_{E_+}\mathcal{K})^{n-1}[\psi](x) \ge \lambda^{n-1}\mathbb{1}_{E_+}\psi(x).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

So for some C > 0,

$$P_n \ge \int_D \lambda^{n-1} \mathbb{1}_{E_+}(x) \psi(x) \, \mathrm{d}x = C \lambda^{n-1}.$$

• Comparable results for complex λ . If

$$E_{\theta} = \{x \in D : \Re[e^{i\theta}\psi(x)] > 0\},\$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

you have that E_{θ} mostly maps to $E_{\theta+\arg\lambda}$.

Same result for transfer operator *L* (again if bounded eigenfunctions).

$\lambda \lesssim$ 1: garbage patch example

FIG. 4: Maps of selected left eigenvectors of P showing the locations of the five great ocean garbage patches.

Transfer operator eigenfunctions

FIG. 5: Maps of right eigenvectors $\{v_{P,r}\}$ of P.

Koopman eigenfunctions

Note: in a Lebesgue-orthogonal basis, $\mathcal L$ is the transpose of $\mathcal K$

Same spectrum, different eigenfunctions.

Transfer: attractors Koopman: basins of attraction

Koopman and transfer operator eigenfunctions

Using EDMD I just computed that a Hénon-like map has an eigenvalue $\lambda \cong 0.92 e^{-6i\pi/7}$. This suggests some sort of 7-periodic behaviour persisting over timescale $\sim 1/-\log 0.92 = 13$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Koopman and transfer operator eigenfunctions

Using EDMD I just computed that a Hénon-like map has an eigenvalue $\lambda \simeq 0.92e^{-6i\pi/7}$.

This suggests some sort of 7-periodic behaviour persisting over timescale $\sim 1/-\log 0.92=13.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ●

This lecture, let's try and get a theoretical grip on the spectrum of the Koopman operator for a deterministic contraction ($\kappa < 1$):

$$f(x) = \kappa x, \, x \in [-1,1]$$

So the Koopman operator is

$$(\mathcal{K}\psi)(x) = \psi(\kappa x)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

What does its spectrum look like? Let's try and find some eigenfunctions.

Let's sub in a power series $\psi(x) = \sum_{k=0}^{\infty} a_k x^k$:

$$0 = \mathcal{K}\psi - \lambda\psi$$
$$= \sum_{k=0}^{\infty} a_k \kappa^k x^k - \lambda \sum_{k=0}^{\infty} a_k x^k$$

Equating terms we get

$$(\kappa^k - \lambda)a_k = 0, k \in \mathbb{N}$$

suggesting that our eigenvalues are $\{1, \kappa, \kappa^2, \kappa^3, \ldots\}$ with the respective eigenfunctions $\{1, x, x^2, x^3, \ldots\}$

These eigenfunctions broadly give us what we expect:

- The leading eigenfunction 1 is simple (i.e. no separate basins of attraction*)
- The next eigenfunction has a root at x = 0, suggesting a dynamical barrier here (in fact, it is precisely the fixed point—woohoo)
- Some other spectrum accumulating at 0

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

These eigenfunctions broadly give us what we expect:

- The leading eigenfunction 1 is simple (i.e. no separate basins of attraction*)
- The next eigenfunction has a root at x = 0, suggesting a dynamical barrier here (in fact, it is precisely the fixed point—woohoo)
- Some other spectrum accumulating at 0

(日) (四) (日) (日) (日)
But, by the same token, we could try $\mathcal{K}\mathbb{1}(x > 0)x = \mathbb{1}(x > 0)x$, and so on...

But, by the same token, we could try $\mathcal{K}\mathbb{1}(x>0)x^{1/2}=\sqrt{\kappa}\mathbb{1}(x>0)x^{1/2}$, and so on...

But, by the same token, we could try $\mathcal{K}\mathbb{1}(x>0)x^{1/2}=\sqrt{\kappa}\mathbb{1}(x>0)x^{1/2}$, and so on...

But, by the same token, we could try $\mathcal{K}\mathbb{1}(x>0)x^{1/2}=\sqrt{\kappa}\mathbb{1}(x>0)x^{1/2}$, and so on...

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

But, by the same token, we could try $\mathcal{K}\mathbb{1}(x>0)x^{1/2}=\sqrt{\kappa}\mathbb{1}(x>0)x^{1/2}$, and so on...

In fact, for any $\alpha \in \mathbb{C}$, we can set $\psi(x) = x^{\alpha} = e^{-\alpha \log x}$ for x > 0and get

$$(\mathcal{K}\phi)(x) = e^{-\alpha(\log x - \log \kappa)} = \kappa^{-\alpha}\psi(x)$$

So, \mathcal{K} 's spectrum could cover the complex plane unless we are a bit careful about what functions we allow.

・ロト・日本・日本・日本・日本・日本

In fact, this comes from a bigger fact which is that Koopman eigenfunctions/eigenvalues are multiplicative in deterministic dynamics.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

In general, if

$$\blacktriangleright \ \mathcal{K}\psi = \lambda\psi$$

- f is deterministic;
- ψ^{α} is well-defined;

then $\mathcal{K}[\psi^{\alpha}] = \lambda^{\alpha} \psi^{\alpha}$.

How do we allow/banish functions from our linear operator \mathcal{K} ? We set a function space as the domain of \mathcal{K} .

Crucial properties of this function space \mathcal{B} :

- It is a vector space.
- It has a norm || · ||, with respect to which it is complete (i.e. it's a Banach space)
- \blacktriangleright \mathcal{K} maps \mathcal{B} to itself.
- ► It doesn't have to contain *only* functions, but should contain all sufficiently nice functions (e.g. C[∞]_c)

Note that to do theory it isn't very helpful to have a Hilbert space, except in some cases.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Spectrum of an infinite-dimensional operator

Define the resolvent of an operator $\mathcal{A}:\mathcal{B}\to\mathcal{B}$:

$$R_{\lambda}(\mathcal{A}) = (\mathcal{A} - \lambda I)^{-1} : \mathcal{B} \to \mathcal{B}$$

The spectrum $\sigma(\mathcal{A})$ is the set of $\lambda \in \mathbb{C}$ where $R_{\lambda}(\mathcal{A})$ is either not well-defined, or unbounded. It is always closed.

The spectrum includes:

- The discrete spectrum σ_d(A), i.e. isolated eigenvalues λ of A with finite "algebraic multiplicity".
 The nice normal stuff we love from finite-dimensional operators.
- The rest σ_{ess}(A)—the "essential spectrum". For Koopman operators in discrete time it is *usually* a ball around 0.

Spectral radii

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Spectral radius $\rho(\mathcal{A}) = \max |\sigma(\mathcal{A})|$
- Essential spectral radius $\rho_{ess}(\mathcal{A}) = \max |\sigma_{ess}(\mathcal{A})|$

Spectral radii

- Spectral radius $\rho(\mathcal{A}; \mathcal{B}) = \max |\sigma(\mathcal{A}; \mathcal{B})|$
- ► Essential spectral radius $\rho_{ess}(\mathcal{A}; \mathcal{B}) = \max |\sigma_{ess}(\mathcal{A}; \mathcal{B})|$

Important to remember these depend on the function space \mathcal{B} ...

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Spectral radii

- Spectral radius $\rho(\mathcal{A}; \mathcal{B}) = \max |\sigma(\mathcal{A}; \mathcal{B})| \le ||\mathcal{A}||_{\mathcal{B}})$
- ► Essential spectral radius $\rho_{ess}(\mathcal{A}; \mathcal{B}) = \max |\sigma_{ess}(\mathcal{A}; \mathcal{B})|$

Important to remember these depend on the function space \mathcal{B} ...

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Compact operators

An operator $\mathcal{A} : \mathcal{B}_1 \to \mathcal{B}_2$ is *compact* if $\overline{\mathcal{A}(\mathcal{B}_{\mathcal{B}_1}(0,1))}$ is a compact subset of \mathcal{B}_2 .

If there exist some operators $\mathcal{A}_{\textit{N}}:\mathcal{B}_1\to\mathcal{B}_2$ such that

$$\|\mathcal{A}_N - \mathcal{A}\|_{\mathcal{B}_1 \to \mathcal{B}_2} \xrightarrow{N \to \infty} 0,$$

then A is compact. In most reasonable cases (e.g. Hilbert spaces, $B_1 = B_2$ has a countable Schauder basis...) this is iff.

- Compact operators' only essential spectrum is at λ = 0. So ρ_{ess} = 0.
- However, there can be countably discrete eigenvalues, which then accumulate at zero.

Stochastic systems

Remember that for most nice stochastic systems (e.g. SDE maps), the Koopman operator is a kernel operator:

$$(\mathcal{K}\psi)(y) = \mathbb{E}[\psi(x_{t+1})|x_t = y] = \int \psi(x) k(y, x) dx.$$

Usually k is reasonably regular: for example, $\int_{D} |\nabla_{y} k(y, x)| dx \leq C \text{ for all } x.$ In this case, we find that for all $y \in D$,

$$|
abla_y(\mathcal{K}\psi)(y)| = \int_D |
abla_y k(y,x)| |\psi(x)| \,\mathrm{d}x \leq C \sup_{x\in D} |\psi(x)|.$$

This is a nice bound, which we can translate into functional analysis as follows...

An estimate that is always true

Let's take \mathcal{B} to be the space of bounded functions on D with the norm:

$$\|\psi\|_{\mathcal{B}} = \sup_{x\in D} |\psi(x)|.$$

Then, ${\cal K}$ always maps bounded functions to bounded functions by virtue of the following:

$$\|\mathcal{K}\psi\|_{\mathcal{B}} = \sup_{x \in D} |\mathbb{E}[\psi(x_{t+1})|x_t = x]| \le \sup_{y \in D} |\psi(y)| = \|\psi\|_{\mathcal{B}}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

And you can see it has norm (so spectral radius) bounded by 1!

Stochastic systems

In our stochastic system, let's also define a "strong" space C^1 , of all the continuously differentiable functions on [-1, 1], with the norm

$$\|\psi\|_{C^1} = \sup_{x\in D} |\nabla\psi(x)| + \sup_{x\in D} |\psi(x)| = \|\nabla\psi\|_{\mathcal{B}} + \|\psi\|_{\mathcal{B}}.$$

Then, our bound from before translates to saying

$$\|\mathcal{K}\psi\|_{C^1} \leq C \|\psi\|_{\mathcal{B}}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

So \mathcal{K} makes our functions smoother!

Can we use this to say anything about the compactness of ${\mathcal K}$ in ${\mathcal B}?$

Proposition

The product of a bounded operator and a compact operator (resp. approximable by finite rank) is compact (resp. approximable by finite rank).

Imagine $\mathcal{K}:\mathcal{B}\to\mathcal{B}$ as the following chain:

$$\mathcal{B} \xrightarrow{\mathcal{K}} \mathcal{C}^1 \xrightarrow{\mathsf{id}} \mathcal{B}$$

- ロ ト - 4 回 ト - 4 □ - 4

If we can show that id : $C^1 \to \mathcal{B}$ is compact (aka C^1 embeds compactly into \mathcal{B} , which we notate $C^1 \Subset \mathcal{B}$)... then $\mathcal{K} : \mathcal{B} \to \mathcal{B}$ is compact. Let's try and construct some finite-dimensional operators that approach id : $C^1 \to \mathcal{B}$ in norm.

That is, let's find some finite-dimensional operators that give uniformly good approximations of differentiable functions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

For simplicity, we'll do it on the interval [0, 1].

For every $\psi \in C^1$, let's define $\mathcal{P}_N \psi$ to linearly interpolate ψ at $S_N = \{0, \frac{1}{N}, \frac{2}{N}, \dots, 1\}$:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

For every $\psi \in C^1$, let's define $\mathcal{P}_N \psi$ to linearly interpolate ψ at $S_N = \{0, \frac{1}{N}, \frac{2}{N}, \dots, 1\}$:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

For every $\psi \in C^1$, let's define $\mathcal{P}_N \psi$ to linearly interpolate ψ at $S_N = \{0, \frac{1}{N}, \frac{2}{N}, \dots, 1\}$:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

For every $\psi \in C^1$, let's define $\mathcal{P}_N \psi$ to linearly interpolate ψ at $S_N = \{0, \frac{1}{N}, \frac{2}{N}, \dots, 1\}$:

(日) (四) (日) (日) (日)

 \mathcal{P}_N is finite rank, and for all $\psi \in \mathcal{C}^1$,

$$\|\mathcal{P}_{N}\psi-\psi\|_{\mathcal{B}}\leq\frac{1}{N}\|\psi\|_{\mathcal{C}^{1}}$$

(Exercise: prove this)

(日) (四) (日) (日) (日)

 \mathcal{P}_N is finite rank, and for all $\psi \in \mathcal{C}^1$,

$$\|\mathcal{P}_{N}\psi-\psi\|_{\mathcal{B}}\leq\frac{1}{N}\|\psi\|_{\mathcal{C}^{1}}$$

(Exercise: prove this)

イロト 不得 トイヨト イヨト

 \mathcal{P}_N is finite rank, and for all $\psi \in C^1$,

$$\|(\mathcal{P}_{N}-\mathsf{id})\psi\|_{\mathcal{B}}\leqrac{1}{N}\|\psi\|_{\mathcal{C}^{1}}$$

(Exercise: prove this)

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

So $C^1 \Subset \mathcal{B}$.

- ▶ The Koopman operator $\mathcal{K} : \mathcal{B} \to \mathcal{B}$ is compact!
- So it only has point spectrum!

Thus, we have proven that all stochastic systems on compact manifolds with differentiable kernels have compact Koopman operators!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Computing with compact operators

- In proving compactness, we came up with a nice approximation scheme (interpolation).
- ► We could try and approximate our Koopman operator K by K_N := P_NK, perhaps restricting to im P_N, i.e. piecewise linear functions.
- ▶ This approximation \mathcal{K}_N is $\mathcal{O}(1/nN$ -close in norm to \mathcal{K} , so its simple eigenvalues should be $\mathcal{O}(1/N)$ error...

Theorem

Suppose that $\lambda \in \sigma_d(\mathcal{A}; \mathcal{B})$ with algebraic multiplicity L. Suppose $\|\mathcal{A}_N - \mathcal{A}\|_{\mathcal{B}} \to 0$. Then each \mathcal{A}_N has L eigenvalues (counting multiplicity) $\lambda_N^1, \ldots \lambda_N^L$ such that for large enough N, each

$$|\lambda_N^{(l)} - \lambda_N| \le C \|\mathcal{A}_N - \mathcal{A}\|_{\mathcal{B}}^{1/L}.$$

Let's set $x_{t+1} = 3.54x_t(1 - x_t) + 0.08\Xi$, where Ξ is i.i.d. noise with the following pdf $p(\xi) = \mathbb{1}_{[0,1]}(\xi)6\xi(1 - \xi)$:

Then the kernel defining the Koopman operator is

$$k(x,y) = 0.08^{-1} p\left(\frac{y - 3.54x(1-x)}{0.08}\right)$$

A D N A 目 N A E N A E N A B N A C N

and we can try and compute \mathcal{K} on im \mathcal{I}_N .

Spectrum converges (as $\mathcal{O}(1/N)$, eventually).

(日)

Let's look at the Koopman eigenfunction for $\lambda = -0.878$ (so some set for which the period-two map is almost-invariant):

(日)

Saddish news: for most deterministic systems, the Koopman operator isn't expected to be compact on any reasonable Banach spaces.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We will see why later.
Saddish news: for most deterministic systems, the Koopman operator isn't expected to be compact on any reasonable Banach spaces. We will see why later.

Next best option (should be possible $97\%^1$ of the time):

A quasi-compact operator

Quasi-compactness

An operator is quasi-compact if it has this spectral picture:

Suppose we are only thinking about positive operators with spectral radius = 1 (e.g. Koopman/transfer). Then

- A quasi-compact operator has $\rho_{ess}(\mathcal{A}) < 1$.
- A quasi-compact Koopman operator has some discrete spectrum.
- Quasicompact operators are the sum of a compact operator and an operator with an iterate that is a contraction.

► Why?
$$\sigma_{ess}(\mathcal{A} + \mathcal{C}) = \sigma_{ess}(\mathcal{A})$$
 when \mathcal{C} is compact.

Contraction on C^0

Let's go back to $f(x) = \kappa x, x \in [-1, 1]$. Let's take $\mathcal{B} = C^0$, the space of bounded, continuous functions on [-1, 1] with the sup-norm. Then $\mathcal{K} : \mathcal{B} \to \mathcal{B}$ since f is continuous, and

$$\|\mathcal{K}\psi\| = \sup_{x\in[-1,1]} |\psi(f(x))| \le \sup_{x\in[-1,1]} \psi(x) = \|\psi\|$$

so $\rho(\mathcal{K}; C^0) \le 1$.

Then, eigenfunctions $\psi_{\alpha}(x) := \mathbb{1}(x > 0)e^{\alpha \log x}$ are in C^0 for $\Re \alpha \leq 0$. Corresponding eigenvalues are κ^{α} , so $\sigma(\mathcal{A}; C^0([-1, 1]))$ fills the whole (closed) unit ball.

Just cts. spectrum!

Contraction on C^r spaces

What about some spaces that remove more of the ψ_{α} ? Let's try C^r , the space of *r*-times continuously differentiable functions on [-1, 1]. The following norm on C^r works:

$$\|\psi\|_{C^r} = \|\psi^{(r)}\|_{C^0} + \psi(0) + \psi'(0) + \ldots + \psi^{(r-1)}(0).$$

We have that $\psi_{\alpha}^{(r)}(x) = \alpha(\alpha - 1) \cdots (\alpha - r + 1)\psi_{\alpha - r}(x)$, so ψ_{α} is in C^{r} if either:

- $\psi_{\alpha-r}$ is in C^0 , i.e. $\Re \alpha > r$. So $B(0, \kappa^r)$ is in the spectrum.
- α is one of $0, 1, 2, \dots, r-1$, i.e. $\psi_{\alpha} = 1, x, x^2, \dots, x^{r-1}$. So $1, \kappa, \kappa^2, \dots, \kappa^{r-1}$ are in the spectrum.

・ ロ ト ・ 西 ト ・ 日 ト ・ 日 ト

Contraction on C^r spaces

Is there anything else? Well, let's try and do an eigendecomposition. Recalling that every function in C^r can be written as

$$\psi(x) = \psi(0) + \psi'(0)x + \ldots + \frac{\psi^{(r-1)}(0)}{(r-1)!}x^{r-1} + \mathcal{O}(x^r),$$

we can decompose

$$C^r = \langle 1 \rangle \oplus \langle x \rangle \oplus \cdots \oplus \langle x^{r-1} \rangle \oplus \underbrace{\left\{ \psi \in C^r : \psi^{(I)}(0) = 0 \text{ for } I < r \right\}}_{=:V}.$$

All these subspaces are \mathcal{K} -invariant, and $\sigma(\mathcal{K})$ is the union of the spectrum of \mathcal{K} restricted to these subspaces. Only what happens on V we are uncertain of.

Contraction on C^r spaces

SO

$$\|\psi\|_{C^{r}} = \|\psi^{(r)}\|_{C^{0}} + \psi(0) + \psi'(0) + \ldots + \psi^{(r-1)}(0).$$

$$\left\{\psi \in C^{r} : \psi^{(l)}(0) = 0 \text{ for } l < r\right\}$$
For $\psi \in V$ we have
$$\|\mathcal{K}\psi\|_{C^{r}} = \|(\mathcal{K}\psi)^{(r)}\|_{C^{0}} = \sup_{x \in [-1,1]} \|\kappa^{r}\psi^{(r)}(\kappa x)\|_{C^{0}}$$

$$= \kappa^{r} \sup_{y \in [-\kappa,\kappa]} |\psi^{(r)}(y)| \le \kappa^{r} \|\psi\|_{C^{1}}$$
so $\sigma(\mathcal{K}|_{V})$ is a subset of $B(0,\kappa^{r})$.

This means the spectrum of \mathcal{K} on \mathcal{C}^r is

$$\sigma(\mathcal{K}, \mathcal{C}^{r}) = \underbrace{\overline{B(0, \kappa^{r})}}_{\text{essential}} \cup \underbrace{\{\kappa^{r-1}, \kappa^{r-2}, \dots \kappa, 1\}}_{\text{discrete}}.$$

Spectrum vs function space

In general, essential spectrum will vary by function space, but the discrete eigenvalues are more canonical:

Lemma (simplified from Baladi and Tsujii, '08)

Suppose Banach space \mathcal{B}_2 is a dense subset of Banach space \mathcal{B}_1 , and \mathcal{A} is bounded on both \mathcal{B}_2 and \mathcal{B}_1 . Then, the discrete spectrum of \mathcal{A} with absolute value greater than $\max\{\rho_{ess}(\mathcal{A}; \mathcal{B}_1), \rho_{ess}(\mathcal{A}; \mathcal{B}_2)\}$ matches in \mathcal{B}_1 and \mathcal{B}_2 (ditto multiplicity, eigenfunctions).

・ロト・日本・日本・日本・日本・日本

Sidenote: spaces of fractional differentiability

We can continuously interpolate between C^r spaces by looking, e.g., at Hölder continuity. The β -Hölder constant of a function is given by

$$H_{\beta}(\psi) = \sup_{x,y \in [-1,1]} rac{|\psi(x) - \psi(y)|}{|x - y|^{eta}}, eta \in (-1,1]$$

Then the $C^{r+\beta}$ norm of ψ is given by

$$\|\psi\|_{C^{r+\beta}} = \|\psi\|_{C^r} + H_{\beta}(\psi^{(r)}).$$

i.e. $C^{r+\beta}$ consists of functions whose the *r*th derivative is β -Hölder.

The essential spectral radius is $\rho_{\rm ess}(\mathcal{K}, C^{r+\beta}) = \kappa^{r+\beta}$, with discrete eigenvalues $\{1, \kappa, \dots, \kappa^r\}$.

Image: A matrix and a matrix