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Trying to make sense of dynamical systems

The basic object of study in “dynamics” is a trajectory
{xt}t=0,1,2,... in a state space D.

▶ The set of trajectories of a dynamical system
can be very complicated (like people)

▶ Tendency to study mean behaviour (or
expected behaviour with respect to some
loss. . .)

▶ “Mean”,“expectation” implies study with
respect to probability. In dynamics, this is
ergodic theory

Some Lorenz-63 trajectories
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Smooth ergodic theory

1
T

T∑
t=0

ψ(xt)
T→∞−−−−→

∫
D
ψ(xt) dµ(x) for µ-almost all x

▶ Birkhoff ergodic theorem (true in many
systems): time averages over orbit = spatial
average
▶ Means almost every orbit looks like every

other orbit at some point in time (“almost
all orbits are dense”).

▶ We want to compute so want, e.g. stability
to error, ideally with quantitative assurances.

▶ This suggests studying smooth ergodic
theory.

Some Lorenz-63 trajectories
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Operators

So, we are interested in studying
▶ The Koopman operator
▶ The transfer operator (≈ Perron-Frobenius operator)

on function spaces involving differentiability.

It is mostly a separate beast to the Lp(µ) theory.



Stochastic vs deterministic

Broadly are going to consider three kinds of dynamical system (on
compact manifolds):

Noisy dynamics (SDEs. . . ): theoretically easy, good
starting point for comparison
Deterministic contractions: already known, but
explains some of the questions in deterministic
dynamics. . .
Deterministic chaos: harder and a bit obscure,
main goal of this minicourse

Objection! All real systems have a bit of noise in them!

Then you commit to resolving down to the scale of the
noise!

How can we believe lower-resolution numerics?
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Dual notions

(Markov, time-autonomous) stochastic dynamics xt ∈ D are
typically studied using two linear operators, acting on functions on
the state space ψ,φ : D → R:
▶ The Chapman-Kolmogorov operator: predicting the expected

future value of “observable” functions

(Kψ)(x) = E[ψ(xt+1)|xt = x ]

▶ The Fokker-Planck operator: evolution of probabilities into
future (= push-forward of measure density)

(Lφ)(x) =
∫
φ(y) dP

dx [xt+1 = x |xt = y ] dy
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Dual notions

Define our transition kernel k(x , y) = dP
dy [xt+1 = y |xt = x ], then

(Lφ)(y) =
∫
φ(x) k(x , y) dx

whereas

(Kψ)(x) = E[ψ(xt+1)|xt = x ]

=
∫
ψ(y)dP[xt+1 = y |xt = x ]

=
∫
ψ(y) k(x , y) dy .

So, these operators are dual:∫
(Lφ)(y)ψ(y) dy =

∫
φ(y) (Kψ)(y) dy .



Dual notions
These actually work with deterministic maps f : D → D as well
(modulo “some” intricacies. . . )
▶ The Koopman operator: expected future value of functions

(aka “observables”)

(Kψ)(x) = ψ(f (x))
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Dual notions
▶ The transfer operator, which gives you the evolution of

probabilities into the future (= push-forward of measure
density)

(Lφ)(x) =
∫

“dP
dx [f (y) = x ]”φ(y) dy

=
∑

f (y)=x

φ(y)
| det Df (y)|
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Dual notions

These two operators are also still dual!∫
φ(x) (Kψ)(x) dx =

∫
(Lφ)(x)ψ(x) dx
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Dynamics

dynamics, n. The study of trajectories as time goes to infinity.

(You tell me if that’s a good thing.)

▶ We can describe dynamics over long times by Kn, Ln, for n
large.

▶ These are best described by the spectrum of K,L.
▶ Consequently, Koopman/transfer spectra can:

▶ Provide reductions for the dynamics
▶ Give you statistical information about the system
▶ Make sense of the emergent dynamical geometry. . .
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Koopman spectra

What are the spectra of these (infinite-dimensional, weirdly-posed)
operators?
Generally computer approximations of the Koopman spectrum look
like:
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Structure
A lot of numerics around dynamical systems come down to
studying the spectra of these operators numerically.
This lecture series will talk about

1. A mathematical framework that explains quasi-compact
operators

2. How different kinds of dynamics fit into the framework
3. How this translates to computation
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Meaning of the spectrum
Quasicompactness (and σd(K) with no Jordan blocks) gives:

Knψ =
∑

λk∈σd(K)
Kψk=λkψk

ck(ψ)λn
k ψk + O(ρess(K)n)

Different parts of the spectrum have various interpretations:

= 1: 
invariant measures 
some time series properties

= root of unity: 
periodic components

1: 
almost-invariant sets
barriers to mixing

| | 1: 
metastable periodic structures

Smaller : 
finer mixing info

Essential spectrum:
 various things



λ = 1: ergodic components

Proposition
Suppose a function ψ : D → R satisfies ψ ◦ f = ψ. Then the level
sets of ψ are invariant sets.

Proof.
If x ∈ ψ−1(c), then ψ(f (x)) = ψ(x) = c, so f (x) ∈ ψ−1(c).

x

0

(x
)



|λ| = 1: periodicity

Proposition
Suppose a function ψ : D → R satisfies ψ ◦ f = eiθψ for some
θ ∈ [0, 2π]. Let Ez = {x ∈ D : ψ(x) = z}.
Then f maps Ez into Eeiθz .

Proof.
If x ∈ Ez , then ψ(f (x)) = eiθψ(x) = eiθz , so f (x) ∈ Eeiθz .
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λ ≲ 1: almost invariant sets

Proposition (à la Froyland and Stancevic ’10)
Suppose ψ satisfies Kψ = λψ and sup |ψ| ≤ 1 for some λ ∈ (0, 1).
Let

E+ = {x ∈ D : ψ(x) > 0}.

Then for some C > 0,∫
D

P
(
f t(x) ∈ E+ for t = 1, . . . , n

)
dx ≥ Cλn−1

That is, the Lebesgue measure of the set of points that don’t leave
E+ within n steps decays as O(λn).
In particular n ∼ 1/(1 − λ), this set is of O(1) Lebesgue measure.



λ ≲ 1: almost invariant sets

Proof.
We are interested in

Pn =
∫

D
P (xt ∈ E+ for t = 0 . . . , n − 1|xt = x) dx .

The interior probability we can rewrite as

E

(n−1∏
t=0

1E+(xt)|x0 = x
)

▶ If n = 1, this is E[1(x0|x0 = x ] = 1)(x).
▶ If n = 2, this is E[1E+(x0)1E+(x1)|x0 = x ] = 1E+(x)K[1E+ ](x).
▶ If n = 3, this is

E[1E+(x0)1E+(x1)1E+(x2)|x0 = x ] = 1E+(x)K[1E+K[1E+ ]](x).
▶ By induction, we have (1E+K)n−1[1E+ ](x).

1E+(x) =
{

1 x ∈ E+

0 x /∈ E+



λ ≲ 1: almost invariant sets

Proof (continued).
Now, K is a positive operator (i.e. a ≥ b =⇒ Ka ≥ Kb), and 1E+ ≥ ψ,
so

(K1E+)n−1[1E+ ](x) ≥ (K1E+)n[ψ](x)

Furthermore, 1E+Kψ = λ1E+ψ ≥ λψ.
So, inductively,

(1E+K)n−1[ψ](x) ≥ λn−11E+ψ(x).

So for some C > 0,

Pn ≥
∫

D
λn−11E+(x)ψ(x) dx = Cλn−1.

x

0

1

(x)
E + (x)



λ ≲ 1: almost invariant sets

▶ Comparable results for complex λ. If

Eθ = {x ∈ D : ℜ[eiθψ(x)] > 0},

you have that Eθ mostly maps to Eθ+arg λ.
▶ Same result for transfer operator L (again if bounded

eigenfunctions).



λ ≲ 1: garbage patch example
6

The former are the nonphysical absorbing classes, and
we are primarily interested in the latter larger collections.
The leading eigenvalues of P are listed in Table I.

TABLE I: Top 15 eigenvalues for P and P̂ .

λ P P̂
λ1 1.0000 1.0000
λ2 1.0000 1.0000
λ3 1.0000 1.0000
λ4 1.0000 1.0000
λ5 0.9999 1.0000
λ6 0.9999 0.9999
λ7 0.9996 0.9999
λ8 0.9991 0.9996
λ9 0.9975 0.9991
λ10 0.9913 0.9975
λ11 0.9852 0.9913
λ12 0.9838 0.9852
λ13 0.9826 0.9838
λ14 0.9680 0.9826
λ15 0.9645 0.9680

In practice, we visualise the eigenvectors to determine
their supports. Figure 4 shows left eigenvectors of P
close to 1, whose eigenvalues correspond to small ex-
change between larger collections of boxes. The eigenvec-
tors clearly highlight five ocean garbage patches, present
in the North and South Pacific, Indian, and North and
South Atlantic Oceans1–4, consistent with Figure 2d. Dy-
namically, this makes sense because there is likely to
be only very little exchange between the (attracting)
garbage patches.

In this particular case study the top four eigenvectors
and the eighth eigenvector (not shown) highlighted com-
binations of boxes related to the (possibly leaky) non-
physical absorbing classes. Further down the spectrum
at positions 5, 6, 7, 9, the eigenvectors describe the slow-
exchange dynamics between the garbage patches (Figure
4). For the eigenvectors 5, 6, 7, 9, the eigenvalues quan-
tify the geometric rates at which the (signed) densities
shown in Figure 4 converge to equilibrium. The eigenvec-
tors themselves are (scalar multiples of) signed densities,
representing the slow-decaying modes. Those eigenvec-
tors with eigenvalues closest to 1 are the most impor-
tant as they are the slowest to decay and are the most
long-lived transient modes. Some of these eigenvectors
highlight the patches along with some of the nonphysical
absorbing classes, for example Figure 4a shows a small
highlighted region on the southwest coast of South Amer-
ica, in addition to two garbage patches in the South Pa-
cific and South Atlantic.

B. Right eigenvectors of P

Let us now turn to the right eigenvectors of P . Clearly
we have the same complex mix of eigenvalues as discussed
above. Under left multiplication, the matrix P⊤ is the

(a) uP,5

(b) uP,6

(c) uP,7

(d) uP,9

FIG. 4: Maps of selected left eigenvectors of P showing
the locations of the five great ocean garbage patches.

matrix representation of the dual dynamical action of
P ; see Lemma 530. Thus, the right eigenvectors v of P

Transfer operator
eigenfunctions

7

associated with real eigenvalues λ ̸= 1 close to 1 have
similar properties to the left eigenvectors, with two im-
portant differences: they capture backward-time dynam-
ics and rather than spanning a space that looks approx-
imately like the long-term mass distribution p (in the
OFES model, this distribution is concentrated in the non-
physical absorbing classes and in the garbage patches)
restricted to subregions, they span a space that looks
approximately like 1 restricted to subregions.

Moreover, by comparison with Theorem 1, one can in-
terpret the indicated regions as basins of attraction. Let
us consider again the idealised situation of Section V A:
the transition matrix P has M nonphysical absorbing
classes and 5 garbage patches, each of which is an ab-
sorbing closed communicating class, with pairwise dis-
joint basins of attraction. Further, there is no loss of
trajectories so that P is stochastic. There will be M + 5
eigenvalues with eigenvalue 1. What do the right eigen-
vectors look like? A particular basis is provided by Theo-
rem 1. Consider k ∈ {1, . . . , M + 5}. Applying Theorem
1 (note ρk is a vector of 1s) we see the entries of the
corresponding right eigenvector vk,i are:

vk,i =

⎧
⎨
⎩

1, i ∈ Sk;
hk,i, i is in the basin of attraction of Sk;
0, i is not in the basin of attraction of Sk.

(7)
Since the Sk are pairwise disjoint and the basins are pair-
wise disjoint, the vectors {vk}M+5

k=1 have disjoint support,
with vk supported only on Sk and its basin of attraction.

If we now perturb P to obtain the real P obtained from
the OFES model, again appealing to classical matrix per-
turbation theory, we expect to obtain M + 5 eigenvalues
nearby 1. Moreover, the level structure of the idealised
vk indicated in (7), which separates the different basins
of attraction, will persist in the (now signed) values of
the vk. Thus, the level structure of the right eigenvectors
vk close to 1 should separate the basins of attraction for
distinct absorbing closed communicating classes.

In Figure 5 we show four right eigenvectors of P , cor-
responding to the four left eigenvectors in Figure 4. The
sets shown in deep red and light blue in the southern
hemisphere in Figure 5a correspond to the South Pacific
and South Atlantic garbage patches, respectively, in Fig-
ure 4a. The deep red region in Figure 5b corresponds to
the North Pacific garbage patch; the set shown in orange
in the North Atlantic in Figure 5c corresponds to the
North Atlantic garbage patch and the deep red region
in Figure 5d corresponds to the Indian Ocean garbage
patch; compare with Figures 4b–4d, respectively.

We can form an almost full partition of the surface
ocean by combining the information in Figure 5; see Fig-
ure 6. For example, the North Pacific component in Fig-
ure 6 comprises boxes such that the value of vP,6 is above
0.005. We can then calculate the condition transition
probabilities between the regions identified in the parti-
tion in Figure 6 over a 48-week duration in time. Table
II shows the result of this calculation, with I=Indian,

(a) vP,5

(b) vP,6

(c) vP,7

(d) vP,9

FIG. 5: Maps of right eigenvectors {vP,r} of P .

NP=North Pacific, SP=South Pacific, NA=North At-
lantic, SA=South Atlantic, and R=remainder (unas-
signed or the extreme north and south). The inter-region

Koopman eigenfunctions

6
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matrix representation of the dual dynamical action of
P ; see Lemma 530. Thus, the right eigenvectors v of P

Same spectrum, different
eigenfunctions.

Transfer: attractors
Koopman: basins of attraction

Note: in a
Lebesgue-orthogonal
basis, L is the
transpose of K



Koopman and transfer operator eigenfunctions

Using EDMD I just computed that a Hénon-like map has an
eigenvalue λ ≊ 0.92e−6iπ/7.
This suggests some sort of 7-periodic behaviour persisting over
timescale ∼ 1/− log 0.92 = 13.
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A motivating conundrum

This lecture, let’s try and get a theoretical grip on the spectrum of
the Koopman operator for a deterministic contraction (κ < 1):

f (x) = κx , x ∈ [−1, 1]

So the Koopman operator is

(Kψ)(x) = ψ(κx)

What does its spectrum look like?
Let’s try and find some eigenfunctions.



A motivating conundrum

Let’s sub in a power series ψ(x) =
∑∞

k=0 akxk :

0 = Kψ − λψ

=
∞∑

k=0
akκ

kxk − λ
∞∑

k=0
akxk

Equating terms we get

(κk − λ)ak = 0, k ∈ N

suggesting that our eigenvalues are {1, κ, κ2, κ3, . . .} with the
respective eigenfunctions {1, x , x2, x3, . . .}



A motivating conundrum

These eigenfunctions broadly give us what we expect:
▶ The leading eigenfunction 1 is simple (i.e. no separate basins

of attraction∗)
▶ The next eigenfunction has a root at x = 0, suggesting a

dynamical barrier here (in fact, it is precisely the fixed
point—woohoo)

▶ Some other spectrum accumulating at 0
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A motivating conundrum

But, by the same token, we could try K1(x > 0)x = 1(x > 0)x ,
and so on...

1.0 0.5 0.0 0.5 1.0
x
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1.0

= 1.0, =
(x) = 1(x > 0)x1.0

(K )(x)

In fact, for any α ∈ C, we can set ψ(x) = xα = e−α log x for x > 0
and get

(Kϕ)(x) = e−α(log x−log κ) = κ−αψ(x)

So, K’s spectrum could cover the complex plane unless we are a
bit careful about what functions we allow.
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√
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So, K’s spectrum could cover the complex plane unless we are a
bit careful about what functions we allow.



A motivating conundrum

But, by the same token, we could try
K1(x > 0)x1/2 =

√
κ1(x > 0)x1/2, and so on...
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(x) = 1(x > 0)x 0.4

(K )(x)

In fact, for any α ∈ C, we can set ψ(x) = xα = e−α log x for x > 0
and get

(Kϕ)(x) = e−α(log x−log κ) = κ−αψ(x)

So, K’s spectrum could cover the complex plane unless we are a
bit careful about what functions we allow.



A motivating conundrum

In fact, this comes from a bigger fact which is that Koopman
eigenfunctions/eigenvalues are multiplicative in deterministic
dynamics.
In general, if
▶ Kψ = λψ

▶ f is deterministic;
▶ ψα is well-defined;

then K[ψα] = λαψα.



A motivating conundrum

How do we allow/banish functions from our linear operator K? We
set a function space as the domain of K.
Crucial properties of this function space B:
▶ It is a vector space.
▶ It has a norm ∥ · ∥, with respect to which it is complete (i.e.

it’s a Banach space)
▶ K maps B to itself.
▶ It doesn’t have to contain only functions, but should contain

all sufficiently nice functions (e.g. C∞
c )

Note that to do theory it isn’t very helpful to have a Hilbert space,
except in some cases.



Spectrum of an infinite-dimensional operator

Define the resolvent of an operator A : B → B:

Rλ(A) = (A − λI)−1 : B → B

The spectrum σ(A) is the set of λ ∈ C where Rλ(A) is either not
well-defined, or unbounded. It is always closed.
The spectrum includes:
▶ The discrete spectrum σd(A), i.e. isolated eigenvalues λ of A

with finite “algebraic multiplicity”.
The nice normal stuff we love from finite-dimensional
operators.

▶ The rest σess(A)—the “essential spectrum”. For Koopman
operators in discrete time it is usually a ball around 0.



Spectral radii

(
)

ess (
)

0

ess( )
d( )

▶ Spectral radius ρ(A) = max |σ(A)|
▶ Essential spectral radius ρess(A) = max |σess(A)|

Important to remember these depend on the function space B. . .
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▶ Spectral radius ρ(A; B) = max |σ(A; B)|
▶ Essential spectral radius ρess(A; B) = max |σess(A; B)|

Important to remember these depend on the function space B. . .



Spectral radii
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▶ Spectral radius ρ(A; B) = max |σ(A; B)| ≤ ∥A∥B)
▶ Essential spectral radius ρess(A; B) = max |σess(A; B)|

Important to remember these depend on the function space B. . .



Compact operators
An operator A : B1 → B2 is compact if A(BB1(0, 1)) is a compact
subset of B2.
If there exist some operators AN : B1 → B2 such that

∥AN − A∥B1→B2
N→∞−−−−→ 0,

then A is compact. In most reasonable cases (e.g. Hilbert spaces,
B1 = B2 has a countable Schauder basis. . . ) this is iff.
▶ Compact operators’ only essential spectrum is at λ = 0. So
ρess = 0.

▶ However, there can be countably discrete eigenvalues, which
then accumulate at zero.



Stochastic systems

Remember that for most nice stochastic systems (e.g. SDE maps),
the Koopman operator is a kernel operator:

(Kψ)(y) = E[ψ(xt+1)|xt = y ] =
∫
ψ(x) k(y , x) dx .

Usually k is reasonably regular: for example,∫
D |∇y k(y , x)| dx ≤ C for all x .

In this case, we find that for all y ∈ D,

|∇y (Kψ)(y)| =
∫

D
|∇y k(y , x)||ψ(x)| dx ≤ C sup

x∈D
|ψ(x)|.

This is a nice bound, which we can translate into functional
analysis as follows. . .



An estimate that is always true

Let’s take B to be the space of bounded functions on D with the
norm:

∥ψ∥B = sup
x∈D

|ψ(x)|.

Then, K always maps bounded functions to bounded functions by
virtue of the following:

∥Kψ∥B = sup
x∈D

|E[ψ(xt+1)|xt = x ]| ≤ sup
y∈D

|ψ(y)| = ∥ψ∥B

And you can see it has norm (so spectral radius) bounded by 1!



Stochastic systems

In our stochastic system, let’s also define a “strong” space C1, of
all the continuously differentiable functions on [−1, 1], with the
norm

∥ψ∥C1 = sup
x∈D

|∇ψ(x)| + sup
x∈D

|ψ(x)| = ∥∇ψ∥B + ∥ψ∥B.

Then, our bound from before translates to saying

∥Kψ∥C1 ≤ C∥ψ∥B.

So K makes our functions smoother!



Compact embedding

Can we use this to say anything about the compactness of K in B?

Proposition
The product of a bounded operator and a compact operator (resp.
approximable by finite rank) is compact (resp. approximable by
finite rank).

Imagine K : B → B as the following chain:

B K−→ C1 id−→ B

If we can show that id : C1 → B is compact (aka C1 embeds
compactly into B, which we notate C1 ⋐ B). . .

then K : B → B is compact.



Compact embedding

Let’s try and construct some finite-dimensional operators that
approach id : C1 → B in norm.
▶ That is, let’s find some finite-dimensional operators that give

uniformly good approximations of differentiable functions.
For simplicity, we’ll do it on the interval [0, 1].



Compact embedding

For every ψ ∈ C1, let’s define PNψ to linearly interpolate ψ at
SN = {0, 1

N ,
2
N , . . . , 1}:
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(x)
3 (x)

(Exercise: show PN is a linear operator.)



Compact embedding

For every ψ ∈ C1, let’s define PNψ to linearly interpolate ψ at
SN = {0, 1

N ,
2
N , . . . , 1}:
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(Exercise: show PN is a linear operator.)



Compact embedding

For every ψ ∈ C1, let’s define PNψ to linearly interpolate ψ at
SN = {0, 1

N ,
2
N , . . . , 1}:
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(Exercise: show PN is a linear operator.)



Compact embedding

For every ψ ∈ C1, let’s define PNψ to linearly interpolate ψ at
SN = {0, 1

N ,
2
N , . . . , 1}:
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(Exercise: show PN is a linear operator.)



Compact embedding

PN is finite rank, and for all ψ ∈ C1,

∥PNψ − ψ∥B ≤ 1
N ∥ψ∥C1

(Exercise: prove this)
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Compact embedding

PN is finite rank, and for all ψ ∈ C1,

∥PNψ − ψ∥B ≤ 1
N ∥ψ∥C1

(Exercise: prove this)
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Compact embedding

PN is finite rank, and for all ψ ∈ C1,

∥(PN − id)ψ∥B ≤ 1
N ∥ψ∥C1

(Exercise: prove this)
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Compact embedding

So C1 ⋐ B.
▶ The Koopman operator K : B → B is compact!
▶ So it only has point spectrum!

Thus, we have proven that all stochastic systems on compact
manifolds with differentiable kernels have compact Koopman
operators!



Computing with compact operators
▶ In proving compactness, we came up with a nice

approximation scheme (interpolation).
▶ We could try and approximate our Koopman operator K by

KN := PNK, perhaps restricting to im PN , i.e. piecewise
linear functions.

▶ This approximation KN is O(1/nN-close in norm to K, so its
simple eigenvalues should be O(1/N) error. . .

Theorem
Suppose that λ ∈ σd(A; B) with algebraic multiplicity L.
Suppose ∥AN − A∥B → 0.
Then each AN has L eigenvalues (counting multiplicity) λ1

N , . . . λ
L
N

such that for large enough N, each

|λ(l)
N − λN | ≤ C∥AN − A∥1/L

B .



Computational example

Let’s set xt+1 = 3.54xt(1 − xt) + 0.08Ξ, where Ξ is i.i.d. noise
with the following pdf p(ξ) = 1[0,1](ξ)6ξ(1 − ξ):

0.0 0.5 1.0
x

0

1

p(
x)

pdf of noise

Then the kernel defining the Koopman operator is

k(x , y) = 0.08−1p
(y − 3.54x(1 − x)

0.08

)
and we can try and compute K on im IN .



Computational example

Spectrum converges (as O(1/N), eventually).
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Computational example

Spectrum converges (as O(1/N), eventually).
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Computational example

Spectrum converges (as O(1/N), eventually).
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Computational example

Spectrum converges (as O(1/N), eventually).

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Spectrum of 53



Computational example

Spectrum converges (as O(1/N), eventually).
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Computational example

Spectrum converges (as O(1/N), eventually).

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Spectrum of 203



Computational example

Spectrum converges (as O(1/N), eventually).
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Computational example

Let’s look at the Koopman eigenfunction for λ = −0.878 (so some
set for which the period-two map is almost-invariant):
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Compactness and Koopmanism

Saddish news: for most deterministic systems, the Koopman
operator isn’t expected to be compact on any reasonable Banach
spaces.
We will see why later.

Next best option (should be possible 97% of the time):

A quasi-compact operator



Compactness and Koopmanism

Saddish news: for most deterministic systems, the Koopman
operator isn’t expected to be compact on any reasonable Banach
spaces.
We will see why later.

Next best option (should be possible 97%1 of the time):

A quasi-compact operator

1100% minus the probability of having a circle map, essentially.



Quasi-compactness
An operator is quasi-compact if it has this spectral picture:

1 0 1
Re ( )

1

0

1

Im
(

)

Suppose we are only thinking about positive operators with
spectral radius = 1 (e.g. Koopman/transfer). Then
▶ A quasi-compact operator has ρess(A) < 1.
▶ A quasi-compact Koopman operator has some discrete

spectrum.
▶ Quasicompact operators are the sum of a compact operator

and an operator with an iterate that is a contraction.
▶ Why? σess(A + C) = σess(A) when C is compact.



Contraction on C 0

Let’s go back to f (x) = κx , x ∈ [−1, 1].
Let’s take B = C0, the space of bounded, continuous functions on
[−1, 1] with the sup-norm. Then K : B → B since f is continuous,
and

∥Kψ∥ = sup
x∈[−1,1]

|ψ(f (x))| ≤ sup
x∈[−1,1]

ψ(x) = ∥ψ∥

so ρ(K; C0) ≤ 1.

Then, eigenfunctions ψα(x) := 1(x > 0)eα log x

are in C0 for ℜα ≤ 0.
Corresponding eigenvalues are κα, so
σ(A; C0([−1, 1])) fills the whole (closed) unit
ball.

1 0 1
Re ( ; C0)

1

0

1

Im
(

,C
0 )

Just cts. spectrum!



Contraction on C r spaces

What about some spaces that remove more of the ψα? Let’s try
C r , the space of r -times continuously differentiable functions on
[−1, 1]. The following norm on C r works:

∥ψ∥C r = ∥ψ(r)∥C0 + ψ(0) + ψ′(0) + . . .+ ψ(r−1)(0).

We have that ψ(r)
α (x) = α(α− 1) · · · (α− r + 1)ψα−r (x), so ψα is

in C r if either:

▶ ψα−r is in C0, i.e. ℜα > r . So B(0, κr ) is
in the spectrum.

▶ α is one of 0, 1, 2, . . . , r − 1, i.e.
ψα = 1, x , x2, . . . , x r−1. So
1, κ, κ2, . . . , κr−1 are in the spectrum. 1 0 1
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1



Contraction on C r spaces

Is there anything else?
Well, let’s try and do an eigendecomposition. Recalling that every
function in C r can be written as

ψ(x) = ψ(0) + ψ′(0)x + . . .+ ψ(r−1)(0)
(r−1)! x r−1 + O(x r ),

we can decompose

C r = ⟨1⟩ ⊕ ⟨x⟩ ⊕ · · · ⊕ ⟨x r−1⟩ ⊕
{
ψ ∈ C r : ψ(l)(0) = 0 for l < r

}
︸ ︷︷ ︸

=:V

.

All these subspaces are K-invariant, and σ(K) is the union of the
spectrum of K restricted to these subspaces.
Only what happens on V we are uncertain of.



Contraction on C r spaces

∥ψ∥C r = ∥ψ(r)∥C0 + ψ(0) + ψ′(0) + . . .+ ψ(r−1)(0).

{
ψ ∈ C r : ψ(l)(0) = 0 for l < r

}
For ψ ∈ V we have

∥Kψ∥C r = ∥(Kψ)(r)∥C0 = sup
x∈[−1,1]

∥κrψ(r)(κx)∥C0

= κr sup
y∈[−κ,κ]

|ψ(r)(y)| ≤ κr ∥ψ∥C r

so σ(K|V ) is a subset of B(0, κr ).

This means the spectrum of K on C r is

σ(K,C r ) = B(0, κr )︸ ︷︷ ︸
essential

∪ {κr−1, κr−2, . . . κ, 1}︸ ︷︷ ︸
discrete

.
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Spectrum vs function space
In general, essential spectrum will vary by function space, but the
discrete eigenvalues are more canonical:

Lemma (simplified from Baladi and Tsujii, ’08)
Suppose Banach space B2 is a dense subset of Banach space B1,
and A is bounded on both B2 and B1.
Then, the discrete spectrum of A with absolute value greater than
max{ρess(A; B1), ρess(A; B2)} matches in B1 and B2 (ditto
multiplicity, eigenfunctions).

(A; B1) (A; B2)



Sidenote: spaces of fractional differentiability
We can continuously interpolate between C r spaces by looking,
e.g., at Hölder continuity. The β-Hölder constant of a function is
given by

Hβ(ψ) = sup
x ,y∈[−1,1]

|ψ(x) − ψ(y)|
|x − y |β

, β ∈ (−1, 1]

Then the C r+β norm of ψ is given by

∥ψ∥C r+β = ∥ψ∥C r + Hβ(ψ(r)).

i.e. C r+β consists of functions whose the r th derivative is
β-Hölder.

The essential spectral radius is
ρess(K,C r+β) = κr+β, with discrete eigenvalues
{1, κ, . . . , κr }.
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