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Today

▶ Non-removable essential spectrum: the tent map
▶ A numerical framework for convergence of spectrum
▶ Data-driven approximations
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Yesterday

Theorem (Butterley, Canestrari, Jain ’22)
Suppose f is a piecewise monotone map on [0, 1] with a non-trivial
discontinuity c and B is a Banach space satisfying:
▶ C∞ ⊆ B.
▶ L is bounded B to B.
▶ ∥Lnφ∥B ≤ ∥Lnφ∥L∞ for all φ ∈ C∞.

Then
ρess(L,B) ≥ 1

lim
n→∞

|(f n)′(c)|1/n︸ ︷︷ ︸
Lyapunov exponent at c

.



Numerics for quasi-compact operators

Remember how we approximated the Koopman operator of a
stochastic system. Our ingredients were:
▶ A weak space Bw and a strong space Bs , with Bs compactly

embedded in Bw .
▶ A is bounded Bw → Bs .
▶ We aimed to approximate A by PNA, where PN was a finite

rank operator.
▶ Since K, L are fairly easy to approximate pointwise this is a

reasonable way to go in general.
▶ PN − id is small in norm from Bs → Bw .

Say ∥PN − id ∥Bs→Bw ≤ ϵ(N).
▶ This is only possible because Bs ⋐ Bw , i.e. id : Bs → Bw is

compact



Numerics for quasi-compact operators

Then we had, in operator norm,

Bw
A−→︸︷︷︸

bounded

Bs
PN−id−−−−→︸ ︷︷ ︸
small

Bw

meaning
Bw

AN−A−−−−→︸ ︷︷ ︸
small

Bw

Then, all of the spectrum of A is discrete, so we get the same
convergence of spectrum as we do for finite dimensional operators.



Numerics for quasi-compact operators

Then we had, in operator norm,

Bw
A−→︸︷︷︸

≤C

Bs
PN−id−−−−→︸ ︷︷ ︸
≤ϵ(N)

Bw

meaning
Bw

AN−A−−−−→︸ ︷︷ ︸
≤Cϵ(N)

Bw

Then, all of the spectrum of A is discrete, so we get the same
convergence of spectrum as we do for finite dimensional operators.



Numerics for quasi-compact operators
On the other hand, suppose we just had a contraction:

∥An∥Bs ≤ Cmn

If PN played nice in Bs , we could maybe hope that

∥(PNA)n∥Bs ≤ C(m + ϵ(n))n

so that the spectrum of PNA outside m converged to that of A
(i.e. nothing. . . )

Obviously a basic requirement is that PN maps Bs functions into
Bs . This is not always true:
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Linear interpolation again

It turns out you can combine these two ideas to get convergence
results for

Theorem (Keller–Liverani ’01)
Suppose that
▶ A, PNA all satisfy the same Lasota–Yorke inequalities
▶ ∥PN − id ∥Bs→Bw → 0.

Then the spectrum of PNA for |λ| > m converge to that of A,
with

|λN − λ|, ∥vN − v∥Bw ≤ O
(
(∥PN − id ∥Bs→Bw )1−log λ/ log m

)
.

In practice (e.g. for EDMD), it is not clear that you can get PNA
to satisfy L–Y: maybe there are other ways to prove convergence?



Linear interpolation again
Let’s try and apply our linear interpolation scheme (from way
back) to a transfer operator of

f (x) = 2x + 0.2 (cos(6πx) + sin(6πx) − 1)) mod 1
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Linear interpolation again
Let’s try and apply our linear interpolation scheme (from way
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Computational example
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Constants
Keller-Liverani and similar give asymptotic convergence rates of
eigenfunctions, but no explicit constants.
Explicit constants usually linked to explicit bounds on the norm of
the resolvent near eigenvalues. Usually this means B is a Hilbert
space with A normal (i.e. orthogonal eigenfunctions).
However, quasicompact transfer operators in chaos are usually very
non-normal.
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Which eigenvalues are geometrically meaningful?

This is an important question! It determines how “differentiable”
our function spaces need to be.

= 1: 
invariant measures 
some time series properties

= root of unity: 
periodic components

1: 
almost-invariant sets
barriers to mixing

| | 1: 
metastable periodic structures

Smaller : 
finer mixing info

Essential spectrum:
 various things

Well, it depends on what you mean by “meaningful”. Let’s say,
eigenvalues that describe sets with particularly slow escape rates.



Which eigenvalues are geometrically meaningful?

This is an interesting question we don’t have much of an answer to
currently. . .
For 1D chaos, probably everything with |λ| > 1/γ∞, where

γ∞ = inf
x∈D

lim inf
n→∞

|(f n)′(x)|1/n

i.e. the minimum long-term expansion rate. (c.f. Dellnitz 2000)



Which eigenvalues are geometrically meaningful?

Why?
▶ There are an infinite number of periodic orbits

{p, f (p), f 2(p), . . . , f T−1(p)} which have
Lexp(p) = |(f T )′(p)|1/T arbitrarily close to γ∞.

▶ For any small enough ϵ we can take the set

E =
T−1⋃
t=0

B
(
f t−1(p), |(f t−1)′(p)|

Lexp(p)t ϵ
)

and find that the proportion of measure that stays in E over
time T is O(Lexp(p)−T ). . .

This suggests that probably approximation schemes with
differentiability order 1 are good enough for the job.
Rather strangely, this includes Ulam’s method (see worksheet).



Conceptual framework for actually doing discretisations?

We usually approximate transfer/Koopman operators by a
projection: PNK or PNL. What kinds of projections are there?

Fact: basically every projection commonly used in practice is an
L2(ν) least squares projection with respect to some reference
measure ν.
This is because:

1. They are very easy to calculate.
2. By and large, you still approximate a quasicompact operator

even though the projection does not necessarily respect the
Banach space.



Conceptual framework for actually doing discretisations?

We usually approximate transfer/Koopman operators by a
projection: PNK or PNL. What kinds of projections are there?

Fact: basically every projection commonly used in practice is an
L2(ν) least squares projection with respect to some reference
measure ν.
This is because:

1. They are very easy to calculate.
2. By and large, you still approximate a quasicompact operator

even though the projection does not necessarily respect the
Banach space.



Why L2?

Our projection needs to be finite-dimensional. Let’s try and
determine PN by its range:

im PN =: EN = span{ψ0, ψ1, . . . , ψN−1}.

Let’s suppose that for any ω ∈ B we want PNω to be the function
in EN that minimises

PNω = argminψ∈EN ∥ω − ψ∥B.

Unfortunately, in a general Banach space:
▶ such a PNω may be hard or impossible to compute;
▶ PN : B → B is not linear in general.



Projections in a Hilbert space

However, in a Hilbert space (i.e. a Banach space with an inner
product), we have no problems in either case.
Let’s choose a Hilbert space H (not necessarily B), with inner
product ⟨·, ·⟩H. Again, we define

PNω = argminψ∈EN ∥ω − ψ∥H.

With an inner product, we can concieve of
“angles”. Hence the error ω − PNω must be
orthogonal to EN .

⟨ψ,PNω − ω⟩H = 0



Projections in a Hilbert space

⟨ψ,PNω − ω⟩H = 0

This gives us an easy way to compute PNω. Writing

PNω =
N−1∑
n=0

anψn,

we have for all l = 0, . . . ,N − 1,

0 = ⟨ψl ,PNω − ω⟩H =
N−1∑
n=0

an⟨ψn, ψl⟩H − ⟨ψl , ω⟩H.

If we define the matrix CXX = (⟨ψn, ψl⟩H)n,l , then this is a vector
equation solvable by

b = C−1
XX (⟨ψl ,w⟩H)l



Projections in a Hilbert space

b = C−1
XX (⟨ψl ,w⟩H)l

This is linear! In fact, if we define the row vector of functions

ΨX (x) =
(
ψ0(x) ψ1(x) · · · ψN−1(x)

)
,

we can write
PNω = ΨX a

where
b = ⟨Ψ⊤

X ,ΨX ⟩−1
H ⟨Ψ⊤

X , ω⟩H



Projections in a Hilbert space

Then, our operator AN = PNA has the following expression:

PNAψ = ΨX ⟨Ψ⊤
X ,ΨX ⟩−1

H ⟨Ψ⊤
X ,Aψ⟩H

If we restrict the domain of our operator to EN (!!), ψ = ΨX a for
some vector of coefficients a, and we get the relationship

ANa := b = ⟨Ψ⊤
X ,ΨX ⟩−1

H︸ ︷︷ ︸
C−1

XX

⟨Ψ⊤
X ,AΨX ⟩H︸ ︷︷ ︸

CXY

a



Projections in a Hilbert space
This works for any Hilbert space H.
However, computing inner products can be computationally
intensive. Suppose we wanted to compute in H = H1 (L2

functions with L2 derivatives). This has inner product:

⟨ψ, ω⟩H1 =
∫

D
ψ(x)ω(x) dx +

∫
D

∇ψ(x) · ∇ω(x) dx .

For the Koopman operator, elements of CXY have the form:

⟨ψl ,Kψn⟩H1 =
∫

D
ψl(x)ψn(f (x)) dx +

∫
D
ψl ·Df (x)∗ ∇ψn(f (x)) dx

So, you need to know:
1. The map f (potentially unknown),
2. The Jacobian Df (potentially unknown),
3. Integrals involving the above, over the whole domain

(time-consuming).



Projections in a Hilbert space

We can fix 2. by just looking at L2(νM) for some reference
measure νM . Then, elements of CXY have the form:

⟨ψl ,Kψn⟩L2(νM) =
∫

D
ψl(x)ψn(f (x)) dνM(x)

We have
1. The map f ,
2. The Jacobian Df ,
3. Integrals involving the above, over the support of ν

What are the nicest measures to take integrals against? Discrete
measures.



Projections in a Hilbert space

Suppose we can write our measure

νM(x) =
M∑

m=1
wmδ(x − xm).

Then

⟨ψl ,Kψn⟩L2(νM) =
M∑

m=1
wmψl(xm)ψn(f (xm)).



Projections in a Hilbert space
In fact, if we set

ΨX =

ψ1(x1) ψ1(x2) · · · ψ1(xN)
...

... . . . ...
ψM(x1) ψM(x2) · · · ψM(x1)



ΨY =

ψ1(f (x1)) ψ1(f (x2)) · · · ψ1(f (xN))
...

... . . . ...
ψM(f (x1)) ψM(f (x2)) · · · ψM(f (x1))


W = diag(wm)m,

we get Koopman operator matrix (i.e. a computer representation
of PN,MK in ψn basis)

KN,M = (Ψ∗
X W ΨX )−1︸ ︷︷ ︸

C−1
XX

(Ψ∗
X W ΨY )︸ ︷︷ ︸

CXY



Least squares projection

These are the ingredients:
▶ A finite-dimensional space EN ⊂ B of functions D → R, with

basis {ψ0, ψ1, . . . , ψN};
▶ A reference measure νM , ideally discrete
▶ The ability to evaluate your operator (Aψ)(x) for chosen

functions ψ ∈ B and points x ∈ D.
The recipe:

ΨX = (ψn(xm))m,n, ΨY = (Aψn(xm))m,n, W = diag(wm)m,

AN,M = (Ψ∗
X W ΨX )−1(Ψ∗

X W ΨY ) = (
√

W ΨX )+√
W ΨY

Ψ+
X = pseudoinverse of ΨX



Pseudoinverse

(Let’s take W = id for now)
Pseudoinverse is given by

Ψ+
X = (Ψ∗

X ΨX )−1︸ ︷︷ ︸
C−1

XX

Ψ∗
X

. . . if CXX is invertible.
More generally, Ψ+

X a is the unique vector v selected by the
following process:
▶ Find the minimisers of ∥ΨX v − a∥ℓ2 (i.e. L2(νM) error of

operator approximation)
▶ Choose the one that minimises ∥v∥ℓ2 .



Pseudoinverse

We can compute it by singular value decomposition:

ΨX

︸︷︷︸
M×N

= U

︸︷︷︸
M×N

(
Σ 0
0 0

)

︸ ︷︷ ︸
N×N

V ∗

︸︷︷︸
N×N

Ψ+
X

︸︷︷︸
N×M

= V

︸︷︷︸
N×N

(
Σ−1 0

0 0

)

︸ ︷︷ ︸
N×N

U∗

︸︷︷︸
N×M



Pseudoinverse

We can compute it by singular value decomposition:

ΨX︸︷︷︸
M×N

= U︸︷︷︸
M×N

(
Σ 0
0 0

)
︸ ︷︷ ︸

N×N

V ∗︸︷︷︸
N×N

Ψ+
X︸︷︷︸

N×M

= V︸︷︷︸
N×N

(
Σ−1 0

0 0

)
︸ ︷︷ ︸

N×N

U∗︸︷︷︸
N×M



Least squares projection

Pretty much every numerical method is a least squares method:

Name Op. ψn νM Limiting ν CXX
diag. SparseExamples

DMD K linear vari-
ables empirical ergodic N Y Stefan’s talk

Extended
DMD K polynomials1 empirical1 ergodic1 N N Stefan’s talk,

Williams et al
’15

Ulam’s
method K1 {1E }E∈P varies Lebesgue Y Y GAIO (Dellnitz et al.

’01)
Linear in-
terpolation

K
L

dense
(M = N) N/A Y Y this course

Lagrange–
Chebyshev L Chebyshev

polynomials
Chebyshev
nodes

dx
(1−x2)1/2 Y N W. ’19, Bandtlow–

Slipantschuk ’20
Lagrange–
Fourier L trig. series Evenly spaced

nodes Lebesgue Y N Froyland et al. 14,
W. ’19

1usually



Extended Dynamical Mode Decomposition

As we have seen: you can do EDMD from a time series

{x1, x2 = f (x1), x3 = f (x2), . . . , xM+1 = f (xM)}

ΨX =

ψ1(x1) ψ1(x2) · · · ψ1(xN)
...

... . . . ...
ψM(x1) ψM(x2) · · · ψM(x1)



ΨY =

ψ1(x2) ψ1(x3) · · · ψ1(xN+1)
...

... . . . ...
ψM(x2) ψM(x3) · · · ψM(xN+1)





Sparseness
Sparse basis functions (e.g. Ulam, interpolation hats) tend to lead
to sparse K,L matrices:

0 50 100 150 200
0
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100

150

200

Nonzero entries in  interpolation matrix

They also tend to be well-conditioned (i.e. singular values of CXX
tend to not be small).
Problem: curse of dimensionality.



Getting transfer operator from Koopman and vice versa

It’s very natural to want to get one from the other. If we have

ψ =
∑

n
anψn = Ψa, φ =

∑
n

bnψn = Ψb,

we have that the L2(νM) inner product matrix is given by CXX :∫
D
φψ dνM =

∫
D

b∗Ψ∗Ψa dνM

= b∗CXX a

Consequently, if νM approximates Lebesgue measure, the transfer
operator (the adjoint of K wrt L2(dx)) is going to be represented
by matrix

LM,N = CXX KM,NC−1
XX = C−1

XX C∗
XY



Getting transfer operator from Koopman and vice versa

What if ν is more general? Then LM,N = C−1
XX C∗

XY represents the
adjoint of K in L2(ν), which in particular has∫

φKψ dν =
∫
ψL[φν] =

∫
ψ d

dνL[φν] dν

This is the so-called Perron–Frobenius operator.
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What if ν is more general? Then LM,N = C−1
XX C∗

XY represents the
adjoint of K in L2(ν), which in particular has∫

φKψ dν =
∫
ψL[φν] =

∫
ψ d

dνL[φν] dν

This is the so-called Perron–Frobenius operator.



Perron–Frobenius operator

Pν = d
dνL[φν]

▶ Usually called P, but already in use.
▶ If ν has a density supported everywhere, then this is just the

transfer operator times a function
▶ If ν ∈ B (for example, ν is the physical measure µ) then this

is well-defined at least for nice φ.
▶ In fact, let Bν be the completion of C∞(D) (etc.) under the

norm
∥φ∥Bν = ∥φν∥B.

So νBν is an invariant subspace of B, and thus Pν has a
subset of the same eigenvalues.

▶ Pν will miss eigenvalues associated to dynamics off
supp ν—eg contraction onto invariant manifolds.



Constructing these operators is tricky

Beware!
For an invertible map f with invariant measure µ, we can define for∫

D
φKψ dµ =

∫
D
φψ ◦ f dµ =

∫
D
φ ◦ f −1︸ ︷︷ ︸

L1φ

ψ dµ

whereas the usual transfer operator L = L1/| det Df |, from which
Pµ, has form

Lφ := (L1/| det Df |φ) = | det Df −1|φ(f −1(x))

When both considered on B, these two operators can have
different eigenvalues!

Moral: if the reference measure ν is singular, the weight of your
operator may change.
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Getting transfer operator from Koopman and vice versa
▶ Recall that transfer/Perron-Frobenius operator eigenfunctions

are generally smooth in the direction of expansion.
▶ If the system is dissipative this is along the length of the

attractor.
▶ To some extent, this means that transfer operator

eigenfunctions are easier to interpret geometrically. They are
often called Koopman modes (vs. Koopman eigenfunctions).
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Convergence for EDMD type methods

Least-squares methods are numerically very nice, but can be
theoretically harder to pin down.
What is the error of orthogonal projection onto {ψn} with respect
to L2(νM) (a discrete measure) from Bs → Bw (some possibly
totally unrelated Banach spaces)?
Probably no single answer. Most existing work uses some special
properties of the basis functions:
▶ Ulam’s method results use that PN is a contraction in W 1,1

▶ Fourier/Chebyshev polynomial results use that PN,M is
orthogonal in many different Hilbert spaces

▶ DMD is time series analysis (geometry independent)



Convergence rates for different ν

When ν has a density (dν = hdx) then we have
Suppose we’re on R/2πZ. We can define Hilbert spaces of
functions with certain Fourier decay rates:

∥φ∥2
Hσ =

∑
n∈Z

|σ(n)φ̂(n)|2

Examples:
▶ σ(n) = 1 gives L2

▶ σ(n) = (1 + |n|2)r/2 gives W 2,r , the space of L2 functions
with r th derivative in L2

Let’s assume σ is increasing and σ(n + m) ≤ σ(n)σ(m).



Convergence rates for different ν

We know that truncating Fourier modes at order N has:

∥ id −P(dx)
N ∥Hσ→Hτ = τ(N)

σ(N)

This is an L2(dx) least squares projection onto the low-order
Fourier modes.

Theorem (W. ’24)
Suppose the density of ν lies in Hυ. Then there exists C such that
for any τ ≤ σ ≤ υ/n,

∥ id −P(dν)
N ∥Hσ→Hτ ≤ C∥ id −P(dx)

N ∥Hσ→Hτ



Convergence rates for data

What happens if we try and fill things from data?
Well, remember that our internal spectrum only appears when
we’re working with some level of differentiability.
So we need to be able to approximate derivatives (even if they are
only fractional):
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Well, remember that our internal spectrum only appears when
we’re working with some level of differentiability.
So we need to be able to approximate derivatives (even if they are
only fractional):
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Convergence rates for data

What happens if we try and fill things from data?
Well, remember that our internal spectrum only appears when
we’re working with some level of differentiability.
So we need to be able to approximate derivatives (even if they are
only fractional):

0 1 2 3 4 5 6
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
N = 5, M = 1500

(x)
N (x)
N, M (x)

0.2 0.4 0.6 0.8
x

1.0

1.2

1.4

1.6

1.8

2.0
N = 11, M = 2000

True (x)
Data approx.



Convergence rates for data
Modelling assumption (mathematically justified): data ob-
tained from a chaotic system are randomly distributed ∼ µ.

We can think of least squares approximation as something akin to
a kernel approximation, which in 1D looks like:

ψ(x) ≈ ψ̃w ,M(x) := 1
M

M∑
m=1

1
w k(w(x − xm))ψ(xm)

where w is the resolution of the approximation (∼ 1/N).
We can estimate the variance as

V[ψ̃w ,M(x)] ∼ E[ψ̃w ,M(x)2]

∼ 1
M2

M∑
m=1

∫
w−2|k(w(x − xm))|2 ψ(xm)|2 dν(xm)

= O(w−1/M)

which should be small if N ≫ M.



Convergence rates for data

But, if we want to estimate the derivative, we have

ψ′(x) ≈? ψ̃
′
w ,M(x) = 1

M

M∑
m=1

w−4k ′(w(x − xm))ψ(xm)

So

V[ψ̃′
w ,M(x)] ∼ 1

M2

M∑
m=1

∫
w−4|k(w(x − xm))|2ψ(xm)|2 dµ(xm)

= O(w−3/M).

which should be small if N ≫ M3.



Convergence rates for data

But, if we want to estimate the derivative, we have

ψ(r)(x) ≈? ψ̃
(r)
w ,M(x) = 1

M

M∑
m=1

w−2+2r k(r)(w(x − xm))ψ(xm)

So

V[ψ̃(r)
w ,M(x)] ∼ 1

M2

M∑
m=1

∫
w−2+2r |k(w(x − xm))|2ψ(xm)|2 dµ(xm)

= O(w−1+2r/M).

which should be small if N ≫ M1+2r .



Convergence rates for data
How far we can see the centre of the spectrum depends on how
much data we get. . .
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Of course there are practical limits:
▶ Most systems have “non-removable” essential spectrum;
▶ The further inside the unit circle, the less physically

meaningful.
Perhaps you only need M ≫ N1+2α for some α ∈ (0, 1/2)?



Convergence rates for data
How far we can see the centre of the spectrum depends on how
much data we get. . .
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Convergence rates for data
How far we can see the centre of the spectrum depends on how
much data we get. . .
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Convergence rates for data
How far we can see the centre of the spectrum depends on how
much data we get. . .
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meaningful.
Perhaps you only need M ≫ N1+2α for some α ∈ (0, 1/2)?



Convergence rates for data
How far we can see the centre of the spectrum depends on how
much data we get. . .
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Convergence rates for data

▶ This suggests that, in an underfitting regime, you need a lot
of data to get a (quantitatively) good answer.

▶ But if you had that much data to hand, probably you already
know the system (or could use SINDy).

▶ If you do know the system, better to use sample points that
are good for approximating derivatives (e.g. Chebyshev nodes
on cubes, evenly-spaced on torus. . . )



Conclusion
▶ Discrete-time Koopman and transfer operators have

quasicompact spectrum (=essential spectrum σess in a ball
B(0, ρess) plus outlying eigenvalues (σd).

▶ These eigenvalues are more or less independent of the
function space, and give information about the system’s
emergent behaviour.

= 1: 
invariant measures 
some time series properties

= root of unity: 
periodic components

1: 
almost-invariant sets
barriers to mixing

| | 1: 
metastable periodic structures

Smaller : 
finer mixing info

Essential spectrum:
 various things

(A; B1) (A; B2)



Conclusion

▶ The essential spectrum depends on the Banach space you
study K on.
▶ Smaller ρess means you see more eigenvalues.
▶ However, in most systems there is some non-removable

essential spectrum.
▶ These Banach spaces depend on the dynamics, and tell you

about the structure of the eigenfunctions.
▶ However, most numerics that are “not too smart” will pick up

these spectrum/eigenfunctions, even if they are L2(ν)
projections—no knowledge of the Banach space required.

▶ However, the discrete spectrum is not very well-conditioned,
especially when reconstructing from data.
▶ The more physically relevant, the better-conditioned, as a rule

of thumb.


