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1 Introduction and motivation

e Let g be a semisimple Lie algebra over an algebraically closed field k of char-
acteristic 0. Set U = U(g) and let Z = Z(U) be its centre (the ring of Laplace
operators).

e Following Bernstein’s classic paper, we define and investigate projective func-
tors arising from finite-dimensional g-modules V. These are endofunctors of
the category .#z; of Z-finite g-modules, occurring as direct summands of the

functor
Fvlﬂzfﬁglfzf, M-V ®M.

When restricted to a category .#(6) of g-modules with fixed central character
0, projective functors and their morphisms are well behaved, and admit easy
classifications.

e Goal today: See/prove the main theorems on projective functors, then apply
them in two directions: finding equivalences .#(0) = .#(0') for certain pairs
(0,0"), and producing an easy proof of Duflo’s theorem.

2 Preliminaries

2.1 Category theory

e All categories and functors are assumed to be k-linear, unless otherwise
stated.

o If & is a complete subcategory of the abelian category o7, and £ is closed
under subquotients, then £ is abelian too.

e Suppose & is an abelian category containing a class of objects & closed
under direct sums. An object A is &-generated in case there exists an exact
sequence

P—-A—-0



in o7, and P-presented in case there is an exact sequence
P—-P—-A—0

in 7. The full subcategory of #-presentable objects in &7 is denoted o7z .

e The opposite algebra of an associative unital k-algebra A is denoted A°. Thus
(A, B)-bimodules X may be identified with left A ® B°-modules. Write A2 for
the algebra A ® A°.

e Let us denote by h(X) the functor of tensoring induced by X:

h(X) : B-mod -+ A-mod, M — X ®p M.
Recall that, by definition, a right continuous functor is right exact and commutes
with inductive limits.

e Theorem 2.1 (Watt): Let & be the full subcategory of right continuous
functors within the category of functors B-mod — A-mod. Then the func-

tor
h: (A, B)-bimod - %, X — h(X)

is an equivalence of categories.

2.2 Lie theory

e Standard notation:
(i) b C g is a Cartan subalgebra, dual to the space h* of weights of g.

(i) R* is a choice of positive roots inside the root system R, with half-sum p
and corresponding nilpotent sublagebra n™

(ili) To each v € R corresponds the dual root h € b and the reflection o,
oyt h = b oy (X) = x — x(hy) s
these generate the Weyl group W = (o).

(iv) A = {x € b* : x(hy) € Z for all v € R} is the lattice of integer weights,
containing the sublattice I' generated by R.

(v) Given x € b*, let R, denote the set of v € R for which x(h,) € Z, and let
W, = Stabw (x), Wy4r = Stabw (x+1T)

be stabilisers with respect to the action of W on h* and h*/I". Recall that
we call x regular in case W, is trivial.

(vi) |x| denotes the length of x € h* with respect to some W-invariant inner
product on A.



e A partial order on h*: Given v € R™, write

Y <y x fory,xebh”

whenever ¢ = o,(x) and x(hy) € Z*. We then let ¢ < x whenever there
exist

w:wOa"'7wn:X6h*7 Y155 Un

such that 1; <,,,, ¥iy1 for all i. (So < is the transitive closure of all the <,.)
Call x dominant if it is <-maximal.

e Central characters of g: © = Hom(Z, k). The kernel Jy C Z of § € O is
clearly a maximal ideal.

e Denote by n* : Z — S(h) the Harish-Chandra homomorphism. Identifying
S(h) with the set of polynomial functions on h*, we obtain a dual map

n:h* =0, nx)(z)=n"(2)(x)-

e Theorem 2.2 (Harish—Chandra): 7 is an epimorphism with fibres

e Any (U,U)-bimodule Y admits an adjoint action of g given by
X u=Xu—uX, XegueU,
denote the resulting g-module by Y24,

e Theorem 2.3 (Kostant): For any finite-dimensional g-module U, Homgy(L, U9)
is naturally a free Z-module of rank equal to the multiplicity of the zero weight
in L.

e Some key categories of U-modules: Full inside of .# = U-mod:
My = {finitely generated U-modules}, .#z; = {Z-finite U-modules}.
For 6 € © and n > 1, set U} = Uy/J} and
AM0)={M e A :JyM =0} = Ug-mod.
M (0) ={M € A : for all m € M there exists n > 1 such that J3m = 0},
suppressing the superscript for the case n = 1.

e Elementary fact: each Z-finite module M admits a unique decomposi-
tion
M = @M@, My € #>(0).

0co
e Hence .#z; = [[, .#°°(6) and we obtain projection functors
PI‘(@) : %Zf — ///‘”(0)



e Also have subcategory O C .#z, containing the Verma module

M, =U/U(Ix—p + n);
I,_, is the ideal in U(h) C U generated by the elements h — (x — p)(h).
e Verma properties to recall:

(1) The unique and pairwise non-isomorphic simple quotients L, of the M,
exhaust the simple modules in O.

(ii) The natural homomorphism Z — Endy (M, ) = k coincides with the char-
acter n(x).

(i) There is a unique indecomposable projective object P, € O mapping onto
L,; these projective objects admit a filtration by Verma modules. The
common value

dyy = [My : Ly | = dim Hom(Py, M,)
satisfies dy, > 0 if and only if x > 9, and d,, = 1.

(iv) The classes 6, = [M,] form an free basis of the Grothendieck group K(O).
The unique inner product {—, —} on K (O) for which that basis is orthonor-
mal is also clearly W-invariant with respect to the action w - 6y = dyy.-

3 Projective functors

3.1 First properties

e Some of the main actors in our story are the functors
Pyl — A, M—VM,
where V is a finite-dimensional g-module.
e Immediate properties:
(i) Fy is exact and commutes with arbitrary direct sums and products.

(ii) g-morphisms ¢ : Vi — V5 induce natural transformations Fy, — Fvy,.

(iii) We have Fy, o Fy, = Fy, v, and a biadjunction (Fy«, Fy). (Here V* is
the dual of V| with respect to some anti-involution of g fixing points of b.)

(iv) Suppose V has weights p1, ..., p, (with multiplicty). Then Fy (M, ) has
a filtration with quotients M, ,,, 1 <i < n.

e To V we also associate the (U, U)-bimodule &y =V ® U, where the left and
right actions are

Xveu)=Xveut+v®Xu, @WeouX=v®uX.



e Lemma 3.1:
(i) h(Py) X Fy.
(ii) Homyz(®v,Y) = Homg(V,Y?d) for any (U, U)-bimodule Y.
(iii) @y is U-generated on both sides by its subset V =V @ 1.
e Corollary 3.2: Fy preserves the subcategories .#; and O in .#, and also

preserves projective objects in all three categories.

Proof. Fy is exact and Fy(U) = ®y is finitely generated by Lemma 3.1(iii),
so Fy(Ay) C My). Moreover, if M € O, then Fy, (M) is h-diagonalisable and
U(n*)-finite because V € O, and we have already seen it is finitely generated.
So Fy(0) C O.

The remaining statement follows from a general fact: functors with exact right
adjoints always preserve projectives. O

3.2 Another Kostant theorem
e Have a Z2-action on the functor Fy, i.e. a ring map Z? — End(Fy):

z-(v®@m) =Zai(v®bim), forz:Zai@)bi € 72

e This is the action obtained by transport of structure from the action of Z2 C
U? on ®y to Fy via the equivalence h.

e Let Iy, denote the kernel of the action:

Iy={2€2?:2(VeM)=0forall M € .4}

e Note the embedding
nen 22— Sh)@Sh) =Shen) = Ph*eh);

since n* identifies Z with S(h)", the image of n* ® n* consists of polynomials
Q(1, x) which are W-invariant in each variable.

e Theorem 3.3 (Kostant): Let ) be the image of some 2z € Z2. Then z € Iy
if and only if Q(x + , x) is the zero polynomial for any weight © € P(V).



e Corollary 3.4:
(i) Z?/Iy is finitely generated over Z.
(ii) Fv(AMzs) C Mzs-

Proof. Define A= S(h), B=S(h)", and

J={Q € A% : Q(x + p1,x) = 0 for any pu € P(V)}.

Then J is an ideal in A% and Jy = J N B? is an ideal in B2 Claim (i) is
equivalent to saying B?/.Jy is finitely generated over B.

By the theorem, there is a B-module embedding
7= EBMZ.H : B2/JV — @uep(v)A,

where 7,(Q)(x) = Q(x + i, x). But A is finitely generated as a B-module
because W is finite, so by Noetherianity of B we conclude B?/Jy is finitely
generated over B.

It remains to prove (ii). Exercise from (i): Given a g-module with JM = 0
for some finite-codimension ideal J C Z, cook up a finite-codimension ideal
J' C Z with J(V ® M) = 0. Then since Fy commutes with direct limits, we
get FV(«//fo) g//lzf. O

3.3 Functor decomposition and the main results
e We have seen that Fy preserves .#zy; let Fy z; denote its restriction to this
subcategory.

e Definition 3.5: Direct summands of Fy,z; are known as projective func-
tors.

e Every projective functor decomposes into a direct sum of indecomposable
projective functors; ultimately we will describe these indecomposables.

e Proposition 3.6: Let F, G be projective functors.
(i) F is exact and preserves direct sums and products.

(ii) Direct summands of F' are projective; the functors F' & G and F o G are
projective.

(iii) F has projective right and left adjoints.
(iv) F = @g,0'Prgr o F o Pry and each of these summands are projective.

e To parametrise projective functors, we require the sets

2 ={(W,x) € () :p—x €A}, E=E"W,



where the quotient is by the component-wise W-action.
e Every element £ € E has a proper representative (¢, x), by which we mean
that x is dominant and ¢ < W, (¢). There is a well-defined map

n"E—=0, 1", x)=n(x)

e Theorem A:

(i) Each projective functor decomposes into a direct sum of indecomposable
projective functors.

(ii) To each & € E there corresponds an indecomposable projective functor Fe,
unique up to isomorphism with the following properties:

o Fe(My) =0ifn"(§) # n(p), p €b™
o If £ = (¢, x) is written properly, then F¢(M,) = Py.

(i) & — F¢ defines a bijection from = to the set of isomorphism classes of
indecomposable projective functors.

Among other things, the next result reveals the remarkable fact that projective
functors are determined by their induced action on K (O).

e Theorem B: Suppose F, G are projective functors. Then:
(i) If [F] = [G], then F is naturally isomorphic to G.

(ii) If (F,G) is an adjoint pair, then ([F],[G]) is a conjugate pair on the inner
product space K(O).

(iii) [F] is W-equivariant.

e Theorems A and B allow us to compute [F¢] explicitly. In particular, [F¢](d,) =
0if o ¢ W(x) and [Fe](0uw(y)) = Do sy dp,w0wep, S0 understanding F' reduces to
knowledge of the dy.

e Definition 3.7: Let 6 € © and let F(#) denote the restriction of a projective
functor to Z(6). A projective 0-functor F' : .# (0) — # is any direct summand
of a functor Fy (0).

e The third and final theorem in this section underpins the proofs of the previous
two.

e Theorem C: Let F,G be projective §-functors, x € n71(0). Then
iy : Hom(F,G) — Hom(FM,,GM,), i ()= oum,

is a monomorphism, and an isomorphism if x is dominant.

Proof sketch. By considering decompositions Fy (0) = F @ F',G(0) = G G,
we reduce to the case F' = Fy(0) and G = GL(0).



To prove injectivity of i, need the following fact: If y € n~'(6) is a weight and
u € Uyg, then ulM, = 0 implies u = 0.

The isomorphism for Y dominant is proven by counting dimensions using Kostant’s
theorem 2.3.

e We need some subsidiary information before we can proceed to the proofs of
the other two theorems. Namely, we will need to see that the restriction

F*0): H><0) — A
of a projective F' is determined by the restrictions F™(0) : 4™ (0) — A .

e Proposition 3.8: Suppose F,G are projective functors. Then any natural
transformation

p:F(0) = GO
admits a lift ¢ : F°(0) — G*°(6). If ¢ is an isomorphism, then so is @; if
F = G, then any idempotent ¢ can be lifted to an idempotent @.

Proof. Let H™ = Hom(F™(0),G"(0)), 1 < n < oo, and let ryy, : H* — H™
denote the obvious restriction maps, m < n, so we have an inverse system.

Firstly, we have that H*>° = lim H™. This is because F' commutes with direct
limits and modules M € .#°°(0) can be expressed as follows:

M = lim M™, M"={meM:Jgm=0}c.4"0).

As in the sketch of Theorem C, we may assume F' = Fy, G = Fy. Then,
exercise (use Watt’s theorem and Lemma 3.1):

H" = (Homy(L* @ V,U™))/J§.

So H* is a Jp-adic completion. Then H" = H*/J}', so in particular p € H!
can always be lifted to some p € H™.

Suppose ¢ is an isomorphism, inverse 1. To prove @ is an isomorphism, it
suffices to prove @y and @ are invertible, so for that reason we can assume
F =G and ¢ = 1. But then $ = 1 — « for some « € Jy, which is a unit in H>.

We omit the proof that an idempotent ¢ has an idempotent lift. O

e Theorem C + Proposition 3.8 = Corollary 3.9: Suppose F,G are
projective functors, y a dominant weight with § = n(x). Any isomorphism
FM, = GM, lifts to an isomorphism F*(§) =2 G*(¢), and any g-module
decomposition FM, = @;M; lifts to a decomposition F*°(§) = &F; with
F;M, = M,.

e If F' is a projective functor, then F' is the direct sum of its restrictions to the
subcategories .#>°(0); that is,

F =P Fopr(0).
6



e Now, by the corollary, F' o Pr(6) splits into a direct sum of (finitely many)
indecomposable projective functors, according to the direct sum decomposition
of FM, . Thus we obtain Theorem A(i).

e Remark 3.10: If F' is an indecomposable projective functor, then F =
F o Pr(9) for some § € ©. Thus FM, = 0 whenever n(x) # 6. On the other
hand, if y € n71(0) is dominant, then M, = P, is an indecomposable projective
and hence F'M, = P, for some 1 € h*.

e Proof of Theorem B. For the first point, suppose [F] = [G]. By the previous
discussion, it is equivalent to prove F.M, = GM, for any dominant weight .
But FM, and GM, are projective objects in O, whose isomorphism classes are
recoverable from their images in K(O).

For the second point, we need to prove {[F|z,y} = {z, [Gly} for all z,y € K(O).
We can assume = = [P] is the class of a projective, since the classes of projective
objects span K (Q). Then use the assumed adjunction and the formula

{[P],[M]} = dim Hom(P, M), P projective, M arbitrary in O.

We omit the rather lengthy proof of [F]’s W-equivariance.

e All that remains is to prove the classification results of Theorem A (ii), (iii).

Proof. Given a projective functor F', we define a quantity

ap: (0°)? = Z, ap(,x) = {dy, [F]oy}.

In fact ap lands in N. Indeed, if x is dominant, then F'M, is projective and
ap(,x) > 0 for any ¢ (consider an appropriate Hom space); then use W-
equivariance of [F)] to deduce that ap(1, x) > 0 always.

Next consider the subsets

S(F) - {(¢aX) : GFW%X) > O}a
STE(F) = {(¢, x) € S(F) : | — x| maximal}.
By non-negativity of ar, we get that
F=;F; = S(F) = UiS(Fi)

so that, since S(Fy) C Z°, the same is true for S(F). (Similarly S™a*(F) C

U;S™a*(F;).) Both S(F) and S™**(F) are preserved by W, due to the W-
equivariance of [F.

Suppose F is indecomposable. Then S™2*(F)/W consists of a single point.
Indeed, if F' = F o Pr(0) and x € n~1(0) is dominant, then FM, = P, and we
get S™*(F) = W (v, x) (exercise).

To each indecomposable projective functor F' we have associated a £ € =, such
that if ¢ is written properly, then FM, = Py. And each { = (¢, x) arises



thus: If V is a finite-dimensional g-module with extremal weight 1) — x, then
(1, x) € S™**(Fy) and therefore (¢,x) € S™*(F) for some indecomposable
summand F' of Fy . O

4 Applications

4.1 Equivalences between categories .Z (0)

e Theorem 4.1: For 6,0 € O, let Fy vy 9 = Pr(§') o F o Pr(8) : #>(0) —
A (0"). Suppose we have dominant weights x € n~1(0),v € n~1(¢’) such that
Wy, =Wy and A =1 — x € A. Then

F9/7V,9 : ///OO(O) — %00(9/), Fgﬁv*_ygl : %00(9/) — %00(9),

are inverse equivalences of categories, where V' is a finite-dimensional g-module
with extremal weight .

Proof. Let F = Fy v, G = Fp - o. Remembering A is an extremal weight of
V' (so that —\ is such for V*), one can show that (exercise)

FM, = M,, GM, = M,.

Hence GFM, = M,, so the theorem provides that GF = Pr(f); similarly
FG = Pr(¢’). By restricting F,G to .#(0), #(0"), we deduce that they are
categorical equivalences. O

e The following observations of Bernstein refine earlier results of Zuckerman:

(i) Let % be any complete subcategory of .# preserved by all functors Fy,
e.g. S = O. The same proof method shows that the intersections of 7
with .#Z°(0) and .#>(¢') are equivalent.

(i) If we assume just an inequality of stabilisers W, C W,, then (in the

notation of the proof) we conclude GF = Id®WxWel,

4.2 Lattices of two-sided ideals and submodules

e Notation: Suppose x is a dominant weight with 7(x) = 6. Let £y be the
lattice of two-sided ideals in Up; let €2, be the submodule lattice of M, .

e Theorem 4.2: Let x be a dominant weight, 6 = n(x).

(i) The mapping
v:Qe—Qy, v(J)=JM,

is an embedding, and a lattice isomorphism if y is regular.
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(ii) Let & be the class of modules isomorphic to direct sums of Py for ¢ <
x and ¢ < W, (¢)). Then the image of v consists of the &-generated
submodules of M,,.

4.3 Duflo’s theorem

The result in the previous section allows for an easy re-derivation of Duflo’s
famous theorem.

e Theorem 4.3 (Duflo): Let J € Qp be a two-sided prime ideal. Then a
weight 1) € n71(6) exists such that J = Ann L.

Proof. Take x € n~1(#) dominant. Let Li,..., L, be the composition factors
of the module M = M, /JM,, with annihilators I; C Ug. Certainly J C I; for
all 4, and the product I = Iy ---I,, annhilates M. It follows from section 4.2
that I C J. Invoking that J is prime gives J = I; for some i. But now from
our knowledge of M,, we have that L; = L, for some 9 < x, and the result
follows. O
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