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1 Introduction and motivation

• Let g be a semisimple Lie algebra over an algebraically closed field k of char-
acteristic 0. Set U = U(g) and let Z = Z(U) be its centre (the ring of Laplace
operators).

• Following Bernstein’s classic paper, we define and investigate projective func-
tors arising from finite-dimensional g-modules V . These are endofunctors of
the category MZf of Z-finite g-modules, occurring as direct summands of the
functor

FV : MZf →MZf , M 7→ V ⊗M.

When restricted to a category M (θ) of g-modules with fixed central character
θ, projective functors and their morphisms are well behaved, and admit easy
classifications.

•Goal today: See/prove the main theorems on projective functors, then apply
them in two directions: finding equivalences M (θ) ∼= M (θ′) for certain pairs
(θ, θ′), and producing an easy proof of Duflo’s theorem.

2 Preliminaries

2.1 Category theory

• All categories and functors are assumed to be k-linear, unless otherwise
stated.

• If B is a complete subcategory of the abelian category A , and B is closed
under subquotients, then B is abelian too.

• Suppose A is an abelian category containing a class of objects P closed
under direct sums. An object A is P-generated in case there exists an exact
sequence

P → A→ 0
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in A , and P-presented in case there is an exact sequence

P ′ → P → A→ 0

in A . The full subcategory of P-presentable objects in A is denoted AP .

• The opposite algebra of an associative unital k-algebra A is denoted A◦. Thus
(A,B)-bimodules X may be identified with left A⊗B◦-modules. Write A2 for
the algebra A⊗A◦.

• Let us denote by h(X) the functor of tensoring induced by X:

h(X) : B-mod→ A-mod, M 7→ X ⊗B M.

Recall that, by definition, a right continuous functor is right exact and commutes
with inductive limits.

• Theorem 2.1 (Watt): Let C be the full subcategory of right continuous
functors within the category of functors B-mod → A-mod. Then the func-
tor

h : (A,B)-bimod→ C , X 7→ h(X)

is an equivalence of categories.

2.2 Lie theory

• Standard notation:

(i) h ⊂ g is a Cartan subalgebra, dual to the space h∗ of weights of g.

(ii) R+ is a choice of positive roots inside the root system R, with half-sum ρ
and corresponding nilpotent sublagebra n+

(iii) To each γ ∈ R corresponds the dual root hγ ∈ h and the reflection σγ ,

σγ : h∗ → h∗, σγ(χ) = χ− χ(hγ)γ;

these generate the Weyl group W = 〈σγ〉.

(iv) Λ = {χ ∈ h∗ : χ(hγ) ∈ Z for all γ ∈ R} is the lattice of integer weights,
containing the sublattice Γ generated by R.

(v) Given χ ∈ h∗, let Rχ denote the set of γ ∈ R for which χ(hγ) ∈ Z, and let

Wχ = StabW (χ), Wχ+Γ = StabW (χ+ Γ)

be stabilisers with respect to the action of W on h∗ and h∗/Γ. Recall that
we call χ regular in case Wχ is trivial.

(vi) |χ| denotes the length of χ ∈ h∗ with respect to some W -invariant inner
product on Λ.
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• A partial order on h∗: Given γ ∈ R+, write

ψ <γ χ for ψ, χ ∈ h∗

whenever ψ = σγ(χ) and χ(hγ) ∈ Z+. We then let ψ < χ whenever there
exist

ψ = ψ0, . . . , ψn = χ ∈ h∗, γ1, . . . , γn

such that ψi <γi+1 ψi+1 for all i. (So < is the transitive closure of all the <γ .)
Call χ dominant if it is <-maximal.

• Central characters of g: Θ = Hom(Z, k). The kernel Jθ ⊆ Z of θ ∈ Θ is
clearly a maximal ideal.

• Denote by η∗ : Z → S(h) the Harish–Chandra homomorphism. Identifying
S(h) with the set of polynomial functions on h∗, we obtain a dual map

η : h∗ → Θ, η(χ)(z) = η∗(z)(χ).

• Theorem 2.2 (Harish–Chandra): η is an epimorphism with fibres

η−1(η(χ)) = W (χ).

• Any (U,U)-bimodule Y admits an adjoint action of g given by

X · u = Xu− uX, X ∈ g, u ∈ U ;

denote the resulting g-module by Y ad.

•Theorem 2.3 (Kostant): For any finite-dimensional g-module U , Homg(L,Uad)
is naturally a free Z-module of rank equal to the multiplicity of the zero weight
in L.

• Some key categories of U-modules: Full inside of M = U -mod:

Mf = {finitely generated U -modules}, MZf = {Z-finite U -modules}.

For θ ∈ Θ and n ≥ 1, set Unθ = Uθ/J
n
θ and

M n(θ) = {M ∈M : JnθM = 0} = Unθ -mod.

M∞(θ) = {M ∈M : for all m ∈M there exists n ≥ 1 such that Jnθm = 0},
suppressing the superscript for the case n = 1.

• Elementary fact: each Z-finite module M admits a unique decomposi-
tion

M =
⊕
θ∈Θ

Mθ, Mθ ∈M∞(θ).

• Hence MZf
∼=

∏
θ M∞(θ) and we obtain projection functors

Pr(θ) : MZf →M∞(θ).
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• Also have subcategory O ⊆MZf , containing the Verma module

Mχ = U/U(Iχ−ρ + n);

Iχ−ρ is the ideal in U(h) ⊆ U generated by the elements h− (χ− ρ)(h).

• Verma properties to recall:

(i) The unique and pairwise non-isomorphic simple quotients Lχ of the Mχ

exhaust the simple modules in O.

(ii) The natural homomorphism Z → Endg(Mχ) = k coincides with the char-
acter η(χ).

(iii) There is a unique indecomposable projective object Pχ ∈ O mapping onto
Lχ; these projective objects admit a filtration by Verma modules. The
common value

dχψ = [Mχ : Lχ] = dim Hom(Pψ,Mχ)

satisfies dχψ > 0 if and only if χ > ψ, and dχχ = 1.

(iv) The classes δχ = [Mχ] form an free basis of the Grothendieck group K(O).
The unique inner product {−,−} on K(O) for which that basis is orthonor-
mal is also clearly W -invariant with respect to the action w · δχ = δwχ.

3 Projective functors

3.1 First properties

• Some of the main actors in our story are the functors

FV : M →M , M 7→ V ⊗M,

where V is a finite-dimensional g-module.

• Immediate properties:

(i) FV is exact and commutes with arbitrary direct sums and products.

(ii) g-morphisms ϕ : V1 → V2 induce natural transformations FV1
→ FV2

.

(iii) We have FV1
◦ FV2

∼= FV1⊗V2
and a biadjunction (FV ∗ , FV ). (Here V ∗ is

the dual of V , with respect to some anti-involution of g fixing points of h.)

(iv) Suppose V has weights µ1, . . . , µn (with multiplicty). Then FV (Mχ) has
a filtration with quotients Mχ+µi , 1 ≤ i ≤ n.

• To V we also associate the (U,U)-bimodule ΦV = V ⊗ U , where the left and
right actions are

X(v ⊗ u) = Xv ⊗ u+ v ⊗Xu, (v ⊗ u)X = v ⊗ uX.
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• Lemma 3.1:

(i) h(ΦV ) ∼= FV .

(ii) HomU2(ΦV , Y ) ∼= Homg(V, Y ad) for any (U,U)-bimodule Y .

(iii) ΦV is U -generated on both sides by its subset V = V ⊗ 1.

• Corollary 3.2: FV preserves the subcategories Mf and O in M , and also
preserves projective objects in all three categories.

Proof. FV is exact and FV (U) = ΦV is finitely generated by Lemma 3.1(iii),
so FV (Mf ) ⊆Mf ). Moreover, if M ∈ O, then FV (M) is h-diagonalisable and
U(n+)-finite because V ∈ O, and we have already seen it is finitely generated.
So FV (O) ⊆ O.

The remaining statement follows from a general fact: functors with exact right
adjoints always preserve projectives.

3.2 Another Kostant theorem

• Have a Z2-action on the functor FV , i.e. a ring map Z2 → End(FV ):

z · (v ⊗m) =
∑

ai(v ⊗ bim), for z =
∑
i

ai ⊗ bi ∈ Z2.

• This is the action obtained by transport of structure from the action of Z2 ⊆
U2 on ΦV to FV via the equivalence h.

• Let IV denote the kernel of the action:

IV = {z ∈ Z2 : z(V ⊗M) = 0 for all M ∈M }.

• Note the embedding

η∗ ⊗ η∗ : Z2 ↪→ S(h)⊗ S(h) = S(h⊕ h) = P (h∗ ⊕ h∗);

since η∗ identifies Z with S(h)W , the image of η∗ ⊗ η∗ consists of polynomials
Q(ψ, χ) which are W -invariant in each variable.

• Theorem 3.3 (Kostant): Let Q be the image of some z ∈ Z2. Then z ∈ IV
if and only if Q(χ+µ, χ) is the zero polynomial for any weight µ ∈ P (V ).
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• Corollary 3.4:

(i) Z2/IV is finitely generated over Z.

(ii) FV (MZf ) ⊆MZf .

Proof. Define A = S(h), B = S(h)W , and

J = {Q ∈ A2 : Q(χ+ µ, χ) = 0 for any µ ∈ P (V )}.

Then J is an ideal in A2 and JV = J ∩ B2 is an ideal in B2. Claim (i) is
equivalent to saying B2/JV is finitely generated over B.

By the theorem, there is a B-module embedding

i = ⊕µiµ : B2/JV → ⊕µ∈P (V )A,

where iµ(Q)(χ) = Q(χ + µ, χ). But A is finitely generated as a B-module
because W is finite, so by Noetherianity of B we conclude B2/JV is finitely
generated over B.

It remains to prove (ii). Exercise from (i): Given a g-module with JM = 0
for some finite-codimension ideal J ⊆ Z, cook up a finite-codimension ideal
J ′ ⊆ Z with J ′(V ⊗M) = 0. Then since FV commutes with direct limits, we
get FV (MZf ) ⊆MZf .

3.3 Functor decomposition and the main results

• We have seen that FV preserves MZf ; let FV,Zf denote its restriction to this
subcategory.

• Definition 3.5: Direct summands of FV,Zf are known as projective func-
tors.

• Every projective functor decomposes into a direct sum of indecomposable
projective functors; ultimately we will describe these indecomposables.

• Proposition 3.6: Let F,G be projective functors.

(i) F is exact and preserves direct sums and products.

(ii) Direct summands of F are projective; the functors F ⊕ G and F ◦ G are
projective.

(iii) F has projective right and left adjoints.

(iv) F = ⊕θ,θ′Prθ′ ◦ F ◦ Prθ and each of these summands are projective.

• To parametrise projective functors, we require the sets

Ξ0 = {(ψ, χ) ∈ (h∗)2 : ψ − χ ∈ Λ}, Ξ = Ξ0/W,
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where the quotient is by the component-wise W -action.

• Every element ξ ∈ Ξ has a proper representative (ψ, χ), by which we mean
that χ is dominant and ψ ≤Wχ(ψ). There is a well-defined map

ηr : Ξ→ Θ, ηr(ψ, χ) = η(χ).

• Theorem A:

(i) Each projective functor decomposes into a direct sum of indecomposable
projective functors.

(ii) To each ξ ∈ Ξ there corresponds an indecomposable projective functor Fξ,
unique up to isomorphism with the following properties:

• Fξ(Mϕ) = 0 if ηr(ξ) 6= η(ϕ), ϕ ∈ h∗.

• If ξ = (ψ, χ) is written properly, then Fξ(Mχ) = Pψ.

(iii) ξ 7→ Fξ defines a bijection from Ξ to the set of isomorphism classes of
indecomposable projective functors.

Among other things, the next result reveals the remarkable fact that projective
functors are determined by their induced action on K(O).

• Theorem B: Suppose F,G are projective functors. Then:

(i) If [F ] = [G], then F is naturally isomorphic to G.

(ii) If (F,G) is an adjoint pair, then ([F ], [G]) is a conjugate pair on the inner
product space K(O).

(iii) [F ] is W -equivariant.

• Theorems A and B allow us to compute [Fξ] explicitly. In particular, [Fξ](δϕ) =
0 if ϕ /∈W (χ) and [Fξ](δw(χ)) =

∑
ϕ>ψ dϕ,ψδwϕ, so understanding F reduces to

knowledge of the dϕψ.

• Definition 3.7: Let θ ∈ Θ and let F (θ) denote the restriction of a projective
functor to M (θ). A projective θ-functor F : M (θ)→M is any direct summand
of a functor FV (θ).

• The third and final theorem in this section underpins the proofs of the previous
two.

• Theorem C: Let F,G be projective θ-functors, χ ∈ η−1(θ). Then

iχ : Hom(F,G)→ Hom(FMχ, GMχ), iχ(ϕ) = ϕMχ

is a monomorphism, and an isomorphism if χ is dominant.

Proof sketch. By considering decompositions FV (θ) = F ⊕ F ′, GL(θ) = G⊕G′,
we reduce to the case F = FV (θ) and G = GL(θ).
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To prove injectivity of iχ, need the following fact: If χ ∈ η−1(θ) is a weight and
u ∈ Uθ, then uMχ = 0 implies u = 0.

The isomorphism for χ dominant is proven by counting dimensions using Kostant’s
theorem 2.3.

• We need some subsidiary information before we can proceed to the proofs of
the other two theorems. Namely, we will need to see that the restriction

F∞(θ) : M∞(θ)→M

of a projective F is determined by the restrictions Fn(θ) : M n(θ)→M .

• Proposition 3.8: Suppose F,G are projective functors. Then any natural
transformation

ϕ : F (θ)→ G(θ)

admits a lift ϕ̂ : F∞(θ) → G∞(θ). If ϕ is an isomorphism, then so is ϕ̂; if
F = G, then any idempotent ϕ can be lifted to an idempotent ϕ̂.

Proof. Let Hn = Hom(Fn(θ), Gn(θ)), 1 ≤ n ≤ ∞, and let rnm : Hn → Hm

denote the obvious restriction maps, m ≤ n, so we have an inverse system.

Firstly, we have that H∞ = lim←−H
n. This is because F commutes with direct

limits and modules M ∈M∞(θ) can be expressed as follows:

M = lim−→Mn, Mn = {m ∈M : Jnθm = 0} ∈M n(θ).

As in the sketch of Theorem C, we may assume F = FV , G = FL. Then,
exercise (use Watt’s theorem and Lemma 3.1):

Hn = (Homg(L∗ ⊗ V,Uad))/Jnθ .

So H∞ is a Jθ-adic completion. Then Hn = H∞/Jnθ , so in particular ϕ ∈ H1

can always be lifted to some ϕ̂ ∈ H∞.

Suppose ϕ is an isomorphism, inverse ψ. To prove ϕ̂ is an isomorphism, it
suffices to prove ϕ̂ψ̂ and ψ̂ϕ̂ are invertible, so for that reason we can assume
F = G and ϕ = 1. But then ϕ̂ = 1−α for some α ∈ Jθ, which is a unit in H∞.

We omit the proof that an idempotent ϕ has an idempotent lift.

• Theorem C + Proposition 3.8 = Corollary 3.9: Suppose F,G are
projective functors, χ a dominant weight with θ = η(χ). Any isomorphism
FMχ

∼= GMχ lifts to an isomorphism F∞(θ) ∼= G∞(θ), and any g-module
decomposition FMχ

∼= ⊕iMi lifts to a decomposition F∞(θ) = ⊕Fi with
FiMχ = Mi.

• If F is a projective functor, then F is the direct sum of its restrictions to the
subcategories M∞(θ); that is,

F =
⊕
θ

F ◦ Pr(θ).
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• Now, by the corollary, F ◦ Pr(θ) splits into a direct sum of (finitely many)
indecomposable projective functors, according to the direct sum decomposition
of FMχ. Thus we obtain Theorem A(i).

• Remark 3.10: If F is an indecomposable projective functor, then F =
F ◦ Pr(θ) for some θ ∈ Θ. Thus FMχ = 0 whenever η(χ) 6= θ. On the other
hand, if χ ∈ η−1(θ) is dominant, then Mχ = Pχ is an indecomposable projective
and hence FMχ = Pψ for some ψ ∈ h∗.

• Proof of Theorem B. For the first point, suppose [F ] = [G]. By the previous
discussion, it is equivalent to prove FMχ

∼= GMχ for any dominant weight χ.
But FMχ and GMχ are projective objects in O, whose isomorphism classes are
recoverable from their images in K(O).

For the second point, we need to prove {[F ]x, y} = {x, [G]y} for all x, y ∈ K(O).
We can assume x = [P ] is the class of a projective, since the classes of projective
objects span K(O). Then use the assumed adjunction and the formula

{[P ], [M ]} = dim Hom(P,M), P projective, M arbitrary in O.

We omit the rather lengthy proof of [F ]’s W -equivariance.

•All that remains is to prove the classification results of Theorem A(ii),(iii).

Proof. Given a projective functor F , we define a quantity

aF : (h∗)2 → Z, aF (ψ, χ) = {dψ, [F ]δχ}.

In fact aF lands in N. Indeed, if χ is dominant, then FMχ is projective and
aF (ψ, χ) ≥ 0 for any ψ (consider an appropriate Hom space); then use W -
equivariance of [F ] to deduce that aF (ψ, χ) ≥ 0 always.

Next consider the subsets

S(F ) = {(ψ, χ) : aF (ψ, χ) > 0},

Smax(F ) = {(ψ, χ) ∈ S(F ) : |ψ − χ| maximal}.

By non-negativity of aF , we get that

F = ⊕iFi ⇒ S(F ) = ∪iS(Fi)

so that, since S(FV ) ⊆ Ξ0, the same is true for S(F ). (Similarly Smax(F ) ⊆
∪iSmax(Fi).) Both S(F ) and Smax(F ) are preserved by W , due to the W -
equivariance of [F ].

Suppose F is indecomposable. Then Smax(F )/W consists of a single point.
Indeed, if F = F ◦ Pr(θ) and χ ∈ η−1(θ) is dominant, then FMχ = Pψ and we
get Smax(F ) = W (ψ, χ) (exercise).

To each indecomposable projective functor F we have associated a ξ ∈ Ξ, such
that if ξ is written properly, then FMχ = Pψ. And each ξ = (ψ, χ) arises
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thus: If V is a finite-dimensional g-module with extremal weight ψ − χ, then
(ψ, χ) ∈ Smax(FV ) and therefore (ψ, χ) ∈ Smax(F ) for some indecomposable
summand F of FV .

4 Applications

4.1 Equivalences between categories M (θ)

• Theorem 4.1: For θ, θ′ ∈ Θ, let Fθ′,V,θ = Pr(θ′) ◦ F ◦ Pr(θ) : M∞(θ) →
M∞(θ′). Suppose we have dominant weights χ ∈ η−1(θ), ψ ∈ η−1(θ′) such that
Wχ = Wψ and λ = ψ − χ ∈ Λ. Then

Fθ′,V,θ : M∞(θ)→M∞(θ′), Fθ,V ∗,θ′ : M∞(θ′)→M∞(θ),

are inverse equivalences of categories, where V is a finite-dimensional g-module
with extremal weight λ.

Proof. Let F = Fθ′,V,θ, G = Fθ,V ∗,θ′ . Remembering λ is an extremal weight of
V (so that −λ is such for V ∗), one can show that (exercise)

FMχ = Mψ, GMψ = Mχ.

Hence GFMχ = Mχ, so the theorem provides that GF ∼= Pr(θ); similarly
FG ∼= Pr(θ′). By restricting F,G to M (θ),M (θ′), we deduce that they are
categorical equivalences.

• The following observations of Bernstein refine earlier results of Zuckerman:

(i) Let H be any complete subcategory of M preserved by all functors FV ,
e.g. H = O. The same proof method shows that the intersections of H
with M∞(θ) and M∞(θ′) are equivalent.

(ii) If we assume just an inequality of stabilisers Wψ ⊆ Wχ, then (in the

notation of the proof) we conclude GF ∼= Id⊕|Wχ:Wψ|.

4.2 Lattices of two-sided ideals and submodules

• Notation: Suppose χ is a dominant weight with η(χ) = θ. Let Ωθ be the
lattice of two-sided ideals in Uθ; let Ωχ be the submodule lattice of Mχ.

• Theorem 4.2: Let χ be a dominant weight, θ = η(χ).

(i) The mapping
ν : Ωθ → Ωχ, ν(J) = JMχ

is an embedding, and a lattice isomorphism if χ is regular.
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(ii) Let P be the class of modules isomorphic to direct sums of Pψ for ψ <
χ and ψ ≤ Wχ(ψ). Then the image of ν consists of the P-generated
submodules of Mχ.

4.3 Duflo’s theorem

The result in the previous section allows for an easy re-derivation of Duflo’s
famous theorem.

• Theorem 4.3 (Duflo): Let J ∈ Ωθ be a two-sided prime ideal. Then a
weight ψ ∈ η−1(θ) exists such that J = AnnLψ.

Proof. Take χ ∈ η−1(θ) dominant. Let L1, . . . , Ln be the composition factors
of the module M = Mχ/JMχ, with annihilators Ii ⊆ Uθ. Certainly J ⊆ Ii for
all i, and the product I = I1 · · · In annhilates M . It follows from section 4.2
that I ⊆ J . Invoking that J is prime gives J = Ii for some i. But now from
our knowledge of Mχ, we have that Li = Lψ for some ψ < χ, and the result
follows.
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