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Preface

Harnack inequalities are useful qualitative tools for understanding the
properties of partial differential equations. Originally discovered as a prop-
erty of harmonic functions, Harnack inequalities have since been studied for
solutions of wider classes of elliptic and parabolic problems.

In this monograph, we take particular interest in deriving Harnack in-
equalities for solutions of nonlinear evolution equations. We focus on ex-
ploring the methods introduced by Li and Yau in the case of the linear heat
equation and later extended to nonlinear problems by Auchmuty and Bao.
Prior to presenting these results, we study a minimisation problem, which
appears naturally in the proofs.

After establishing a family of three general Harnack inequality results
by Auchmuty and Bao, we investigate applications to deriving Harnack in-
equalities satisfied by solutions of the porous medium equation and weak
solutions of the parabolic problem associated with the p-Laplace operator,
which we refer to here as the p-diffusion equation.

Finally, we demonstrate a common application of Harnack inequalities
by proving the local space-time Hölder continuity of solutions to a class of
linear evolution problems. The proof is based on methods introduced by
Moser during his seminal work on Harnack inequalities during the 1960s.

We conclude by suggesting potential opportunities for future work fol-
lowing on from the topics discussed here.
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CHAPTER 1

Introduction

When studying partial differential equations, it is important to develop
qualitative and quantitative tools, such as inequalities, which can be used
to discover features of their solutions, for example, their Hölder continuity
or maximum principles.

In 1887, Harnack [21] proved the following inequality for positive har-
monic functions defined on the open ball BR(x0) ⊆ R2:

R− r
R+ r

u(x0) ≤ u(x) ≤ R+ r

R− r
u(x0).

This inequality holds for all x ∈ Br(x0) and r < R. We note that throughout
this monograph, a function u defined on Ω will be called positive if u(x) > 0
for a.e. x ∈ Ω and nonnegative if u(x) ≥ 0 for a.e. x ∈ Ω. An analogous
formulation of this result may also be given when u is a positive harmonic
function on a domain Ω ⊆ Rd for d ≥ 1. Often, Harnack’s inequality is
stated in the following form

γ−1 sup
Br(x0)

u ≤ u(x0) ≤ γ inf
Br(x0)

u, (1.1)

which is due to Kellogg [23]. Here, we assume that B̄r(x0) ⊆ Ω and impor-
tantly, the constant γ > 1 is independent of the function u. Alternatively,
the ball Br(x0) may be replaced with any subdomain Ω′ compactly contained
in Ω, meaning that Ω′ ⊆ Ω.

Harnack’s inequality has several important consequences in the theory
of harmonic functions.

(i) (Liouville’s Theorem, [17]) Every nonnegative harmonic function
on Rd is constant.

(ii) (Removable Singularity Theorem, [6]) Let d ≥ 3. If a function
u : Br(0) \ {0} → R is harmonic and u(x) = o(|x|2−d) for x → 0,
then u(0) can be defined so that u : Br(0) → R is a harmonic
function.

(iii) (Harnack’s First Convergence Theorem, [19]) If a sequence of har-
monic functions on a bounded domain Ω ⊂ Rd, which are con-
tinuous on Ω̄, converges uniformly on the boundary ∂Ω, then the
sequence converges uniformly in Ω to a harmonic function.

(iv) (Harnack’s Second Convergence Theorem, [19]) If a sequence (un)
of harmonic functions on a connected open set Ω ⊂ Rd is monotone
increasing and there exists x0 ∈ Ω such that (un(x0)) is convergent,
then (un) converges uniformly on every compact subset of Ω to a
harmonic function u.

1



1. INTRODUCTION 2

Following Harnack’s discovery, attention has been given to proving sim-
ilar inequalities for parabolic equations. In the parabolic case, a time de-
pendence can be seen in the resulting inequalities. In 1954, Hadamard [20]
and Pini [31] independently derived Harnack-type inequalities of the form

γ−1 sup
x∈Br(x0)

u(x, t0 − r2) ≤ u(x0, t0) ≤ γ inf
x∈Br(x0)

u(x, t0 + r2) (1.2)

for positive solutions to the heat equation,

ut = ∆u in Ω× (0,∞). (1.3)

In inequality (1.2), we see a waiting time from t0 − r2 to t0 and from t0 to
t0 + r2. Using the physical interpretation of (1.3) as describing the distri-
bution of heat in a medium, this means that if the temperature u is known
at a point x0 in space, then after waiting some time, the temperature ev-

erywhere in a neighbourhood of x0 will be at least u(x0)
γ . This waiting time

is in fact necessary for the result to hold, as has been demonstrated using
counterexamples, such as the following one contributed by Moser [29].

Suppose there exists γ > 1 independent of u such that

sup
x∈K

u(x, t0) ≤ γ inf
x∈K

u(x, t0) (1.4)

for all solutions u of

ut = uxx in R× (0,∞), (1.5)

where K ⊂⊂ R and t0 > 0 is fixed. The function

uξ(x, t) := t−1/2e−(x+ξ)2/4t

is known to be a solution of (1.5) for all ξ ∈ R. Observe that for any x0 > 0
fixed, one has that

lim
ξ→−∞

uξ(0, 1)

uξ(x0, 1)
= lim

ξ→−∞
ex

2
0/4ex0ξ/4 = 0.

Applying (1.4) for some K ⊂⊂ R containing x0 and 0 yields(
uξ(0, 1)

uξ(x0, 1)

)−1

≤ γ.

Taking ξ → −∞, we reach a contradiction, since the left-hand side becomes
unbounded in the limit.

In 1964, Moser [29] also expanded on this work by obtaining a similar
result for weak solutions of more general parabolic differential equations
with variable coefficients, that is, equations in the following divergence form

∂u

∂t
=

n∑
k,l=1

∂

∂xk

(
akl(x, t)

∂u

∂xl

)
in Ω× (0, T ). (1.6)

Here, the coefficients akl(x, t) are measurable functions with akl = alk that
satisfy the uniform ellipticity condition

λ−1 ≤
n∑

k,l=1

akl(x, t)ξkξl ≤ λ (1.7)
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for all ξ ∈ Rd with
∑

k ξ
2
k = 1. In particular, Moser proved that there exists

a positive constant C such that

sup
Br(x0)×(t−1 ,t

−
2 )

u ≤ C inf
Br(x0)×(t+1 ,t

+
2 )
u

for all nonnegative weak solutions u of (1.6) where r > 0 is such that
B̄r(x0) ⊆ Ω and 0 < t−1 < t−2 < t+1 < t+2 < T . Here, one must under-
stand the supremum and infimum in the sense of the essential supremum
and essential infimum respectively. Moser then used the oscillation of weak
solutions of (1.6) to prove that these are space-time Hölder continuous on
the interior of a rectangular domain. Although Hölder continuity had al-
ready been established by Nash [30] in 1958, Moser presented a new method
for proving this result, which we will explore in Chapter 5.

Research in pursuit of Harnack-type inequalities has been heavily in-
fluenced by the work of Li and Yau [27], who developed new methods for
deriving such results. In their analysis of positive solutions of the heat
equation (1.3) on Rd × (0, T ), the sharp gradient estimate

|∇u|2

u2
− ut
u
≤ d

2t
(1.8)

was found. By integrating this inequality over a path connecting (x1, t1)
and (x2, t2) in Rd × (0, T ) with 0 < t1 < t2 < T , it follows that for all such
points

u(x2, t2) ≥ u(x1, t1)

(
t1
t2

)d/2
e
−|x2−x1|

2

4(t2−t1) . (1.9)

We remark that Li and Yau’s results have particular significance, since they
hold more generally on complete Riemannian manifolds with nonnegative
Ricci curvature. However, the exploration of Harnack inequalities on man-
ifolds is beyond the scope of this monograph and we instead restrict our
attention to the Euclidean space Rd.

Harnack-type estimates analogous to (1.2) have also been formulated
and proven for parabolic and elliptic equations in non-divergence form, for
example, by Krylov and Safonov [25, 32]. Similar to the case of operators
in divergence form, this result can be used to prove the Hölder continuity of
the solutions.

Another topic of interest is the notion of a boundary Harnack inequality,
which was first introduced by Kemper [24] in 1972 for harmonic functions
and solutions of the heat equation. We now recall one of the main results
from this paper. Let Ω be a bounded domain in Rd and Γ a compact subset of
the boundary ∂Ω. Let Ω′ ⊂ Ω be a domain such that ∂Ω′ ∩∂Ω is compactly
contained in the interior of Γ. Then for x0 ∈ Ω′, there exists a constant
C > 0 such that

sup
x∈Ω′

u(x) ≤ Cu(x0)

for every nonnegative harmonic function u that vanishes on Γ. Unlike the
case of inequality (1.1), it does not make sense for a similar two-sided in-
equality to be obtained here. Indeed, the assumption that u vanishes on Γ
guarantees that the infimum of u will be zero. Thus, any attempt to control
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the supremum by the infimum in the usual manner would only be valid for
u ≡ 0.

1.1. Modelling

Throughout this monograph, we are interested in studying some partic-
ular parabolic equations, specifically the linear heat equation, the porous
medium equation, and the p-diffusion equation. Each of these equations
arise naturally in physical phenomena and will be introduced below.

First considering the porous medium equation, let M > 1 and consider
u to be a scalar-valued function representing the density of a gas flowing in
a porous medium Ω ⊆ Rd. The evolution of the density u is governed by
the continuity equation

ut + div(uV ) = 0 in Ω× [0,∞) (1.10)

where V denotes the velocity of the gas [15]. Assuming that the flow is
laminar, the velocity V is related to the pressure f of the gas by the linear
Darcy law V = −∇f and the pressure f is proportional to uM−1. Using a
rescaling argument if necessary, we choose the constant of proportionality
to be M

M−1 . Combining this information yields the relationship

V = −∇
(
( M
M−1)uM−1

)
.

By a direct calculation, it can be seen that uV = −∇(uM ). Inserting this
into (1.10), we arrive at the porous medium equation

ut = ∆(uM ) in Ω× [0,∞).

Next, seeking to understand the p-diffusion equation, we suppose that
u represents the electric potential in a medium Ω ⊆ Rd. Let σ : Ω→ [0,∞]
be a measureable function corresponding to the conductivity of the medium
Ω. We follow the explanation provided in [10]. Ohm’s law states that the
electric current density J obeys J = −σ∇u. Combining this with Kirchhoff’s
law, div(J) = 0, we obtain the linear conductivity equation

div(σ∇u) = 0 in Ω. (1.11)

Alternatively, using the continuity equation ut+div(J) = 0 instead of Kirch-
hoff’s law produces the associated parabolic equation

ut = div(σ∇u) in Ω× [0,∞). (1.12)

In the case σ ≡ 1 corresponding to a medium of uniform conductivity, we
recover from (1.11) and (1.12) the usual Laplace equation ∆u = 0 as well as
the linear heat equation ut = ∆u, best known as a model of heat diffusion.

Several media encountered in the physical world do not obey the linear
Ohm’s law. One possible alternative is that the current density J satisfies
a power law J = −σ|∇u|p−2∇u for some 1 < p < ∞. Consequently, by
Kirchhoff’s law, u instead satisfies

div(σ|∇u|p−2∇u) = 0 in Ω.

Again, by setting σ ≡ 1, we recover the p-Laplace equation

∆pu := div(|∇u|p−2∇u) = 0 in Ω.
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Using a continuity equation, the related parabolic equation, which we call
the p-diffusion equation, can be derived as

ut = ∆pu in Ω× [0,∞).

1.2. Main results

We begin by reviewing some Harnack-type inequalities discovered by
Auchmuty and Bao [5], whose methods were heavily inspired by the work
of Li and Yau. In particular, the ideas of Li and Yau were adapted to derive
Harnack inequalities for solutions to parabolic equations satisfying a more
general gradient estimate.

Theorem 1.1 (General Harnack inequalities, [5]). Let Ω ⊆ Rd be an open
convex set and let f be a positive continuously differentiable function on
ΩT := Ω× (0, T ), for which there exist constants C > 0, p > 1, r ∈ R, and
a function a ∈ L1

loc(0, T ) such that

∂f

∂t
+ af ≥ C|∇f |p

f r
in ΩT . (1.13)

Then for all x1, x2 ∈ Ω and 0 < t1 < t2 < T :

(i) if r = p− 1, then

f(x2, t2) ≥ eA(t1)

eA(t2)
f(x1, t1)e

− ξ|x2−x1|
q

(t2−t1)q−1 ;

(ii) if r > p− 1, then

f(x2, t2) ≥ eA(t1)

eA(t2)
f(x1, t1)×

(1 +mξ|x2 − x1|qI1−q[f(x1, t1)]memA(t1))
−1
m ;

(iii) if r < p− 1, then

[f(x2, t2)]|m| ≥

(
eA(t1)

eA(t2)

)|m|(
[f(x1, t1)]|m| − |m| ξ |x2 − x1|qI1−q

e|m|A(t1)

)
. (1.14)

If the quantity in the large parentheses above is nonnegative, then

f(x2, t2) ≥ eA(t1)

eA(t2)
f(x1, t1)

(
1− |m| ξ |x2 − x1|qI1−q

[f(x1, t1)]|m|e|m|A(t1)

) 1
|m|

,

where q := p
p−1 , m := r

p−1 − 1, ξ := 1
q ( 1
pC )q−1, A(t) is an antiderivative of

a(t), and I :=
∫ t2
t1
em(p−1)A(t) dt.

In addition, if f is nonnegative on ΩT and satisfies inequality (1.13)
with r = 0, then (1.14) holds for all x1, x2 ∈ Ω and 0 < t1 < t2 < T .

The key idea in the proof of this theorem is to connect a pair of points
(x1, t1), (x2, t2) ∈ ΩT by an arbitrary continuously differentiable path x(t).
By manipulating the gradient estimate (1.13), an estimate of the time deriv-
ative of the function f along the path x(t) may be found. After integrating
this new inequality over an optimally chosen path x(t) and some rearrange-
ment, the final results of Theorem 1.1 may be obtained. This proof will
be discussed in further detail in Chapter 3, along with a second version of
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this result posed under weaker assumptions (Theorem 3.1). We also present
another similar result obtained from a different gradient estimate (Theorem
3.2).

As applications of Theorem 1.1, we derive Harnack inequalities for solu-
tions to three significant parabolic equations, which may all be found in [5].
The first equation we consider is the linear heat equation (1.3), the result
for which was stated earlier in the introduction, but we formulate here more
precisely.

Theorem 1.2. Let u be a positive solution of the heat equation

ut = ∆u in Rd × (0, T ).

Then u satisfies

u(x2, t2) ≥ u(x1, t1)

(
t1
t2

)d/2
e
−|x2−x1|

2

4(t2−t1) .

for all x1, x2 ∈ Rd and 0 < t1 < t2 < T .

In combination with (1.8), this result may be recovered from Theorem
1.1 with a(t) := d

2t , C = 1, p = 2, and r = 1.
We also consider two nonlinear variants of the heat equation, namely

the porous medium equation and the p-diffusion equation. The proof in
both cases relies on applying an Aronson-Bénilan-type estimate to arrive at
a gradient estimate of the form (1.13). The result in the case of the porous
medium equation can then be obtained from Theorems 1.1 and 3.2 with
a(t) := M−1

M−1+ 2
d

1
t , C = 1, p = 2 and r = 0.

Theorem 1.3. Let M > M0(d) := max{0, 1 − 2
d} and let u be a positive

solution to the porous medium equation

ut = ∆(uM ) in Rd × (0, T ).

Then, for all x1, x2 ∈ Rd and 0 < t1 < t2 < T , one has that

(i) if M > 1, then

[u(x2, t2)]M−1 ≥
(
t1
t2

)µ [
[u(x1, t1)]M−1 − M − 1

M

δ|x2 − x1|2

4(tδ2 − tδ1)

1

tµ1

]
;

(ii) if M = 1, then the porous medium equation reduces to the heat
equation (1.3) and the result of Theorem 1.2 holds;

(iii) if M0(d) < M < 1, then

[u(x2, t2)]1−M ≥
(
t2
t1

)µ [
[u(x1, t1)]M−1 − M − 1

M

δ|x2 − x1|2

4(tδ2 − tδ1)

1

tµ1

]−1

,

where µ := M−1
M−1+ 2

d

and δ := 1− µ.

Finally we obtain a result for the p-diffusion equation by using Theorems
3.1 and 3.2 with a(t) = γK

t , C = 1 and r = 0. Here γ := p−2
p−1 and K is a

constant obtained from a relevant Aronson-Bénilan-type estimate.
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Theorem 1.4. Let 2d
d+1 < p < ∞ and let u be a positive solution of the

p-diffusion equation,

∂u

∂t
= div(|∇u|p−2∇u) in Rd × (0, T ).

Then, for all x1, x2 ∈ Rd and 0 < t1 < t2 < T , one has that

(i) if p > 2, then

[u(x2, t2)]γ ≥
(
t1
t2

)γK (
[u(x1, t1)]γ − γξ|x2 − x1|qI1−qt−γK1

)
;

(ii) if p = 2, then the p-diffusion equation reduces to the heat equation
(1.3) and the result of Theorem 1.2 holds;

(iii) if 2d
d+1 < p < 2, then

[u(x2, t2)]−γ ≥
(
t2
t1

)γK (
[u(x1, t1)]γ − γξ|x2 − x1|qI1−qt−γK1

)−1
,

where γ := p−2
p−1 , q := p

p−1 , ξ := 1
q

(
1
p

)q−1
, δ := (2− p)K + 1, and

I :=

{
tδ2−tδ1
δ δ 6= 0,

log t2 − log t1 δ = 0.



CHAPTER 2

Preliminaries

2.1. Minimisation of a Convex Functional

During the proof of the general Harnack inequality results of Auchmuty
and Bao [5] in Chapter 3, our efforts to optimise the bounds in the inequal-
ities will lead us to solving a minimisation problem. We discuss the details
of this variational problem in this chapter.

Let 1 < q <∞, q′ = q
q−1 be the conjugate exponent of q, and 0 < t1 < t2.

Let w : [t1, t2]→ (0,∞) be continuous. In the following, let ‖ · ‖q denote the

usual norm on Lq(t1, t2;Rd) and let

‖x‖q,w :=

(∫ t2

t1

|x(t)|qw(t) dt

)1/q

be the weighted norm corresponding to the measure dµ(t) = w(t) dt for the
weighted Lebesgue space, which we denote by Lqw(t1, t2;Rd).

Then, denote by W 1,q
w (t1, t2;Rd) the weighted Sobolev space, which we

understand as the space of functions x ∈ Lqw(t1, t2;Rd) with weak derivative

also contained in Lqw(t1, t2;Rd). We equip the space W 1,q
w (t1, t2;Rd) with a

weighted Sobolev norm given by

‖x‖
W 1,q
w

:= ‖x‖q,w + ‖ẋ‖q,w.

Here, we understand ẋ as the weak derivative of x ∈ W 1,q
w (t1, t2;Rd). In

addition, we define the space W 1,q
w,0(t1, t2;Rd) as the closure of the test func-

tions C∞c (t1, t2;Rd) in W 1,q
w (t1, t2;Rd). For some basic properties of Sobolev

spaces, we direct the reader to Appendix A, in which we provide a presen-
tation of the usual unweighted Sobolev spaces, that is, W 1,q

w (t1, t2;Rd) with
w ≡ 1. However, any important properties we require hold true for the
weighted spaces used in this chapter.

Define a functional E : W 1,q
w (t1, t2;Rd)→ R by

E(x) :=
1

q

∫ t2

t1

|ẋ(t)|qw(t) dt

for all x ∈ W 1,q
w (t1, t2;Rd). We aim to minimise the functional E over the

affine space

A := {ξ0} ⊕W 1,q
w,0(t1, t2;Rd),

where ξ0 : [t1, t2]→ Rd is a fixed representative of the set of functions

{ξ ∈W 1,q
w (t1, t2;Rd) | ξ(t1) = x1, ξ(t2) = x2}

8
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and x1, x2 ∈ Rd are fixed. For example, one may choose ξ0 to be the straight
line segment connecting x1 and x2 in Rd. In addition, we note that A is a
closed, convex subset of W 1,q

w (t1, t2;Rd).
The main goal of this chapter will be to prove the following result.

Theorem 2.1. Let 1 < q < ∞, 0 < t1 < t2, and x1, x2 ∈ Rd. Let
E : W 1,q

w (t1, t2;Rd)→ R be the functional defined by

E(x) :=
1

q

∫ t2

t1

|ẋ(t)|qw(t) dt, (2.1)

where w : [t1, t2]→ (0,∞) is a continuous function. Then,

min
x∈A

E(x) =
|x2 − x1|q

q
(
W (t2)−W (t1)

)q−1 ,

where W (t) :=
∫ t (

w(s)
) 1

1−q ds is an antiderivative of
(
w(t)

) 1
1−q .

In practice, it is more convenient to understand the value of minx∈AE(x)
by the equivalent expression,

min
x∈W 1,q

w,0(t1,t2;Rd)
E(ξ0 + x).

Hence, we first study properties of the mapping x 7→ E(ξ0+x) as a functional

on the space W 1,q
w,0(t1, t2;Rd), which will aid us in the proof. Throughout,

we assume q > 1 and E is the functional given by (2.1).

Proposition 2.2. The space W 1,q
w,0(t1, t2;Rd) with the weighted norm ‖ ·‖q,w

satisfies a Poincaré inequality, that is, there exists C > 0 such that

‖x‖q,w ≤ C‖ẋ‖q,w (2.2)

for all x ∈W 1,q
w,0(t1, t2;Rd).

Proof. We first note that the weighted norm ‖ · ‖q,w is equivalent to
the usual norm ‖ · ‖q. The weight function w is continuous on the com-
pact interval [t1, t2]. Therefore, by the extreme value theorem, w attains a
minimum and maximum value on [t1, t2]. In particular, the positivity of w
guarantees both its minimum and maximum values are positive. Therefore,
we may define positive constants C1 and C2 such that

Cq1 := min
t∈[t1,t2]

w(t), Cq2 := max
t∈[t1,t2]

w(t).

Then, Cq1 ≤ w(t) ≤ Cq2 for all t ∈ [t1, t2]. Since |x(t)|q ≥ 0, it follows that

Cq1

∫ t2

t1

|x(t)|q dt ≤
∫ t2

t1

|x(t)|qw(t) dt ≤ Cq2
∫ t2

t1

|x(t)|q dt

for all x ∈W 1,q
w,0(t1, t2;Rd), which implies

C1‖x‖q ≤ ‖x‖q,w ≤ C2‖x‖q.

Thus, the norms ‖ · ‖q,w and ‖ · ‖q are equivalent as claimed. Therefore, we
derive a Poincaré inequality for ‖ · ‖q,w using a similar result for ‖ · ‖q.
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Let x ∈W 1,q
w,0(t1, t2;Rd) be arbitrary. By characterisation A.7 in the Ap-

pendix, x(t1) = 0. Using this fact and an application of Hölder’s inequality,
we have that for all t ∈ (t1, t2),

|x(t)| = |x(t)− x(t1)| ≤
∫ t

t1

|ẋ(t)| dt

≤
(∫ t

t1

|ẋ(t)|q dt

)1/q

|t− t1|1/q
′

≤ ‖ẋ‖q|t− t1|1/q
′

Therefore, |x(t)|q ≤ ‖ẋ‖qq|t− t1|q/q
′
, and by integrating over (t1, t2),∫ t2

t1

|x(t)|q dt ≤ ‖ẋ‖qq
∫ t2

t1

|t− t1|q/q
′

dt.

Hence, we arrive at the Poincaré inequality

‖x‖q ≤ C3‖ẋ‖q,

for ‖ · ‖q where C3 :=
(∫ t2

t1
|t− t1|q/q

′
dt
)1/q

= q−1/q(t2 − t1).

The Poincaré inequality for ‖ · ‖q,w is an immediate consequence of this
result and the equivalence of the norms. Indeed,

‖x‖q,w ≤ C2‖x‖q ≤ C2C3‖ẋ‖q ≤
C2C3

C1
‖ẋ‖q,w

and we conclude

‖x‖q,w ≤ C‖ẋ‖q,w
for C := C2C3

C1
. �

Proposition 2.3. For a given function ξ0 ∈ W 1,q
w (t1, t2;Rd), the mapping

x 7→ E(ξo + x) is coercive on W 1,q
w,0(t1, t2;Rd).

Proof. Observe that the functional E satisfies

(qE(ξo + x))1/q = ‖ξ̇0 + ẋ‖q,w

for all x ∈ W 1,q
w,0(t1, t2;Rd). Then, using the Poincaré inequality (2.2) with

C defined as in the proof of Proposition 2.2,

(qE(ξ0 + x))1/q = ‖ξ̇0 + ẋ‖q,w + ‖ξ̇0‖q,w − ‖ξ̇0‖q,w
≥ ‖ẋ‖q,w − ‖ξ̇0‖q,w

=
1

C + 1
(C‖ẋ‖q,w + ‖ẋ‖q,w)− ‖ξ̇0‖q,w

≥ 1

C + 1
(‖x‖q,w + ‖ẋ‖q,w)− ‖ξ̇0‖q,w

=
‖x‖

W 1,q
w

C + 1
− ‖ξ̇0‖q,w

Remembering that ‖ξ̇0‖q,w is a fixed constant, we see that E(ξ0 + x) → ∞
as ‖x‖

W 1,q
w
→∞. Thus, E is coercive on W 1,q

w,0(t1, t2;Rd). �
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Proposition 2.4. The functional E given by (2.1) is convex and continuous

on W 1,q
w (t1, t2;Rd).

Proof. Seeing that E(x) can be written as E(x) = 1
q‖ẋ‖

q
q,w, E is clearly

continuous on W 1,q
w (t1, t2;Rd) by the continuity of the norm ‖ · ‖q,w. Thus,

we focus on proving the convexity of E.
Let q ≥ 1 and consider the smooth function g(s) = sq defined for s ≥ 0.

Then,

d2g

ds2
= q(q − 1)sq−2 ≥ 0

for all s ≥ 0 and therefore g is convex. Hence, by the definition of convexity,

(λt+ (1− λ)s)q ≤ λtq + (1− λ)sq

for all nonnegative s, t and λ ∈ [0, 1]. Also, by the properties of any norm,
the Euclidean norm on Rd is a nonnegative convex function. Indeed, for
x, y ∈ Rd arbitrary and for all λ ∈ [0, 1],

|λx+ (1− λ)y| ≤ |λ||x|+ |1− λ||y| = λ|x|+ (1− λ)|y|

Letting f(x) = |x|q, we combine these results to yield that

f(λx+ (1− λ)y) = |λx+ (1− λ)y|q

≤ (λ|x|+ (1− λ)|y|)q

≤ λ|x|q + (1− λ)|y|q

= λf(x) + (1− λ)f(y)

and therefore f(x) = |x|q is convex for all q ≥ 1.

Now let x, y ∈ W 1,q
w (t1, t2;Rd). Then ẋ(t), ẏ(t) ∈ Rd for all t ∈ (t1, t2),

and so we may use the previous inequality to write

|λẋ(t) + (1− λ)ẏ(t)|q ≤ λ|ẋ(t)|q + (1− λ)|ẏ(t)|q

for all λ ∈ [0, 1]. Since w(t) > 0 for all t ∈ [t1, t2], we multiply through by
1
qw(t) and integrate from t1 to t2 to obtain

1

q

∫ t2

t1

|λẋ(t) + (1− λ)ẏ(t)|qw(t) dt ≤ λ1

q

∫ t2

t1

|ẋ(t)|qw(t) dt

+ (1− λ)
1

q

∫ t2

t1

|ẏ(t)|qw(t) dt.

Hence, we conclude that E is convex on W 1,q
w (t1, t2;Rd). �

In order to assist us in finding a minimiser of E, we introduce the notion
of the Gâteaux derivative, which can be understood as a generalisation of
the classical directional derivative, which is sensible for functionals defined
on (infinite-dimensional) Banach spaces. For more details regarding the
application of the Gâteaux derivatives to minimisation problems, we direct
the reader to Appendix B.



2. MINIMISATION OF A CONVEX FUNCTIONAL 12

Definition 2.1 (Gâteaux derivative, [35]). Let E : V → (−∞,+∞] be a
functional on a Banach space V . Then the Gâteaux derivative of E at x ∈ V
in the direction h ∈ V is given by

lim
t→0+

E(x+ th)− E(x)

t
.

If this limit exists in all directions h ∈ V and there exists E′(x) ∈ V ′ such
that

〈E′(x), h〉V ′,V = lim
t→0+

E(x+ th)− E(x)

t

for all h ∈ V , then we call E Gâteaux differentiable at x with Gâteaux
derivative E′(x).

We note that if the Gâteaux derivative E′(x) exists, then it is unique.
In addition, a suitable candidate for the Gâteaux derivative of E at x may
be calculated as

d

dt
E(x+ th)

∣∣∣∣
t=0

.

However, it is necessary to check that this function satisfies the definition in
a rigorous sense, which we demonstrate below for the functional E defined
in (2.1).

Proposition 2.5. For a given function ξ0 ∈ W 1,q
w (t1, t2;Rd), the mapping

x 7→ E(ξ0 + x) is Gâteaux differentiable at all x ∈ W 1,q
w,0(t1, t2;Rd) with the

Gâteaux derivative at x in the direction h ∈W 1,q
w,0(t1, t2;Rd) given by

〈E′(ξ0 + x), h〉
W−1,q′

0 ,W 1,q
0

:=

∫ t2

t1

|ξ̇0(t) + ẋ(t)|q−2
(
ξ̇0(t) + ẋ(t)

)
ḣ(t)w(t) dt.

Proof. Fix x ∈ W 1,q
w,0(t1, t2;Rd) and set v := ξ0 + x. First, we verify

that E′(v) is indeed an element of the dual space

(W 1,q
w,0(t1, t2;Rd))′ =: W−1,q′

w,0 (t1, t2;Rd).

In particular, we show that E′(v) : W 1,q
w,0(t1, t2;Rd) → R is linear and con-

tinuous. Let h1, h2 ∈ W 1,q
w,0(t1, t2;Rd) and λ1, λ2 ∈ R be arbitrary. Then,

using the linearity of weak differentiation and integration,

〈E′(v), λ1h1 + λ2h2〉W−1,q′
w,0 ,W 1,q

w,0

=

∫ t2

t1

|v̇(t)|q−2v̇(t)
(
λ1ḣ1(t) + λ2ḣ2(t)

)
w(t) dt

= λ1

∫ t2

t1

|v̇(t)|q−2v̇(t)ḣ1(t)w(t) dt+ λ2

∫ t2

t1

|v̇(t)|q−2v̇(t)ḣ2(t)w(t) dt

= λ1〈E′(v), h1〉W−1,q′
w,0 ,W 1,q

w,0

+ λ2〈E′(v), h2〉W−1,q′
w,0 ,W 1,q

w,0
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Therefore, E′(v) is linear. Then,∣∣〈E′(v), h1〉W−1,q′
w,0 ,W 1,q

w,0

− 〈E′(v), h2〉W−1,q′
w,0 ,W 1,q

w,0

∣∣
≤
∫ t2

t1

∣∣|v̇(t)|q−2v̇(t)
∣∣∣∣ḣ1(t)− ḣ2(t)

∣∣w(t) dt

=

∫ t2

t1

|v̇(t)|q−1|ḣ1(t)− ḣ2(t)|w(t) dt

≤
(∫ t2

t1

|v̇(t)|(q−1)q′w(t) dt

)1/q′ (∫ t2

t1

|ḣ1(t)− ḣ2(t)|qw(t) dt

)1/q

by Hölder’s inequality. The quantity∫ t2

t1

|v̇(t)|(q−1)q′w(t) dt =

∫ t2

t1

|v̇(t)|qw(t) dt

is finite since |v̇(t)| ∈ Lqw(t1, t2;Rd). Hence,

D :=

(∫ t2

t1

|v̇(t)|qw(t) dt

)1/q′

= ‖v̇‖q−1
q,w <∞.

It follows that∣∣〈E′(v), h1〉W−1,q′
w,0 ,W 1,q

w,0

− 〈E′(v), h2〉W−1,q′
w,0 ,W 1,q

w,0

∣∣ ≤ D‖ḣ1 − ḣ2‖q,w

≤ D‖h1 − h2‖W 1,q
w

and therefore E′(v) is also continuous. Thus, by the definition of the dual
of a normed vector space, the linearity and continuity of E′(v) imply that

E′(v) ∈W−1,q′

w,0 (t1, t2;Rd).
We now show E′(v) is indeed the Gâteaux derivative of E at v, that is

〈E′(v), h〉
W−1,q′
w,0 ,W 1,q

w,0

= lim
s→0+

E(v + sh)− E(v)

s

for all h ∈W 1,q
w,0(t1, t2;Rd), which is equivalent to proving

lim
s→0+

∣∣∣∣∣
∫ t2

t1

(
|v̇(t) + sḣ(t)|q − |v̇(t)|q

s
− |v̇(t)|q−2v̇(t)ḣ(t)

)
w(t) dt

∣∣∣∣∣ = 0.

(2.3)
By applying the mean value theorem to the continuously differentiable map
v 7→ |v|q for every t ∈ (t1, t2), there exists θ(t) ∈ (0, 1) such that

|v̇(t) + sḣ(t)|q − |v̇(t)|q = |v̇(t) + sθ(t)ḣ(t)|q−2
(
v̇(t) + sθ(t)ḣ(t)

)
sḣ(t).

Inserting this into the limit in (2.3), we calculate

lim
s→0+

∣∣∣∣ ∫ t2

t1

(
|v̇(t) + sθ(t)ḣ(t)|q−2

(
v̇(t) + sθ(t)ḣ(t)

)
ḣ(t)

− |v̇(t)|q−2v̇(t)ḣ(t)
)
w(t) dt

∣∣∣∣.
Using the continuity of v 7→ |v|q−2v,

lim
s→0+

|v̇(t) + sθ(t)ḣ(t)|q−2
(
v̇(t) + sθ(t)ḣ(t)

)
ḣ(t) = |v̇(t)|q−2v̇(t)ḣ(t)
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for all t ∈ (t1, t2). Then,∣∣|v̇(t) + sθ(t)ḣ(t)|q−2(v̇(t) + sθ(t)ḣ(t))ḣ(t)
∣∣

= |v̇(t) + sθ(t)ḣ(t)|q−1|ḣ(t)|

≤ (|v̇(t)|+ sθ(t)|ḣ(t)|)q−1|ḣ(t)|

Then, since sθ(t) > 0 and thus sθ(t)|ḣ(t)| ≥ 0, by an elementary inequality,
there exists K > 1 such that

(|v̇(t)|+ sθ(t)|ḣ(t)|)q−1 ≤ K
(
|v̇(t)|q−1 + (sθ(t)|ḣ(t)|)q−1

)
for all t ∈ (t1, t2). Therefore,∣∣|v̇(t) + sθ(t)ḣ(t)|q−2(v̇(t) + sθ(t)ḣ(t))ḣ(t)

∣∣
≤ K

(
|v̇(t)|q−1 + (sθ(t)|ḣ(t)|)q−1

)
|ḣ(t)|

≤ K(|v̇(t)|q−1 + |ḣ(t)|q−1)|ḣ(t)| =: g(t)

since sθ(t) ∈ (0, 1) for s small enough. Since v̇(t), ḣ(t) ∈ Lqw(t1, t2;Rd) and

are hence also in Lq−1
w (t1, t2;Rd), we have that

g(t) = K(|v̇(t)|q−1 + |ḣ(t)|q−1)|ḣ(t)| ∈ L1
w(t1, t2;Rd).

Then, by Lebesgue’s dominated convergence theorem,

lim
s→0+

∫ t2

t1

∣∣∣∣(|v̇(t) + sθ(t)ḣ(t)|q−2
(
v̇(t) + sθ(t)ḣ(t)

)
ḣ(t)

−|v̇(t)|q−2v̇(t)ḣ(t)

)∣∣∣∣w(t) dt = 0.

Thus,

0 ≤ lim
s→0+

∣∣∣∣∣
∫ t2

t1

(
|v̇(t) + sḣ(t)|q − |v̇(t)|q

s
− |v̇(t)|q−2v̇(t)ḣ(t)

)
w(t) dt

∣∣∣∣∣
≤ lim

s→0+

∫ t2

t1

∣∣∣∣(|v̇(t) + sθ(t)ḣ(t)|q−2
(
v̇(t) + sθ(t)ḣ(t)

)
ḣ(t)

− |v̇(t)|q−2v̇(t)ḣ(t)

)∣∣∣∣w(t) dt

= 0,

which proves (2.3) and therefore, E(v) = E(ξ0 +x) is Gâteaux differentiable
with derivative E′(v) = E′(ξ0 + x) defined in Proposition 2.5. �

We now ready to prove the main result of this section, Theorem 2.1.

Proof. Since W 1,q
w,0(t1, t2;Rd) is a reflexive Banach space, we aim to ap-

ply Theorem B.4 from the Appendix, which provides sufficient conditions
for the mapping x 7→ E(ξ0 + x) to attain a minimum. Propositions 2.3
and 2.4 provide that that this mapping is coercive, convex, and continu-
ous on W 1,q

w,0(t1, t2;Rd), and thus also lower semicontinuous. Therefore, in

view of Theorem B.4, the mapping x 7→ E(ξ0 + x) attains a minimum on

W 1,q
w,0(t1, t2;Rd). Equivalently, letting v = ξ0 + x, E(v) attains a minimum

on A.
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It is known from Proposition 2.5 that the mapping x 7→ E(ξ0 + x) is

Gâteaux differentiable for all x ∈W 1,q
w,0(t1, t2;Rd). Since E is also convex, it

follows from Propositions B.5 and B.6 that any point v = ξ0 + x ∈ A which
minimises E(v) = E(ξ0 + x) can be found as a point which satisfies

〈E′(v), h〉
W−1,q′
w,0 ,W 1,q

w,0

=

∫ t2

t1

|v̇(t)|q−2v̇(t)ḣ(t)w(t) dt = 0 (2.4)

for all h ∈W 1,q
w,0(t1, t2;Rd).

Now, using that
∫ t2
t1
|v̇(t)|qw(t) dt <∞, we have that∫ t2

t1

∣∣|v̇(t)|q−2v̇(t)w(t)
∣∣q′ dt =

∫ t2

t1

|v̇(t)|q(w(t))q
′

dt <∞,

therefore, |v̇(t)|q−2v̇(t)w(t) ∈ Lq′(t1, t2;Rd). Then, write (2.4) as∫ t2

t1

|v̇(t)|q−2v̇(t)ḣ(t)w(t) dt = 0 = −
∫ t2

t1

0 · h(t) dt

for all h ∈ W 1,q′

w,0 (t1, t2;Rd) and thus for all h ∈ C∞c (t1, t2;Rd). Using the

definition of the Sobolev space W 1,q′(t1, t2;Rd) and the uniqueness of the
weak derivative, in order for (2.4) to hold, one must have that

{|v̇(t)|q−2v̇(t)w(t)}′ = 0

for a.e. t ∈ (t1, t2). Thus, the solution to the minimisation problem can be
found as the solution to the Dirichlet problem{

{|v̇(t)|q−2v̇(t)w(t)}′ = 0 a.e. on (t1, t2),

v(t1) = x1, v(t2) = x2.
(2.5)

Here, the boundary conditions ensure the solution is an element of A.
The equation {|v̇(t)|q−2v̇(t)w(t)}′ = 0 is satisfied if and only if

|v̇(t)|q−2v̇(t)w(t) = A

for some A ∈ Rd. Then, since t is nonzero, the equation may be written as

|v̇(t)|q−2v̇(t) = A(w(t))−1. (2.6)

Consider the function k(v) = |v|q−2v for v ∈ Rd and let k−1(v) := |v|q′−2v.
We see that k−1 is the inverse of k by checking (k−1 ◦ k)(v) = v for all
v ∈ Rd. We have that

(k−1 ◦ k)(v) =
∣∣|v|q−2v

∣∣q′−2|v|q−2v

= |v|(q−2)(q′−2)+q+q′−4v

= v

since (q − 2)(q′ − 2) + q + q′ − 4 = 0. Applying the function k−1 to both
sides of (2.6), we have that

v̇(t) = |A(w(t))−1|q′−2A
(
w(t)

)−1

= |A|q′−2A
(
w(t)

)1−q′
= B

(
w(t)

) 1
1−q
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where B := |A|q′−2A is an element of Rd. Let W (t) denote an antiderivative

of
(
w(t)

) 1
1−q . Then the solution to the Dirichlet problem (2.5) is given by

v(t) = D +BW (t), (2.7)

where B,D ∈ Rd are given by

B =
x2 − x1

W (t2)−W (t1)
, D = x1 −BW (t1).

We note that since w(t) is continuous on [t1, t2], v(t) is continuously differ-
entiable. Thus, v(t) is a C1 path connecting the points (x1, t1) and (x2, t2)
in Rd × (0,∞), which will become relevant later.

We prove this solution is unique, which is equivalent to proving that the
minimiser of E is unique. According to Theorem B.4, one may also arrive
at this conclusion by proving the functional E is strictly convex. However,
we prove the uniqueness of solutions to the Dirichlet problem (2.5) as an
alternate justification for this result.

Suppose v, ṽ ∈ A are two solutions of (2.5) and let y := v − ṽ. Since
v and ṽ both satisfy the boundary conditions of this problem, it follows
y(t1) = y(t2) = 0 and therefore y ∈W 1,q

w,0(t1, t2;Rd). Recall from (2.4) that∫ t2

t1

|v̇(t)|q−2v̇(t)ḣ(t)w(t) dt = 0

for all h ∈W 1,q
w,0(t1, t2;Rd). A similar statement can be obtained by replacing

v by ṽ. Applying this for h = y = v − ṽ, subtracting and factorising, we
have that∫ t2

t1

(
|v̇(t)|q−2v̇(t)− | ˙̃v(t)|q−2 ˙̃v(t)

)(
v̇(t)− ˙̃v(t)

)
w(t) dt = 0. (2.8)

As shown in the proof of Proposition 2.4, the function f(x) := |x|q is convex,
and therefore its derivative f ′(x) = |x|q−2x is a monotone function. Hence,
f ′(x) satisfies the following monotonicity condition, which we write here in
terms of v̇(t) and ˙̃v(t) for all t ∈ (t1, t2):(

|v̇(t)|q−2v̇(t)− | ˙̃v(t)|q−2 ˙̃v(t)
)(
v̇(t)− ˙̃v(t)

)
≥ 0 (2.9)

Together, (2.8) and (2.9) imply that(
|v̇(t)|q−2v̇(t)− | ˙̃v(t)|q−2 ˙̃v(t)

)(
v̇(t)− ˙̃v(t)

)
= 0 a.e. t ∈ (t1, t2).

From this, we conclude that v̇(t) = ˙̃v(t) for a.e. t ∈ (t1, t2) and therefore,
v(t) = ṽ(t) + C for some constant C ∈ Rd. Since v and ṽ both satisfy the
boundary conditions given in (2.5), we must have that C = 0. Therefore,
v(t) = ṽ(t) for a.e. t ∈ (t1, t2) and the solution to the problem given by
(2.7) is unique. Thus, it follows that the point v ∈ A for which E attains
its minimum is unique.
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Finally, we use the unique solution v of (2.5) to calculate that the min-
imum value of the functional E on A is given by

E(v) =
1

q

∫ t2

t1

|v̇(t)|qw(t) dt

=
|B|q

q

∫ t2

t1

(
w(t)

) q
1−qw(t) dt

=
|B|q

q

∫ t2

t1

(
w(t)

) 1
1−q dt

=
|B|q

q

(
W (t2)−W (t1)

)
This is equivalent to the result, which was claimed in Theorem 2.1. �

Lastly, we consider a special case of Theorem 2.1, corresponding to the

unweighted functional E(x) := 1
q

∫ t2
t1
|ẋ(t)|q dt. The following corollary may

be deduced from Theorem 2.1 by setting w(t) ≡ 1.

Corollary 2.6. Let 1 < q < ∞, 0 < t1 < t2, and x1, x2 ∈ Rd and
A := {ξ0} ⊕W 1,q

0 (t1, t2;Rd). Let E : W 1,q(t1, t2;Rd) → R be the functional
defined by

E(x) :=
1

q

∫ t2

t1

|ẋ(t)|q dt.

Then,

min
x∈A

E(x) =
|x2 − x1|q

q(t2 − t1)q−1
.



CHAPTER 3

General Harnack-type Inequalities

In this chapter, we prove a collection of Harnack inequality results dis-
covered by Auchmuty and Bao [5] for functions satisfying a gradient estimate
of a particular form. Throughout, we let Ω ⊆ Rd be an open convex set and
write ΩT := Ω× (0, T ).

Proof of Theorem 1.1. Let f : ΩT → (0,∞) be continuously differ-
entiable. Suppose there are C > 0, p > 1, r ∈ R and a ∈ L1

loc(0, T ) such
that f satisfies the inequality

∂f

∂t
+ af ≥ C|∇f |p

f r
in ΩT . (1.13)

We first aim to manipulate inequality (1.13) in order to apply Young’s in-
equality in the form

1

p
|Y |p +

1

q
|Z|q ≥ Y · Z (3.1)

for some vectors Y,Z ∈ Rd. To do this, let φ : ΩT → R and W : Ω→ Rd be
continuous functions. By adding the quantity −(∇f) ·W + 1

q |φW |
q to both

sides of (1.13), we have

∂f

∂t
+ af − (∇f) ·W +

1

q
|φW |q ≥ C|∇f |p

f r
− (∇f) ·W +

1

q
|φW |q. (3.2)

If one chooses φ = ( f
r

pC )
1
p , then the right-hand side of (3.2) satisfies

C|∇f |p

f r
− (∇f) ·W +

1

q

∣∣∣∣∣
(
f r

pC

) 1
p

W

∣∣∣∣∣
q

=
pC

f r

[
1

p
|∇f |p − (∇f) ·

(
f r

pC
W

)
+

1

q

∣∣∣∣( f rpC
)
W

∣∣∣∣q] ,
which is nonnegative due to Young’s inequality (3.1) applied to Y = ∇f
and Z =

(
fr

pC

)
W . Combining this with (3.2) then gives

∂f

∂t
+ af − (∇f) ·W +

1

q

∣∣∣∣∣
(
f r

pC

) 1
p

W

∣∣∣∣∣
q

≥ 0.

By letting ξ := 1
q

(
1
pC

)q−1
, we can rewrite the last inequality as

∂f

∂t
+ af − (∇f) ·W + ξf

r
p−1 |W |q ≥ 0. (3.3)

Now, let (x1, t1), (x2, t2) ∈ ΩT be arbitrary for some 0 < t1 < t2 < T ,
and let x(t) be a C1 path in Ω such that x(t1) = x1 and x(t2) = x2, that is,

18
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the path x(t) connects the points x1 and x2. By the chain rule, it follows
that

∂f

∂t
(x(t), t) =

d

dt
f(x(t), t)− (∇f(x(t), t)) · (ẋ(t))

for all t ∈ (t1, t2). Inserting this into (3.3) yields that along the path x(t),
f satisfies

df

dt
+ af − (∇f) · ẋ− (∇f) ·W + ξf

r
p−1 |W |q ≥ 0.

Thus, we choose W = −ẋ and set m+ 1 = r
p−1 to simplify this inequality as

df

dt
+ af ≥ −ξfm+1|ẋ|q. (3.4)

We divide the remainder of the proof into three cases: (i) m = 0, (ii)

m > 0, and (iii) m < 0. Throughout, A(t) :=
∫ t
a(s) ds will denote an

antiderivative of a ∈ L1
loc(0, T ).

We begin by considering the case (i) m = 0. Then, (3.4) becomes

df

dt
+ af ≥ −ξf |ẋ|q.

Since f is positive, we can rewrite this inequality as

1

f

df

dt
+ a ≥ −ξ|ẋ|q. (3.5)

Integrating (3.5) over (t1, t2) yields that

log[f(x2, t2)] +A(t2) + ξ

∫ t2

t1

|ẋ(t)|q dt ≥ log[f(x1, t2)] +A(t1). (3.6)

Next, we optimise the estimate (3.6) among all curves connecting x1

at t1 and x2 at t2. According to Corollary 2.6, the minimum value of the

integral
∫ t2
t1
|ẋ(t)|q dt is given by∫ t2

t1

∣∣∣∣x2 − x1

t2 − t1

∣∣∣∣q dt =
|x2 − x1|q

(t2 − t1)q−1
.

Applying this to (3.6), we get that

log[f(x2, t2)] +A(t2) + ξ
|x2 − x1|q

(t2 − t1)q−1
≥ log[f(x1, t2)] +A(t1).

By exponentiating and rearranging the last inequality, we obtain

f(x2, t2) ≥ eA(t1)

eA(t2)
f(x1, t1)e

− ξ|x2−x1|
q

(t2−t1)q−1 ,

which is, in fact, result (i) in Theorem 1.1.
(ii) m > 0: We multiply (3.4) by the integrating factor eA to obtain

d

dt
(feA) ≥ −ξfm+1eA|ẋ|.

Since f is positive, this can be rewritten as

1

(feA)m+1

d

dt
(feA) ≥ −ξe−mA|ẋ|q.
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Since m > 0, it follows that

−m
(feA)m+1

d

dt
(feA) ≤ mξe−mA|ẋ|q.

By integrating over (t1, t2), we obtain

[f(x2, t2)eA(t2)]−m ≤ [f(x1, t1)eA(t1)]−m +mξ

∫ t2

t1

e−mA|ẋ(t)|q dt. (3.7)

Since A(t) is continuous as the antiderivative of a locally integrable func-

tion, the function w(t) := e−mA(t) is continuous. As well, observe that
w(t) > 0 for all t ∈ [t1, t2]. Hence, by Theorem 2.1, the functional

E(x) :=
1

q

∫ t2

t1

e−mA(t)|ẋ(t)|q dt

has a minimum value of

1

q
|x2 − x1|q

(∫ t2

t1

em(p−1)A(t) dt

)1−q
=

1

q
|x2 − x1|qI1−q,

where we define I :=
∫ t2
t1
em(p−1)A(t) dt. Inserting this information into (3.7),

we have that

[f(x2, t2)eA(t2)]−m ≤ [f(x1, t1)eA(t1)]−m +mξ|x2 − x1|qI1−q

f(x2, t2)eA(t2) ≥
{

[f(x1, t1)eA(t1)]−m +mξ|x2 − x1|qI1−q
}−1

m

f(x2, t2) ≥ eA(t1)

eA(t2)
f(x1, t1)×

(1 +mξ|x2 − x1|qI1−q[f(x1, t1)]memA(t1))
−1
m ,

which proves the claim of Theorem 1.1 in case (ii).
(iii) m < 0: The working in this case follows similarly to that in case

(ii). We obtain that

1

(feA)m+1

d

dt
(feA) ≥ −ξe−mA|ẋ|q.

Using that m < 0 and multiplying both sides of the above inequality by −m
yields that

−m
(feA)m+1

d

dt
(feA) ≥ mξe−mA|ẋ|q.

By integrating and rearranging,

[f(x1, t1)eA(t1)]|m| ≤ [f(x2, t2)eA(t2)]|m| + |m|ξ
∫ t2

t1

e−mA|ẋ(t)|q dt (3.8)

The integral in inequality (3.8) is already known to have minimum value
|x2 − x1|qI1−q. Inserting this into (3.8) gives

[f(x1, t1)eA(t1)]|m| ≤ [f(x2, t2)eA(t2)]|m| + |m| ξ |x2 − x1|qI1−q.

This can be rearranged to give

[f(x2, t2)]|m| ≥

(
eA(t1)

eA(t2)

)|m|(
[f(x1, t1)]|m| − |m| ξ |x2 − x1|qI1−q

e|m|A(t1)

)
.
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Since f is positive, this can be rewritten as

[f(x2, t2)]|m| ≥

(
eA(t1)

eA(t2)

)|m|
[f(x1, t1)]|m|

(
1− |m| ξ |x2 − x1|qI1−q

[f(x1, t1)]|m|e|m|A(t1)

)
.

If the quantity in the large parentheses is nonnegative, then we can take the
|m|th root of both sides to obtain

f(x2, t2) ≥ eA(t1)

eA(t2)
f(x1, t1)

(
1− |m| ξ |x2 − x1|qI1−q

[f(x1, t1)]|m|e|m|A(t1)

) 1
|m|

,

which concludes the proof in the case that f is positive.
Finally, if f is nonnegative and satisfies (1.13) with r = 0, an analogous

argument can be used to demonstrate that f satisfies

d

dt
(feA) ≥ −ξeA|ẋ|q.

Then inequality (1.14) follows as in case (iii) with m replaced by −1, which
completes the proof. �

Although the function f was assumed to be continuously differentiable
in Theorem 1.1, in several applications, f may only satisfy a weaker set
of regularity assumptions. For instance, f may be a weak solution to a
particular parabolic equation. Thus, we state and prove a second version of
this theorem, which is also due to Auchmuty and Bao [5]. In particular, we
will place the following weaker assumptions on the function f :

(F1): f ∈W 1,1
loc (ΩT ) is positive and continuous on ΩT ;

(F2): f is absolutely continuous on every continuously differentiable curve
x : [t1, t2]→ Ω where 0 < t1 < t2 < T ;

(F3): the intersection of the set of points at which f does not have a
classical total derivative and the image of any absolutely continuous
curve in Ω is a set of H1 measure zero.

These assumptions are chosen carefully, so that the calculus results used in
the argument of the proof of Theorem 1.1 remain valid. For more detail
regarding the underlying theory, we direct the reader to Appendix C.

Theorem 3.1 (General Harnack inequalities II, [5]). Let Ω ⊆ Rd be an
open convex set. Suppose a function f defined on ΩT satisfies assumptions
(F1)–(F3) and that the inequality

∂f

∂t
+ af ≥ C|∇f |p

f r
a.e. in ΩT (1.13)

holds for some constants C > 0, p > 1, r ∈ R and for some function
a ∈ L1

loc(0, T ), where ∂f
∂t ∈ L

1
loc(ΩT ) and ∇f ∈ (L1

loc(ΩT ))d are to be under-
stood as a weak partial derivative and a weak gradient respectively. Then con-
clusions (i)–(iii) of Theorem 1.1 hold for all x1, x2 ∈ Ω and 0 < t1 < t2 < T .

Moreover, if f ∈W 1,1
loc (ΩT ) is nonnegative and continuous on ΩT , satis-

fies assumptions (F2) and (F3), and inequality (1.13) holds with r = 0, then
inequality (1.14) holds as before for all x1, x2 ∈ Ω and 0 < t1 < t2 < T .
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Proof. The proof of this result closely follows the arguments presented
in the proof of Theorem 1.1, with the main change that the classical deriva-
tives must now be replaced by weak derivatives. First assuming that f is
positive, we recall that the chain rule was previously used to write

∂f

∂t
(x(t), t) =

d

dt
f(x(t), t)− (∇f(x(t), t)) · (ẋ(t)) (3.9)

for any continuously differentiable path x : [t1, t2]→ Ω connecting the points
(x1, t1), (x2, t2) ∈ ΩT . Since [t1, t2] is a compact subset of (0, T ) and by

assumption ∂f
∂t ∈ L1

loc(0, T ), ∂f
∂xi
∈ L1

loc(0, T ) and dxi
dt ∈ C(t1, t2) for all

i = 1, . . . , d, the quantity (∇f) · ẋ+ ∂f
∂t will satisfy∫ t2

t1

∣∣∣∣(∇f) · ẋ+
∂f

∂t

∣∣∣∣ dt <∞.

Thus, in view of Theorem C.4, this result, along with the assumptions (F2)
and (F3), justifies the validity of the chain rule (3.9). Therefore, we once
again obtain

df

dt
+ af ≥ −ξfm+1|ẋ|q (3.4)

where m+ 1 = r
p−1 .

As before, the proof can be divided into three cases (i) m = 0, (ii) m > 0,
and (iii) m < 0, which each involve integrating the inequality (3.4). As an
example, in case (i) we obtain∫ t2

t1

d

dt
(log f(t)) dt+A(t2) + ξ

∫ t2

t1

|ẋ(t)|q dt ≥ A(t1).

In order to justify applying the fundamental theorem of calculus (Theorem

C.4) to the integral
∫ t2
t1

d
dt(log f(t)) dt, we must explain why the function

log f is absolutely continuous on [t1, t2]. Indeed, the logarithm function is
Lipschitz continuous on any interval [α, β], 0 < α < β < ∞ not containing
zero. Since f was assumed to be absolutely continuous on the image of any
continuously differentiable curve, we conclude by Proposition C.2 that log f
is absolutely continuous on [t1, t2] as the precomposition of an absolutely
continuous function by a Lipschitz continuous function.

Similarly, during the proof in cases (ii) and (iii), we encounter the inte-
gral ∫ t2

t1

d

dt

(
(feA(t))−m

)
dt (3.10)

for m 6= 0. The function A(t) =
∫ t
a(s) ds is absolutely continuous by

Proposition C.3 as the primitive of an integrable function. Since the expo-
nential function is Lipschitz continuous on compact intervals, the composi-
tion eA(t) will be absolutely continuous on [t1, t2]. Then feA(t) is absolutely
continuous as the product of absolutely continuous functions. Finally, using
that feA(t) > 0 on [t1, t2] and that the map s 7→ s−m is Lipschitz continuous
on any interval [α, β], 0 < α < β < ∞ not containing zero, we conclude

that (feA(t))−m is absolutely continuous on [t1, t2]. Thus, the fundamental
theorem of calculus may be applied to the integral (3.10).
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Beyond this step, the remainder of the proof is unchanged, including the
variational arguments used to improve the bound in the inequality.

Lastly, the result when f is nonnegative and r = 0 follows by the same
reasoning. In particular, since feA(t) is absolutely continuous, the funda-
mental theorem of calculus may be used to write∫ t2

t1

d

dt
(feA(t)) dt = f(x(t2), t2)eA(t2) − f(x(t1), t1)eA(t1).

�

Finally, we state and prove a related result, which will be useful in
applications.

Theorem 3.2 (General Harnack inequalities III, [5]). Let Ω be an open
convex set in Rd. Suppose a function f defined on ΩT satisfies (F1)–(F3)
and that the inequality

∂f

∂t
+ af ≤ −C|∇f |

p

f r
a.e. in ΩT (3.11)

holds for some constants C > 0, p > 1, r ∈ R and for some function
a ∈ L1

loc(0, T ), where ∂f
∂t and ∇f are interpreted in a weak sense. Then, for

all x1, x2 ∈ Ω and 0 < t1 < t2 < T :

(i) if r = p− 1, then

f(x2, t2) ≤ eA(t1)

eA(t2)
f(x1, t1)e

ξ|x2−x1|
q

(t2−t1)q−1 ;

(ii) if r > p− 1, then

[f(x2, t2)]−m ≥ emA(t1)

emA(t2)
×(

f(x1, t1)−m −mξ|x2 − x1|qI1−qemA(t1)
)−1
m

(3.12)

and if the quantity inside the large parentheses is nonnegative, then

f(x2, t2) ≤ eA(t1)

eA(t2)
f(x1, t1)×

(1−mξ|x2 − x1|qI1−q[f(x1, t1)]memA(t1))
−1
m ;

(iii) if r < p− 1, then

f(x2, t2) ≤ eA(t1)

eA(t2)
f(x1, t1)

(
1 +

|m| ξ |x2 − x1|qI1−q

[f(x1, t1)]|m|e|m|A(t1)

) 1
|m|

,

where the quantities q, m, ξ, A, and I are defined as in Theorem 1.1.
Moreover, if f is nonnegative on ΩT and satisfies (3.11) with r = 0,

then

[f(x2, t2)]|m| ≤

(
eA(t1)

eA(t2)

)|m|(
[f(x1, t1)]|m| +

|m| ξ |x2 − x1|qI1−q

e|m|A(t1)

)
for all x1, x2 ∈ Ω and 0 < t1 < t2 < T .
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Proof. The proof once again follows from the arguments of Theorems
1.1 and 3.1, so we summarise the main changes. We first add the quantity
(∇f) ·W − 1

q |φW |
q to both sides of the inequality (3.11), where as before,

φ =
(
fr

pC

)1/p
and W is a continuous vector field on Ω. By a similar argument

to that used to prove Theorem 1.1, the right-hand side of the resulting
inequality will be nonpositive a.e. in ΩT . Thus, we obtain

∂f

∂t
+ af(∇f) ·W − ξf

r
p−1 |W |q ≤ 0. (3.13)

As per the previous proofs, let x be a continuously differentiable curve
in Ω defined on [t1, t2] with 0 < t1 < t2 < T . By choosing W = ẋ in (3.13)
we reach

∂f

∂t
+ (∇f) · ẋ+ af ≤ ξfm+1|ẋ|q,

where again we have let m+ 1 = r
p−1 . As justified in the proof of Theorem

3.1, we may apply the chain rule to obtain

df

dt
+ af ≤ ξfm+1|ẋ|q.

The remainder of the proof follows the arguments of Theorem 1.1 with
the inequality signs reversed and −ξ replaced by ξ. In addition, the fun-
damental theorem of calculus may be applied as in the proof of Theorem
3.1. As well, the variational arguments used to improve the bounds in the
integrals still apply.

We also note one difference in the final form of Theorem 3.2 compared
with Theorems 1.1 and 3.1. We see that in the case (ii) m > 0, we may now
only take the −mth root of both sides of inequality (3.12) if the quantity in
large parentheses is nonnegative. This was not an issue in the corresponding
result in Theorems 1.1 and 3.1, since here, both terms in the parentheses
were guaranteed to be positive. However, this does not remain true after
exchanging −ξ and ξ.

Finally, a similar argument applies to prove the result in the case when
f is nonnegative and r = 0.

�



CHAPTER 4

Applications to Nonlinear Evolution Equations

In this chapter, we apply the theorems from Chapter 3 to obtain Harnack
inequality results pertaining to the three significant examples of parabolic
equations introduced in Chapter 1. Throughout, we work on the domain
RdT := Rd × (0, T ).

4.1. The Heat Equation

We now demonstrate the calculation used in the proof of Theorem 1.1 to
verify the Harnack inequality (1.9) derived by Li and Yau [27] for positive
solutions u to the heat equation

ut = ∆u in RdT .

In [27] the gradient estimate

|∇u|2

u2
− ut
u
≤ d

2t
in RdT (1.8)

was derived. By rearranging this inequality, we have that

∂u

∂t
+
d

2t
u ≥ |∇u|

2

u
, (4.1)

which is of the form (1.13) with a(t) = d
2t , C = 1, p = 2, and r = 1. Since

r = p− 1, case (i) of the proof is relevant to this calculation.
As before, let φ : RdT → R and W : Rd → Rd be continuous functions.

Then, we obtain from (4.1) that

∂u

∂t
+
d

2t
u− (∇u) ·W +

1

2
|φW |2 ≥ |∇u|

2

u
− (∇u) ·W +

1

2
|φW |2.

Choosing φ = (u2 )1/2, the right-hand side of the last inequality can be ex-
pressed as

2

u

[
|∇u|2

2
− (∇u) ·

(u
2
W
)

+
1

2

(u
2

)2
|W |2

]
. (4.2)

Young’s inequality (3.1) with p = q = 2, Y = ∇u, and Z = (u2 )W yields
that

|∇u|2

2
+

1

2

(u
2

)2
|W |2 ≥ (∇u) ·

(u
2
W
)
.

Using this result and the nonnegativity of u, we conclude that the quantity
(4.2) is nonnegative and hence

∂u

∂t
+
d

2t
u− (∇u) ·W +

u

4
|W |2 ≥ 0. (4.3)

25
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Now, let (x1, t1), (x2, t2) ∈ RdT be arbitrary and let x(t) be a C1 path in

Rd with x(t1) = x1 and x(t2) = x2. By the chain rule,

d

dt
u(x(t), t) = (∇u) · (ẋ(t)) +

∂u

∂t
.

Inserting this result into (4.3) with W = −ẋ, we have that

du

dt
+
d

2t
u+

u

4
|ẋ|2 ≥ 0

1

u

du

dt
+
d

2t
≥ −1

4
|ẋ|2.

Integrating with respect to t from t1 to t2 produces

log(u(x2, t2)) +
d

2
log

(
t2
t1

)
≥ −1

4

∫ t2

t1

|ẋ(t)|2 dt+ log(u(x1, t1)).

We optimise this inequality by minimising the integral 1
2

∫ t2
t1
|ẋ(t)|2 dt. This

minimisation problem is of the form described in Corollary 2.6 with q = 2.
Therefore, the integral has minimum value

|x2 − x1|2

2(t2 − t1)
.

Hence,

log(u(x2, t2)) +
d

2
log

(
t2
t1

)
≥ −|x2 − x1|2

4(t2 − t1)
+ log(u(x1, t1)).

By exponentiating and rearranging, we obtain the inequality of Li and Yau,

u(x2, t2) ≥ u(x1, t1)

(
t1
t2

)d/2
e
−|x2−x1|

2

4(t2−t1) ,

which holds for all x1, x2 ∈ Rd and 0 < t1 < t2 < T .

4.2. The Porous Medium Equation

Let M > M0(d) := max{0, 1− 2
d} and let u be a positive solution of the

porous medium equation,

∂u

∂t
= ∆(uM ) in RdT .

Considering first the case M > 1, we make the change of dependent variable,

f := ( M
M−1)uM−1.

Then,
∂f

∂t
=
df

du

∂u

∂t
=
df

du
∆(uM ).

By writing

∆(uM ) = MuM−1∆u+M(M − 1)uM−2|∇u|2

= (M − 1)f∆u+ (M − 1)
df

du
|∇u|2
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we have that

∂f

∂t
= (M − 1)f

df

du
∆u+ (M − 1)

(
df

du

)2

|∇u|2

= (M − 1)f
df

du
∆u+ (M − 1)|∇f |2.

Then, using df
du∆u = ∆f − d2f

du2
|∇u|2, it follows that

∂f

∂t
= (M − 1)f∆f + (M − 1)|∇f |2 − (M − 1)f

d2f

du2
|∇u|2.

It is easily verified that

(M − 1)f
d2f

du2
|∇u|2 = (M − 2)M2u2M−4|∇u|2.

Recognising that M2u2M−4|∇u|2 =
(
df
du

)2
|∇u|2 = |∇f |2 and simplifying,

we arrive at the equation satisfied by f , which is

∂f

∂t
= (M − 1)f∆f + |∇f |2. (4.4)

These calculations are justified in a rigorous sense, since positive solutions
of the porous medium equation with positive and continuous initial data are
known to be smooth [34].

To proceed further, we require the following significant and crucial in-
equality proven by Aronson and Bénilan [3].

Lemma 4.1. Let M > M0(d) := max{0, 1− 2
d} and u be a positive solution

of the porous medium equation,

∂u

∂t
= ∆(uM ) in RdT .

Define

f =

{
M
M−1u

M−1 M 6= 1,

log u M = 1.

Then

∆f ≥ −k
t
, k :=

1

(M − 1 + 2
d)
. (4.5)

By multiplying (4.5) by (M − 1)f , we get that

(M − 1)f∆f ≥ −k(M − 1)

t
f.

Then by (4.4),
∂f

∂t
+

(M − 1)k

t
f ≥ |∇f |2. (4.6)

Let µ := (M − 1)k and δ := 1− µ. Inequality (4.6) is of the form (1.13)
with a(t) = µ

t , C = 1, p = 2, r = 0. With the goal of applying Theorem 1.1,
we calculate the remaining quantities appearing in this theorem as

q = 2, m = −1, ξ =
1

4
, A(t) = log(tµ), I =

tδ2 − tδ1
δ

. (4.7)
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Inserting this information into inequality (1.14), we obtain that f satisfies

f(x2, t2) ≥
(
t1
t2

)µ [
f(x1, t1)− δ|x2 − x1|2

4(tδ2 − tδ1)

1

tµ1

]
for all x1, x2 ∈ Rd and 0 < t1 < t2 < T . Finally, writing this in terms of the
original variable u, we arrive at the resulting Harnack inequality,

[u(x2, t2)]M−1 ≥
(
t1
t2

)µ [
[u(x1, t1)]M−1 − M − 1

M

δ|x2 − x1|2

4(tδ2 − tδ1)

1

tµ1

]
. (4.8)

Next, we treat the case M0(d) < M < 1. Our previous definition of
f = M

M−1u
M−1 is no longer appropriate, since the coefficient M

M−1 and hence
also f are now strictly negative. Thus, Theorem 1.1 cannot apply. Instead,
define

g :=
M

1−M
uM−1,

which will be nonnegative. By a similar process to that conducted above, g
satisfies the equation

∂g

∂t
= (1−M)g∆g − |∇g|2 in RdT . (4.9)

Observe that g = −f and recall the inequality of Aronson and Bénilan [3],
∆f ≥ −k

t . Using the homogeneity of the Laplace operator and rearranging
the inequality, we have that

∆g ≤ k

t
, (4.10)

where k is defined as in Lemma 4.1. Multiplying (4.10) by (1 −M)g ≥ 0
and inserting the result into (4.9), we have that

∂g

∂t
+

(M − 1)k

t
g ≤ −|∇g|2.

This inequality is of the form (3.11) with a(t) = (M−1)k
t , C = 1, p = 2, and

r = 0. We find that the remaining quantities required to apply Theorem
3.2 coincide with those given in (4.7) from the case M > 1. Applying this
theorem, we obtain that g satisfies

g(x2, t2) ≤
(
t1
t2

)µ [
g(x1, t1) +

δ|x2 − x1|2

4(tδ2 − tδ1)

1

tµ1

]
for all x1, x2 ∈ Rd and 0 < t1 < t2 < T . Writing this in terms of u, we have

[u(x2, t2)]M−1 ≤
(
t1
t2

)µ [
[u(x1, t1)]M−1 − M − 1

M

δ|x2 − x1|2

4(tδ2 − tδ1)

1

tµ1

]
.

Since both sides of the above inequality will be strictly positive, we may
take their reciprocals in order to obtain a lower bound for [u(x2, t2)]1−M .
We prefer this form of the inequality to better show the analogy with (4.8).
Doing this, we obtain

[u(x2, t2)]1−M ≥
(
t2
t1

)µ [
[u(x1, t1)]M−1 − M − 1

M

δ|x2 − x1|2

4(tδ2 − tδ1)

1

tµ1

]−1

,

for all x1, x2 ∈ Rd and 0 < t1 < t2 < T , which is the result claimed in
Theorem 1.3.
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4.3. The p-diffusion Equation

Let 2d
d+1 < p <∞ and suppose that u is a positive weak solution of the

p-diffusion equation,

∂u

∂t
= div(|∇u|p−2∇u), in RdT .

By this, we mean that u ∈ W 1,∞
loc ((0, T ), L2

loc(Rd)) ∩ L
p
loc((0, T ),W 1,p

loc (Rd))
satisfies

−
∫ T

0

∫
Rd

(
u
∂ϕ

∂t
− |∇u|p−2∇u∇ϕ

)
dx dt = 0 (4.11)

for all test functions ϕ ∈ C∞c (RdT ). We aim to find a Harnack inequality
satisfied by u.

For p > 2, let

f :=
1

γ
uγ , γ :=

p− 2

p− 1
.

Proceeding formally, we have that

∂f

∂t
=
df

dt

∂u

∂t

=
df

du
div(|∇u|p−2∇u)

= uγ(u−1 div(|∇u|p−2∇u)).

Then, we see that

div(|∇f |p−2∇f)

= div

((
df

du

)p−1

|∇u|p−2∇u

)

=

d∑
i=1

∂

∂xi

[(
df

du

)p−1

|∇u|p−2 ∂u

∂xi

]

=
d∑
i=1

(
df

du

)p−1 ∂

∂xi

(
|∇u|p−2 ∂u

∂xi

)
+

d∑
i=1

∂

∂xi

[(
df

du

)p−1
]
|∇u|p−2 ∂u

∂xi

=

(
df

du

)p−1

div(|∇u|p−2∇u) + |∇u|p−2
d∑
i=1

(
∂u

∂xi

)2

(p− 1)

(
df

du

)p−2 d2f

du2

=

(
df

du

)p−1

div(|∇u|p−2∇u) + |∇u|p(p− 1)

(
df

du

)p−2 d2f

du2

= u−1 div(|∇u|p−2∇u)− u−2|∇u|p

Hence, we have

∂f

∂t
= uγ div(|∇f |p−2∇f) + uγ−2|∇u|p.

Noticing that uγ = γf and

|∇f |p = u(γ−1)p|∇u|p = uγ−2|∇u|p,
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we have that the equation satisfied by f is

∂f

∂t
= γf div(|∇f |p−2∇f) + |∇f |p. (4.12)

Now, a weak solution u of the p-diffusion equation only belongs to the
space C1,α(RdT ) in general [13]. A definition of this space may be found in
Chapter 5. Thus, the above computations are merely formal. In order to
study this problem rigorously, we must understand what is meant by a weak
solution of (4.12). To do this, we propose the following definition.

Definition 4.1. Let 1 < p < ∞ and γ ∈ R. Then, we call a function
f ∈ L∞loc(RdT ) ∩ Lploc((0, T ),W 1,p

loc (Rd)) a positive weak solution of

∂f

∂f
= γf div(|∇f |p−2∇f) + |∇f |p in RdT (4.12)

if f > 0 and f satisfies∫ T

0

∫
Rd
f
∂ϕ

∂t
dx dt− γ

∫ T

0

∫
Rd
f |∇f |p−2∇f∇ϕ dx dt

+ (1− γ)

∫ T

0

∫
Rd
|∇f |pϕ dx dt = 0

(4.13)

for all ϕ ∈ C∞c (RdT ).

To demonstrate that this notion of a solution is sensible, we show that
for any positive weak solution u of the p-diffusion equation, f = 1

γu
γ sat-

isfies our definition. To achieve this, we require some properties of weak
solutions to the p-diffusion equation, which we summarise without proof in
the proposition below.

Proposition 4.2. Let u be a positive weak solution of the p-diffusion equa-
tion. Suppose that u0 := u(·, 0) ∈ L1(Rd). Then, the following properties
hold.

(i) (Existence of weak time derivative, [7]): u is weakly differentiable
with respect to time and

∂u

∂t
∈ L2

loc(RdT );

(ii) (Gradient regularity), [2]): One has that

∇u(t) ∈ (L∞(Rd))d

for all t > 0;
(iii) (L1-L∞ estimate, [12]): There exists a constant C > 0 such that

‖u(t)‖∞ ≤ Ct−α1‖u0‖γ11

for all t > 0, where α1 and γ1 are constants depending on d and p.
Thus, u(t) ∈ L∞(Rd) for all t > 0.

First, we note that since u > 0, for every K ⊂⊂ Rd, there exists a con-
stant cK > 0 such that u ≥ cK a.e. on K. Then, since the L1-L∞ estimate
(iii) from Proposition 4.2 implies that u(t) ∈ L∞(Rd) for all t > 0, it follows
that f = 1

γu
γ ∈ L∞loc(RdT ). Similarly, we have that u(t)γ−1 ∈ L∞(Rd) for all
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t > 0. Combining this with ∇u(t) ∈ (L∞(Rd))d from (ii) in Proposition 4.2,
we see that

∇f(t) = u(t)γ−1∇u(t) ∈ (L∞loc(Rd))d ↪→ (Lploc(R
d))d

for all t > 0. Thus, f ∈ L∞loc(RdT ) ∩ Lploc((0, T ),W 1,p
loc (Rd)).

Now, in order to write ∇f = ∇( 1
γu

γ) = uγ−1∇u in the step above,

we required the chain rule. To justify this, we first observe that for any
K ⊂⊂ RdT , there exist constants 0 < cK ≤ c′K <∞ such that cK ≤ u ≤ c′K
a.e. on K. Then, the function G(s) := 1

γ s
γ is continuously differentiable

with bounded derivative G′ on the interval [cK , c
′
K ] for all γ ∈ R. Extending

G to all R in such a way that G(0) = 0, the continuous differentiability of G
is preserved, and the boundedness of G′ is preserved, we may conclude by
Proposition 9.5 in [11] that

∂

∂t
( 1
γu

γ) = uγ−1∂u

∂t
, ∇( 1

γu
γ) = uγ−1∇u.

Next, we fix ϕ ∈ C∞c (RdT ) and insert f = 1
γu

γ into the right-hand side

of (4.13) to obtain∫ T

0

∫
Rd
f
∂ϕ

∂t
dx dt− γ

∫ T

0

∫
Rd
f |∇f |p−2∇f∇ϕ dx dt

+ (1− γ)

∫ T

0

∫
Rd
|∇f |pϕ dx dt

=
1

γ

∫ T

0

∫
Rd
uγ
∂ϕ

∂t
dx dt− γ

∫ T

0

∫
Rd
uγ−1|∇u|p−2∇u∇ϕ dx dt

− (γ − 1)

∫ T

0

∫
Rd
uγ−2|∇u|pϕ dx dt

=
1

γ

∫ T

0

∫
Rd
uγ
∂ϕ

∂t
dx dt−

∫ T

0

∫
Rd
|∇u|p−2∇u∇(uγ−1ϕ) dx dt,

where here we have used the chain rule and the product rule to obtain the
last equality. The chain rule is justified as before. To justify the product rule,
we let ω := suppϕ ⊂⊂ RdT and observe that uγ−1, ϕ ∈ L∞(ω) ∩W 1,p(ω).
Then, by Proposition 9.4 in [11],

∇(uγ−1ϕ) = ∇(uγ−1)ϕ+ uγ−1∇ϕ.
Since all the terms in the above equation are identically zero on RdT \ ω,
the product rule is still valid when we extend the domain of these functions
from ω to RdT .

Using the chain rule and integrating by parts twice, we rewrite the fol-
lowing integral.

1

γ

∫ T

0

∫
Rd
uγ
∂ϕ

∂t
dx dt = −

∫ T

0

∫
Rd

∂u

∂t
uγ−1ϕ dx dt

=

∫ T

0

∫
Rd
u
∂

∂t
(uγ−1ϕ) dx dt.

Here, we have also used the existence of ∂u
∂t in the weak sense (Proposition

4.2, (i)) to write the integral in the intermediate step. Thus, the expression
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obtained from the right-hand side of (4.13) is equal to∫ T

0

∫
Rd
u
∂

∂t
(uγ−1ϕ) dx dt−

∫ T

0

∫
Rd
|∇u|p−2∇u∇(uγ−1ϕ) dx dt. (4.14)

It now remains to show that the expression (4.14) is equal to zero. Set
ψ := uγ−1ϕ and write (4.14) as∫

ω
u
∂ψ

∂t
d(x, t)−

∫
ω
|∇u|p−2∇u∇ψ d(x, t). (4.15)

Since we know from earlier that uγ−1 ∈ L∞loc(RdT ) and ϕ ∈ L∞(RdT ), we have
that ψ = uγ−1ϕ ∈ L∞(ω) ⊆ L1(ω). As well, using the product rule and
chain rule,

∂ψ

∂t
= (γ − 1)uγ−2∂u

∂t
ϕ+ uγ−1∂ϕ

∂t
.

The functions uγ−2 and uγ−1 both belong to L∞loc(RdT ), ∂u
∂t ∈ L2

loc(RdT ) by

(i) in Proposition 4.2, and ϕ, ∂ϕ∂t ∈ L
∞(RdT ). Thus, ∂ψ

∂t ∈ L
2(ω) ⊆ L1(ω).

Similarly,

∇ψ = (γ − 1)uγ−2(∇u)ϕ+ uγ−1∇ϕ.
Repeating the previous argument, instead using that ∇u ∈ L∞loc(RdT ) by

(ii) in Proposition 4.2, we have that ∇ψ ∈ (L∞(ω))d ⊆ (L1(ω))d. Thus,
ψ ∈W 1,1(ω). However, since ψ ≡ 0 on RdT \ ω, we may conclude

ψ ∈W 1,1
0 (RdT ) := C∞c (RdT )

‖·‖W1,1
.

Hence, there exists a sequence (ψn)n≥1 in C∞c (RdT ) such that ψn → ψ in

W 1,1(RdT ). This implies that

∂ψn
∂t
→ ∂ψ

∂t
in L1(RdT ), ∇ψn → ∇ψ in (L1(RdT ))d.

Additionally, since ω ⊆ RdT , these convergences occur in L1(ω) and (L1(ω))d

respectively as well.
Now, since ψn ∈ C∞c (RdT ), the definition (4.11) of u as a weak solution

of the p-diffusion equation implies∫ T

0

∫
Rd
u
∂ψn
∂t

dx dt−
∫ T

0

∫
Rd
|∇u|p−2∇u∇ψn dx dt = 0

for all n ≥ 1. Since ∂ψ
∂t ,∇ψn are both identically zero on RdT \ ω, we may

rewrite this as∫
ω
u
∂ψn
∂t

d(x, t)−
∫
ω
|∇u|p−2∇u∇ψn d(x, t) = 0

for all n ≥ 1. Since u ∈ L∞(ω) and |∇u|p−2∇u ∈ (L∞(ω))d, we may use the
duality L∞(ω) ∼= (L1(ω))′ to write

〈u, ∂ψn
∂t
〉L∞,L1 − 〈|∇u|p−2∇u,∇ψn〉L∞,L1 = 0.

Taking a limit as n→∞ in both sides, we obtain

〈u, ∂ψ
∂t
〉L∞,L1 − 〈|∇u|p−2∇u,∇ψ〉L∞,L1 = 0,
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which is equivalent to (4.15) being equal to zero. This concludes the proof
of our claim that f = 1

γu
γ satisfies Definition 4.1.

Remark 4.1. In existing literature, for example, the work of Esteban and
Vázquez [15, 16], a weak solution of (4.12) has been understood as the limit
as ε→ 0 of a sequence of solutions to the regularised equation

∂f

∂t
= γf div(ϕε(∇f)∇f) + ψε(∇f) (4.16)

where ϕε and ψε are smooth approximations of the nonlinearities in the orig-
inal equation. The solutions of (4.16) enjoy the property of being smooth,
however this property is not in general transferred to the solutions of (4.12)
obtained in the limit. For our purposes, we require a more explicit under-
standing of the regularity properties of the solutions, hence, we introduce
Definition 4.1.

We now return our attention to deriving a Harnack inequality for u.
Following Aronson and Bénilan’s discovery of inequality (4.5) involving so-
lutions of the porous medium equation, Esteban and Vázquez [16] found an
analogous inequality in the case of the p-diffusion equation. This result is
essential to our proof and we state it in the lemma below.

Lemma 4.3. Let 2d
d+1 < p < ∞ and let u be a positive solution of the

p-diffusion equation,

∂u

∂t
= div(|∇u|p−2∇u) in RdT .

Define

f =

{
1
γu

γ p 6= 2,

log u p = 2

where γ := p−2
p−1 . Then, the inequality

div(|∇f |p−2∇f) ≥ −K
t

in D ′(RdT ) (4.17)

holds.

In (4.17), we write D ′(RdT ) in order to emphasise that this inequality
holds in the sense of distributions. By this, we mean that we interpret
T = div(|∇f |p−2∇f) to be a distribution given by

〈T, ϕ〉D ′,D = −
∫ T

0

∫
Rd
|∇f |p−2∇f∇ϕ dx dt

for all test functions ϕ ∈ D(RdT ). For a brief explanation of the fundamental
ideas in the theory of distributions, we refer the reader to Appendix D.

Multiplying (4.17) by γf , gives

γf div(|∇f |p−2∇f) ≥
(
γK

t

)
f in D ′(RdT )

Using this result with the equation (4.12) yields that

∂f

∂t
− |∇f |p ≥ −

(
γK

t

)
f in D ′(RdT )
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or equivalently,

∂f

∂t
+

(
γK

t

)
f ≥ |∇f |p in D ′(RdT ). (4.18)

Since f, ∂f∂t , |∇f |
p ∈ L1

loc(RdT ), the distributions appearing in (4.18) are all
regular distributions. Thus, we may interpret this inequality as holding
pointwise a.e. in RdT .

We observe that (4.18) is of the form (1.13) with C = 1, r = 0, and

a(t) = γK
t . Since u > 0 is Lipschitz continuous [2], f = 1

γu
γ is also Lipschitz

continuous and thus satisfies the assumptions (F1)–(F3) stated in Chapter
3. Since m = r

p−1 = −1, we may apply case (iii) of Theorem 3.1. We

calculate that ξ = 1
q

(
1
p

)q−1
and eA(t) = e

∫ t γk
s ds = tγK . We must also

calculate the value of

I =

∫ t2

t1

em(p−1)A(t) dt =

∫ t2

t1

t−γK(p−1) dt,

which depends on the value of 1 − γK(p − 1) = (2 − p)K + 1 =: δ. In
particular, one has

I =

 t
δ
2 − tδ1
δ

δ 6= 0,

log t2 − log t1 δ = 0.
(4.19)

Inserting this information into (1.14) gives

f(x2, t2) ≥
(
t1
t2

)γK (
f(x1, t1)− ξ|x2 − x1|qI1−qt−γK1

)
.

Finally, using that f = 1
γu

γ , we obtain the following inequality for u,

[u(x2, t2)]γ ≥
(
t1
t2

)γK (
[u(x1, t1)]γ − γξ|x2 − x1|qI1−qt−γK1

)
,

for all x1, x2 ∈ Rd and 0 < t1 < t2 < T .
We now consider the case 2d

d+1 < p < 2. For p in this range, γ = p−2
p−1 < 0

and therefore, f = 1
γu

γ is nonpositive. Thus, we redefine our transformation

by introducing

g = −1

γ
uγ

with γ defined as before. Importantly we have that g ≥ 0 a.e. in RdT . By a
similar derivation used to obtain (4.12), g formally satisfies the equation

∂g

∂t
+ γg div(|∇g|p−2∇g) = −|∇g|p. (4.20)

Similar to our Definition 4.1 of a weak solution of the equation (4.12)
satisfied by f , we understand a weak solution of (4.20) by the following.

Definition 4.2. Let 1 < p < ∞ and γ ∈ R. Then, we call a function
g ∈ L∞loc(RdT ) ∩ Lploc((0, T ),W 1,p

loc (Rd)) a positive weak solution of

∂f

∂g
+ γg div(|∇g|p−2∇g) = −|∇g|p in RdT (4.20)
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if g > 0 and g satisfies

−
∫ T

0

∫
Rd
g
∂ϕ

∂t
dx dt− γ

∫ T

0

∫
Rd
g|∇g|p−2∇g∇ϕ dx dt

+ (1− γ)

∫ T

0

∫
Rd
|∇g|pϕ dx dt = 0

for all ϕ ∈ C∞c (RdT ).

In particular, we note that by a similar argument used to justify Defini-
tion 4.1, the function g = − 1

γu
γ will satisfy Definition 4.2.

Our new change of variables was set up so that g = −f . Applying the
inequality (4.17) of Esteban and Vázquez to f and rearranging, we find that
g satisfies

div(|∇g|p−2∇g) ≤ K

t
in D ′(RdT )

where K := K(p, d) is defined as in Lemma 4.3. Multiplying this result by
γg ≤ 0, we have

γg div(|∇g|p−2∇g) ≥ γK

t
in D ′(RdT )

and by using (4.20), we see that g satisfies

∂g

∂t
+
γK

t
g ≤ −|∇g|p in D ′(RdT ).

This inequality is of the form (3.11) with C = 1, r = 0, and a(t) = γK
t . As

was calculated earlier in the case p > 2, this leads to the quantities q = p
p−1 ,

m = −1, ξ = 1
q (1
p)q−1, eA(t) = tγK , and I given by (4.19). Applying case

(iii) of Theorem 3.2, we have that g satisfies

g(x2, t2) ≤
(
t1
t2

)γK (
g(x1, t1) + ξ|x2 − x1|qI1−qt−γK1

)
for all x1, x2 ∈ Rd and 0 < t1 < t2 < T . Returning to the original variables
using g = − 1

γu
γ , we have that

[u(x2, t2)]γ ≤
(
t1
t2

)γK (
[u(x1, t1)]γ − γξ|x2 − x1|qI1−qt−γK1

)
.

Finally, we may take the reciprocal of both sides of this inequality since both
sides are strictly positive. Hence, we have that g satisfies

[u(x2, t2)]−γ ≥
(
t2
t1

)γK (
[u(x1, t1)]γ − γξ|x2 − x1|qI1−qt−γK1

)−1

for all x1, x2 ∈ Rd and 0 < t1 < t2 < T , which is the result claimed in
Theorem 1.4.

Remark 4.2. The techniques used to derive Harnack inequalities for solu-
tions of the p-diffusion equation were limited to the case 2d

d+1 < p < ∞. In
our proof, this restriction arose from the fact that the result of Esteban and
Vázquez (Lemma 4.3) does not hold for p in the range, 1 < p ≤ 2d

d+1 , which
is sometimes referred to as the subcritical range in literature. However, it is
known from the work of DiBenedetto et al. [14] that in general, a Harnack
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inequality of the form discussed in this monograph does not hold for the
solutions corresponding to p in this subcritical range.



CHAPTER 5

Harnack Inequalities and Hölder Continuity

A standard application of Harnack inequalities is proving that the so-
lutions of a parabolic equation are Hölder continuous jointly in space and
time. As a demonstration, we will explore the proof introduced by Moser
[29] showing that nonnegative weak solutions of the linear parabolic equa-
tion

∂u

∂t
=

n∑
k,l=1

∂

∂xk

(
akl(x, t)

∂u

∂xl

)
in ΩT (1.6)

are locally Hölder continuous in ΩT . As in Chapter 1, the coefficients
akl(x, t) are assumed to be measurable functions with akl = alk that sat-
isfy the uniform ellipticity condition (1.7). In addition, we will make use
of information about the explicit values of the constants appearing in the
proof, which has been contributed recently by Bonforte et al. [9]. However,
we first introduce some key definitions for this chapter.

Definition 5.1 (Uniform and local Hölder continuity, [19]). Let u : Ω→ R
be a function on a bounded set Ω ⊆ Rd. The function u is called uniformly
Hölder continuous in Ω with exponent α ∈ (0, 1) if

sup
x,y∈Ω
x 6=y

|u(x)− u(y)|
|x− y|α

<∞.

As well, we call u locally Hölder continuous in Ω if u is uniformly Hölder
continuous on all compact subsets of Ω.

Moreover, one may define the Hölder space Ck,α(Ω) for all nonnegative
integers k and α ∈ (0, 1) as the space of functions u ∈ Ck(Ω), such that
all kth-order partial derivatives of u are uniformly Hölder continuous on
Ω. Finally, we note that the property of being Hölder continuous implies
continuity in the usual sense.

We require the following domains, which we define for all x0 ∈ Rd, t0 > 0
and R > 0:

DR(x0, t0) := B2R(x0)× (t0 −R2, t0 +R2)

D+
R(x0, t0) := BR/2(x0)× (t0 + 3

4R
2, t0 +R2)

D−R(x0, t0) := BR/2(x0)× (t0 − 3
4R

2, t0 − 1
4R

2)

With these domains, we may state the Harnack inequality of Moser [29] by
the following.

37



5. HARNACK INEQUALITIES AND HÖLDER CONTINUITY 38

Theorem 5.1. Let T > 0, R ∈ (0,
√
T ) and let (x0, t0) ∈ ΩT be such that

DR(x0, t0) ⊂ ΩT . Then, there exists a constant C > 1 such that

sup
D−R(x0,t0)

u ≤ C inf
D+
R(x0,t0)

u (5.1)

for all nonnegative weak solutions u of (1.6).

We note that the constant C in this theorem was shown in [9] to be at
least 4

3 . For more details concerning the explicit value of this constant, we
refer the reader to [9].

Next, we suppose that Ω′ ⊂ Ω ⊆ Rd are bounded domains. In what
will follow, we will also assume for simplicity that Ω,Ω′ are convex domains,
although this assumption is not necessary. Then, define Q := Ω × (T1, T4)
and Q′ := Ω′ × (T2, T3), where 0 < T1 < T2 < T3 < T4 < T . Finally, we
define the parabolic distance between Q and Q′ by

d(Q,Q′) := inf
(x,t)∈Q′

(y,s)∈∂Ω×[T1,T4]∪{T1,T4}×Ω

|x− y|+ |t− s|1/2.

Now, we are ready to state the main result of this section, which we formulate
as in [9].

Theorem 5.2. Suppose u is a bounded solution of (1.6) on Q. Then

sup
(x,t),(y,s)∈Q′

|u(x, t)− u(y, s)|
(|x− y|+ |t− s|1/2)ν

≤ 2

(
256

d(Q,Q′)

)ν
‖u‖L∞(Q) (5.2)

where ν := log4( C
C−1) and C is the constant appearing in Theorem 5.1. In

particular, this implies that u is locally Hölder continuous on Q.

Proof. The proof will occur in two main steps. First, we will compare
the oscillation of u on DR(x0, t0) and D+

R(x0, t0), resulting in an inequality
with a quantitative bound. By the oscillation of u on a domain, we mean
the difference of the supremum and infimum of u on this domain. Then, we
will construct a finite sequence of nested sets, on which we will iterate the
inequality found in the first step.

First, define the quantities

M := sup
DR(x0,t0)

u, m := inf
DR(x0,t0)

u, ω := M −m,

M± := sup
D±R(x0,t0)

u, m± := inf
D±R(x0,t0)

u, ω+ := M+ −m+.

By construction, the functions M − u and u − m will be nonnegative
solutions of (1.6) and will hence satisfy the Harnack inequality (5.1). Thus,
one has that

M −m− = sup
D−R(x0,t0)

(M − u) ≤ C inf
D+
R(x0,t0)

(M − u) = C(M −M+)

M− −m = sup
D−R(x0,t0)

(u−m) ≤ C inf
D+
R(x0,t0)

(u−m) = C(m+ −m)

Adding these two inequalities, we obtain

M −m− +M− −m ≤ C(M −M+ +m+ −m).
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Using that M− −m− ≥ 0, we may write the following inequality in terms
of the oscillations ω, ω+,

ω ≤ C(ω − ω+),

which rearranges to give

ω+ ≤ C − 1

C
ω, (5.3)

concluding the first stage of the proof. For later use, we let ζ := C−1
C .

Next, we let δ := d(Q,Q′)
64 , so that if (x, t) ∈ Q′ and (y, s) is any point in

RdT , then

|x− y|+ |t− s|1/2 ≤ δ
implies (y, s) ∈ Q. In particular, this inequality guarantees that (y, s) cannot
be far away from the set Q′. Now, for any (x, t), (y, s) ∈ Q′, one of the two
following inequalities must hold:

|x− y|+ |t− s|1/2 < δ (5.4)

|x− y|+ |t− s|1/2 ≥ δ (5.5)

Suppose first that (5.4) holds. Then there exists a nonnegative integer k
such that

δ

4k+1
≤ |x− y|+ |t− s|1/2 ≤ δ

4k
. (5.6)

Next, let z := x+y
2 and τ0 := t+s

2 . We note that since we assumed that
Q′ is convex, we have (z, τ0) ∈ Q′. Then, we construct a finite sequence of
nested domains determined by the following values for all 0 ≤ j ≤ k − 1.

Rj+1 := 4Rj , R0 =
δ

4k−1

τj+1 := τj − 14R2
j , τ0 :=

t+ s

2

In particular, DRj (z, τj) ⊂ D+
Rj+1

(z, τj+1) and DR0(z, τ0) ⊂ D+
R1

(z, τ1). In-

deed, we observe that the definition of Rj implies that B2Rj (z) = B(Rj+1)/2.
This, together with

τj+1 + 3
4R

2
j+1 = τj − 14R2

j + 3
4 · 16R2

j = τj − 2R2
j < τj −R2

j

and
τj+1 +R2

j+1 = τj − 14R2
j + 16R2

j = τj + 2R2
j > τj +R2

j

implies that DRj (z, τj) ⊂ D
+
Rj+1

(z, τj+1) for all 0 ≤ j ≤ k−1. As well, using

the right inequality in (5.6),

|x− z| = 1

2
|x− y| ≤ 1

2

(
δ

4k
− |t− s|1/2

)
≤ δ

4k−1
= R0

and

|t− τ0| =
1

2

(
δ

4k
− |x− y|

)2

≤
(

δ

4k−1

)2

and so
τ0 −R2

0 ≤ t ≤ τ0 +R2
0.

By repeating this process with (x, t) replaced by (y, s), we are able to con-
clude (x, t), (y, s) ∈ DR0(z, τ0). Finally, we observe that DRk(z, τk) ⊂ Q due
to the property obtained from the definition of δ.
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In preparation for iterating the inequality obtained in the first stage of
the proof we define the oscillations

ωj := sup
DRj (z,τj)

u− inf
DRj (z,τj)

u,

ω+
j := sup

D+
Rj

(z,τj)

u− inf
D+
Rj

(z,τj)
u.

By the properties of the oscillation of a function, DRj (z, τj) ⊂ D
+
Rj+1

(z, τj+1)

implies that

ωj ≤ ω+
j+1 (5.7)

for all 0 ≤ j ≤ k−1. Finally, by using inequalities (5.3) and (5.7) repeatedly,
we have that

|u(x, t)− u(y, s)| ≤ ω0 ≤ ω+
1 ≤ ζω1 ≤ ζω+

2 ≤ ζ
2ω2 ≤ . . . ≤ ζkωk.

Let ν := log4(1
ζ ), so that ζ = (1

4)ν . Then, we rewrite the last inequality as

|u(x, t)− u(y, s)| ≤
(

1

4

)kν
ωk =

(
4

δ

)ν ( δ

4k+1

)ν
ωk.

Then, applying the left hand inequality in (5.6), it follows that

|u(x, t)− u(y, s)| ≤
(

4

δ

)ν
(|x− y|+ |t− s|1/2)νωk.

Finally, since

ωk ≤ 2 sup
DRk (z,τk)

u ≤ 2 sup
Q
u = 2‖u‖L∞(Q),

we obtain

|u(x, t)− u(y, s)| ≤ 2

(
4

δ

)ν
‖u‖L∞(Q)(|x− y|+ |t− s|1/2)ν ,

which implies (5.2).
Lastly, the result in the case when (5.5) holds follows as a simple conse-

quence of this inequality. Indeed,

|u(x, t)− u(y, s)| ≤ 2‖u‖L∞(Q) = 2‖u‖L∞(Q)
δν

δν

≤ 2‖u‖L∞(Q)
(|x− y|+ |t− s|1/2)ν

δν

≤ 2

(
4

δ

)ν
‖u‖L∞(Q)(|x− y|+ |t− s|1/2)ν

Inequality (5.2) implies that u is uniformly Hölder continuous on convex
subsets Q′ of Q. To extend this result to all compact subsets of Q, we
recall that any compact set in Q can be covered by finitely many open balls.
Since open balls are convex sets, we may apply (5.2) on each ball to obtain
uniform Hölder continuity on compact sets in Q, or equivalently, local Hölder
continuity on Q.

�
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We end this chapter by commenting that similar proofs have been found
to demonstrate the local Hölder continuity of solutions of nonlinear equa-
tions, including the porous medium equation and p-diffusion equation stud-
ied in Chapter 4. However, we note that even though Hölder continuity often
follows as a consequence of a Harnack inequality, the reverse implication is
not true in general. As a counterexample, one may consider solutions of the
p-diffusion equation pertaining to the subcritical range 1 < p ≤ 2d

d+1 . These
solutions are known to be Hölder continuous, but as noted in Remark 4.2,
they do not satisfy a Harnack inequality similar to (5.1) [14].



CHAPTER 6

Final Remarks

Remark 6.1 (A Note on the Assumptions of Theorems 1.1, 3.1, and 3.2). In
each of the general Harnack inequality theorems proven in Chapter 3, it was
always assumed that the constant C appearing in the gradient estimates
(1.13) and (3.11) was strictly positive. Not only would the argument via
Young’s inequality in the proof break down if we allowed C ≤ 0, such an
assumption would not lead to a valid result. We demonstrate this by a
counterexample.

Let 1 < p ≤ 2d
d+1 and let u be a positive solution of the p-diffusion

equation

ut = ∆pu in ΩT ,

where we take Ω to be any open convex set in Rd. An inequality of Bénilan
and Crandall [8] states that

ut ≤ −
1

(p− 2)t
u in ΩT . (6.1)

Letting g := − 1
γu

γ with γ = p−2
p−1 and using a calculation from Section

4.3, we know

∆p(−g) =
∆pu

u
− |∇u|

p

u2
=
ut
u
− |∇u|

p

u2
.

Making use of (6.1), we obtain that

−∆pg ≤ −
1

(p− 2)t
− |∇u|

p

u2
≤ − 1

(p− 2)t
.

This leads to the inequality

∆pg ≥
1

(p− 2)t
. (6.2)

Recall that g satisfies the equation

∂g

∂t
+ γg∆pg = −|∇g|p. (4.20)

Combining this with (6.2) gives the inequality

∂g

∂t
+

γ

(p− 2)t
g ≥ −|∇g|p,

which appears to be of the form (1.13), except here C = −1 < 0. However,
Harnack inequality of the form discussed in Theorems 1.1 or 3.1 cannot
follow from here, since this would also imply a Harnack inequality for u.
This would contradict the result mentioned in Remark 4.2, that a solution
of the p-diffusion equation for p in the subcritical range 1 < p ≤ 2d

d+1 does

not in general satisfy a Harnack inequality of this form [14]. Moreover,
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inequality (6.1) can be considered as being of the form (3.11) with C = 0.
However, a Harnack inequality cannot follow from (6.1) alone for this same
reason.

Remark 6.2 (The Doubly Nonlinear Equation). The porous medium equa-
tion ut = ∆(uM ) and p-diffusion equation ut = ∆pu are both special cases
of a more general equation,

ut = ∆p(u
M ) (6.3)

called the doubly nonlinear equation. In particular, we may recover the
porous medium equation from (6.3) by setting p = 2 and the p-diffusion
equation by setting M = 1.

In the paper of Esteban and Vázquez [16] containing Lemma 4.3, the
authors concluded with a remark that their methods could be extended to
prove an analogous result for nonnegative solutions of (6.3) in RdT with M
and p satisfying M(p − 1) − 1 + p

d > 0. Given the existence of this result,
we believe it possible to derive a Harnack inequality satisfied by solutions
of (6.3) using the methods discussed in this monograph.

6.1. Future Work

We conclude by addressing some potential directions for future work.

Boundary Value Problems

In Chapter 4, we applied the theorems of Auchmuty and Bao [5] to de-
rive Harnack inequalities for solutions of evolution problems posed on the
domain RdT := Rd× (0, T ). Although the results of Auchmuty and Bao hold

when the spatial domain is any open convex set Ω in Rd, we were limited
to choose Ω = Rd in our applications. This is because the derivation of an
appropriate gradient estimate of the form (1.13) or (3.11) depended funda-
mentally on the inequalities of Aronson and Bénilan (Lemma 4.1) and Este-
ban and Vázquez (Lemma 4.3) in the cases of the porous medium equation
and p-diffusion equation respectively. To our knowledge, these estimates are
only known to hold for solutions of their respective problems posed on the
full spatial domain Rd. In order to extend the techniques demonstrated in
this monograph to find Harnack inequalities for solutions of boundary value
problems, one would require a suitable analogue of these results, which is
valid for such solutions.

The p-Dirichlet-to-Neumann Operator

We are interested to apply the techniques developed in this monograph
to discover Harnack inequalities obeyed by solutions of other nonlinear evo-
lution problems. In particular, we would like to investigate whether solutions
of the parabolic problem associated with the p-Dirichlet-to-Neumann oper-
ator satisfy such an inequality. We briefly describe the construction of this
operator below, which may be found in [22] along with a discussion of its
basic properties.

Let Ω be a bounded domain in Rd with a Lipschitz continuous boundary.
Then, it is well known that for 1 < p < ∞ and for all boundary values
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ϕ ∈ W 1−1/p,p(∂Ω), there exists a unique weak solution of the p-Dirichlet
problem {

−∆pu = 0 in Ω,

u = ϕ on ∂Ω.

Denoting this weak solution by Pϕ, we formally define the Dirichlet-to-
Neumann operator Λ associated with the p-Laplace operator ∆p by

Λϕ := |∇Pϕ|p−2∂Pϕ

∂ν

for all ϕ ∈W 1−1/p,p(Ω), where ν is the outward pointing unit normal vector
on the boundary ∂Ω.

With reference to the physical interpretation of the p-Laplace operator
∆p given in Section 1.1, we may understand the Dirichlet-to-Neumann op-
erator Λ as mapping the electric potential on the boundary of a medium Ω
to the outward pointing current through the boundary ∂Ω. This operator
appears in inverse problems associated with the p-Laplace operator and has
applications, for example, to medical imaging. In particular, the operator Λ
can be used to learn about the composition of the medium Ω by detecting
regions of various levels of conductivity. For instance, the location of bones
within a body can be identified due to their lower conductivity compared
with surrounding body tissues.

An important property of the operator Λ is that unlike the other op-
erators discussed in this monograph, it is a nonlocal operator. By this, we
mean that the value of the function Λϕ cannot be determined at a point only
using the values of ϕ in a neighbourhood of that point. Instead, the function
values of Λϕ can only be determined if the value of ϕ is known on its entire
domain. At its core, a Harnack inequality provides a uniform estimate of
a function in a neighbourhood of a point given the value of the function at
just that one point. Hence, it can be understood as a local property of a
function. Thus, we are interested to see whether such an inequality could
hold for functions whose evolution is governed by the Dirichlet-to-Neumann
operator, given its nonlocal properties.



APPENDIX A

The Sobolev Spaces W 1,p(a, b) and W 1,p(Ω)

Here, we define and state some basic properties of the Sobolev spaces
W 1,p(a, b) and W 1,p(Ω). The results in this section will be primarily taken
from Brezis [11]. Accordingly, we adopt the same convention used in [11],

whereby
∫ b
a f will be used to denote the integral

∫ b
a f(x) dµ(x) with respect

to the Lebesgue measure.

A.1. The Sobolev Space W 1,p(a, b)

Let (a, b) be a (possibly unbounded) open interval. For every p ∈ R
with 1 ≤ p ≤ ∞, the Sobolev space W 1,p(a, b) is the set of all functions
u ∈ Lp(a, b) for which there exists another function g ∈ Lp(a, b) such that∫ b

a
uϕ′ = −

∫ b

a
gϕ

for all ϕ ∈ C∞c (a, b). Moreover, we denote the space W 1,2(a, b) by H1(a, b).
For u ∈ W 1,p(a, b), the function u′ := g is called the weak derivative of

u. If a function u has a weak derivative, then this derivative is unique. This
is a consequence of the Fundamental Lemma of Calculus of Variations.

Lemma A.1 (Fundamental Lemma of Calculus of Variations). Let Ω ⊆ Rd
be open and let u ∈ L1

loc(Ω) be such that∫
Ω
uϕ = 0

for all ϕ ∈ C∞c (Ω). Then u = 0 a.e. on Ω.

We now collect some basic properties of the space W 1,p(a, b).

Proposition A.2. The space W 1,p(a, b) satisfies the following:

(i) For 1 ≤ p ≤ ∞, W 1,p(a, b) with the norm

‖u‖W 1,p := ‖u‖p + ‖u′‖p
is a Banach space. Alternatively, one may also define the norm by
‖u‖W 1,p := (‖u‖pp + ‖u′‖pp)1/p and the result still holds;

(ii) W 1,p(a, b) is reflexive for 1 < p <∞;
(iii) W 1,p(a, b) is separable for 1 ≤ p <∞.

It follows from this proposition that H1(a, b) is a separable Hilbert space
with the inner product

(u, v)H1 := (u, v)L2 + (u′, v′)L2 =

∫ b

a
(uv + u′v′)

and induced norm
‖u‖H1 = (‖u‖22 + ‖u′‖22)1/2.
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In general, there is no requirement that members of a Sobolev space be
continuous functions. This is especially true for Sobolev spaces of functions
on higher-dimensional domains, which will be defined later in Appendix
A.2. However, in the one-dimensional case, a function u ∈ W 1,p(a, b) has a
continuous representative ũ, which is described below in Theorem A.3. The
existence of such a continuous representative can be rather useful, especially
for problems where continuity is necessary. In most cases, the function ũ is
identified with u and no distinction is made between them in notation.

Theorem A.3. Suppose u ∈ W 1,p(a, b). Then, there exists a function
ũ ∈ C([a, b]) such that u = ũ a.e. on (a, b) and

ũ(x)− ũ(y) =

∫ x

y
u′(t) dt

for all x, y ∈ [a, b].

The proof of this theorem, as found in [11], makes use of the following
two lemmas.

Lemma A.4. Let f ∈ L1
loc(a, b) be such that∫ b

a
fϕ′ = 0

for all ϕ ∈ C∞c (a, b). Then there exists a constant C such that f = C a.e.
on (a, b).

Lemma A.5. Let g ∈ L1
loc(a, b). For y0 ∈ (a, b) fixed, set

v(x) :=

∫ x

y0

g(t) dt

for all x ∈ (a, b). Then v ∈ C(a, b) and∫ b

a
vϕ′ = −

∫ b

a
gϕ

for all ϕ ∈ C∞c (a, b).

Some familiar rules from classical calculus have analogues for Sobolev
spaces.

Theorem A.6. Let u, v ∈W 1,p(a, b) with 1 ≤ p ≤ ∞. Then uv ∈W 1,p(a, b)
with weak derivative given by

(uv)′ = u′v + uv′.

The following integration by parts formula also holds∫ y

x
u′v = u(x)v(x)− u(y)v(y)−

∫ x

y
uv′ for all x, y ∈ [a, b].

We now define W 1,p
0 (a, b) to be the closure of C∞c (a, b) in W 1,p(a, b)

for 1 ≤ p < ∞. We also denote the space W 1,2
0 (a, b) by H1

0 (a, b). The

spaces W 1,p
0 (a, b) enjoy many of the same fundamental properties as the

spaces W 1,p(a, b), specifically completeness and separability for p ≥ 1 and
reflexivity for p > 1.
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The space W 1,p
0 (a, b) can be understood via the following characterisa-

tion.

Theorem A.7. Let u ∈W 1,p(a, b). Then u ∈W 1,p
0 (a, b) if and only if

u(a) = u(b) = 0.

A.2. The Sobolev Space W 1,p(Ω)

Let Ω ⊆ Rd be an open set and 1 ≤ p ≤ ∞. The Sobolev space W 1,p(Ω)
is defined as the set of functions u ∈ Lp(Ω) for which there exist functions
g1, g2, . . . , gd ∈ Lp(Ω) such that∫

Ω
u
∂ϕ

∂xi
= −

∫
Ω
giϕ

for all ϕ ∈ C∞c (Ω) and for all i = 1, 2, . . . , d. For a function u ∈ W 1,p(Ω),
we write ∂u

∂xi
:= gi and

∇u :=

(
∂u

∂x1
,
∂u

∂x2
, . . . ,

∂u

∂xd

)
∈ (Lp(Ω))d.

Some of the basic properties of W 1,p(Ω) are as follows.

Proposition A.8. The space W 1,p(Ω) satisfies the following:

(i) For 1 ≤ p ≤ ∞, W 1,p(Ω) with the norm

‖u‖W 1,p := ‖u‖p +
d∑
i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥
p

is a Banach space. Alternatively, one may also define the norm by

‖u‖W 1,p := (‖u‖pp +
∑d

i=1 ‖
∂u
∂xi
‖pp)1/p and the result still holds.

(ii) W 1,p(Ω) is reflexive for 1 < p <∞.
(iii) W 1,p(Ω) is separable for 1 ≤ p <∞.

We also define the space W 1,p
0 (Ω) as the closure of the test functions

C∞c (Ω) in W 1,p(Ω).



APPENDIX B

Minimisation of Convex Functionals

Let V be a vector space and E : V → (−∞,+∞]. The functional E is
called convex if for all x, y ∈ V and λ ∈ [0, 1],

E(λx+ (1− λ)y) ≤ λE(x) + (1− λ)E(y).

If the inequality is strict for λ ∈ (0, 1), then E is called strictly convex.
We are interested in solving minimisation problems of the form

min
x∈V

E(x),

where (V, ‖ · ‖V ) is a reflexive Banach space and E : V → (−∞,+∞] is a
convex functional. To this end, we briefly discuss some other assumptions
that must be placed on the functional E to ensure the existence of a min-
imum, namely coercivity and lower semicontinuity. These results shall be
taken from [4].

A functional E : V → (−∞,+∞) is called coercive if

lim
‖x‖V→∞

E(x) = +∞.

Proposition B.1. Let V be a normed vector space and E : V → (−∞,+∞].
Then E is coercive if and only if for every c ∈ R, the sublevel set

Ec := {x ∈ V | E(x) ≤ c}

is bounded.

A functional E : V → (−∞,+∞] is called (sequentially) lower semicon-
tinuous on V if for all x ∈ V and for all sequences (xn)n in V such that
xn → x as n→∞, one has that

E(x) ≤ lim inf
n→∞

E(xn).

Proposition B.2. Let E : V → (−∞,+∞] be a proper convex lower semi-
continuous functional. Then E is weakly lower semicontinuous on V , that
is, if xn ⇀ x in V as n→∞, then

E(x) ≤ lim inf
n→∞

E(xn).

More general minimisation principles often rely on the space V having
some sense of compactness. In our context, V will be a reflexive Banach
space, so this requirement is handled by the following result.

Proposition B.3. Every bounded sequence in a reflexive space V contains
a weakly convergent subsequence.

We are now ready to state the main theorem of this section.
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Theorem B.4. Suppose that (V, ‖ · ‖V ) is a reflexive Banach space and let
E : V → (−∞,+∞) be a proper convex, lower semicontinuous and coercive
functional. Then there exists x0 ∈ V such that

E(x0) = min
x∈V

E(x).

Moreover, if E is strictly convex, then the minimiser x0 is unique.

After establishing the existence of a minimum of a convex functional
E, we would like to determine for which element(s) x ∈ V this minimum
is attained. In order to characterise the minimiser(s) x, we introduce the
subdifferential of E.

For a functional E : V → (−∞,∞], the subdifferential of E at a point
x ∈ V is defined as

∂E(x) := {v′ ∈ V ′ | E(y)− E(x) ≥ 〈v′, y − x〉V ′,V for all y ∈ V },
where V ′ denotes the dual space of V . The following proposition is a simple
consequence of this definition.

Proposition B.5. Let E : V → (−∞,+∞] be a functional. Then a point
x ∈ V minimises E if and only if 0 ∈ ∂E(x).

The subdifferential of a functional E at x may in general contain more
than one point, or even be empty. However, if E is Gâteaux differentiable
at x, then ∂E(x) becomes single valued [33].

Proposition B.6. Let E : (−∞,+∞] be convex and Gâteaux differentiable
at x. Then ∂E(x) is a singleton and ∂E(x) = {E′(x)}, where E′(x) denotes
the Gâteaux derivative of E at x as defined in Chapter 2.

Combining the results of Propositions B.5 and B.6, we have that if E
is convex and Gâteaux differentiable at its minimiser x, then it is forced
that E′(x) = 0. This is analogous to the equivalent statement from classical
calculus.



APPENDIX C

Absolutely Continuous Functions

A crucial assumption in Theorems 3.1 and 3.2 is that the function f
is absolutely continuous. Hence, we summarise some basic properties and
results involving absolutely continuous functions. Unless noted otherwise,
the following may be found in [26].

Let I ⊆ R be an interval. A function u : I → Rd is called absolutely
continuous on I if for every ε > 0 there exists δ > 0 such that

n∑
i=1

|u(bi)− u(ai)| ≤ ε

for every finite number of non-overlapping intervals (ai, bi), i = 1, . . . , n,
such that [ai, bi] ⊆ I and

n∑
i=1

(bi − ai) ≤ δ.

Equivalently, we may replace n by ∞ in this definition. We also note that
by taking n = 1 in this definition, it follows immediately that an absolutely
continuous function u is uniformly continuous on I. However, the converse
is not true in general. Similarly, it is an immediate consequence of the
definition that any Lipschitz continuous function on I is also absolutely
continuous on I.

The next propositions provide some frequently used examples of abso-
lutely continuous functions.

Proposition C.1. Let u, v : I → R be absolutely continuous on a bounded
interval I ⊆ R. Then, u± v and uv are absolutely continuous on I. If v is
positive on I, then u

v is also absolutely continuous on I.

Although the composition of two absolutely continuous functions is not
absolutely continuous in general, we do have the following result.

Proposition C.2. Let I ⊆ R be an interval and u : I → Rd be absolutely
continuous on I. If f : Rd → R is Lipschitz continuous, then f ◦ u is
absolutely continuous on I.

Proposition C.3. Let I ⊂ R be an interval and v : I → Rd be a Lebesgue
integrable function. Fix x0 ∈ I and set

u(x) :=

∫ x

x0

v(t) dt

for all x ∈ I. Then u is absolutely continuous on I with u′(x) = v(x) for
a.e. x ∈ I.
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A main motivation for introducing the notion of absolute continuity is
that it characterises the set of functions for which the fundamental theorem
of calculus holds for Lebesgue integration.

Theorem C.4 (Fundamental Theorem of Calculus, [26]). Suppose a func-
tion u : I → Rd is absolutely continuous on I. Then

(i) u is continuous in I;
(ii) u is differentiable L1-a.e. in I with derivative u′ ∈ L1

loc(I,Rd);
(iii) the fundamental theorem of calculus holds, that is,

u(x) = u(x0) +

∫ x

x0

u′(t) dt

for all x, x0 ∈ I.

Conversely, if a function u : I → Rd satisfies conditions (i) − (iii), then u
is absolutely continuous on I.

The concept of absolute continuity also allows one to state the chain rule
under weaker hypotheses than are required in classical calculus. In order to
describe this result precisely, we first introduce the s-dimensional Hausdorff
measure on Rd as defined in [18]. This measure is particularly useful for
measuring sets of lower dimension in Rd, which have Lebesgue measure zero.

Let A ⊆ Rd, 0 ≤ s <∞, 0 < δ ≤ ∞, and

Hsδ(A) := inf

{ ∞∑
i=1

ωs

(
diamCi

2

)s
| A ⊆

∞⋃
i=1

Ci, diamCi ≤ δ

}
where ωs := πs/2

Γ(1+
s
2 )

is the Lebesgue measure of the unit ball in Rs and

diamCi := sup
x,y∈Ci

|x− y|

is the diameter of the set Ci. Then, define

Hs(A) := lim
δ→0
Hsδ(A) = sup

δ>0
Hsδ(A).

We call Hs the s-dimensional Hausdorff measure on Rd. In the case s = d,
the d-dimensional Hausdorff measure on Rd coincides with the Lebesgue
measure on Rd.

In addition, we say that a set A ⊆ Rd has the null intersection property
if the intersection of S with the image of any absolutely continuous curve
u : I → Rd is a set of H1 measure zero. We now state a version of the chain
rule holding under weaker assumptions, which is originally due to Marcus
and Mizel [28].

Theorem C.5 (Chain Rule). Let u : I → Rd be absolutely continuous and
denote the image of u by Tu := u(I). Let f : Rd → R be a function such
that

(i) the set of points at which f does not have a total derivative has the
null intersection property;

(ii) ∇f(u) · u̇ satisfies∫
I
|∇f(u) · u̇| dt <∞;
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(iii) f is absolutely continuous on all continuously differentiable curves
u : I → Rd.

Then f |Tu is absolutely continuous on Tu. In addition, the composition
g := f ◦ u is absolutely continuous on I and the chain rule holds, that is,

ġ = ∇f(u) · u̇ a.e. in I.

Here, the expression ∇f(u) · u̇ = ∇f(u(t)) · u̇(t) is interpreted to be zero
whenever u̇ = 0, even if f is not differentiable at u(t).

We remark that it was shown in [28] that any locally Lipschitz contin-
uous function f : Rd → R satisfies assumptions (i) and (iii) of Theorem
C.5.



APPENDIX D

Distribution Theory

We briefly summarise the most important notions and examples from
the theory of distributions [1], which we use throughout this monograph.

Let Ω be a domain in Rd. We say that a sequence (ϕn)n≥1 in C∞c (Ω)
converges in the D(Ω) sense to ϕ ∈ C∞c (Ω) if the two following conditions
hold:

(i) there exists K ⊂⊂ Ω such that supp(ϕn −ϕ) ⊂ K for every n ≥ 1;
(ii) limn→∞D

αϕn(x) = Dαϕ(x) uniformly on K, for each multi-index
α ∈ Nd0, where

Dα :=
∂|α|

∂xα1
1 ∂xα2

2 . . . ∂xαdd

and |α| :=
∑d

i=1 αi.

Then, we denote by D(Ω) the set of test functions C∞c (Ω) equipped with the
locally convex topology τ , for which every linear functional T : D(Ω)→ R
is continuous if and only if Tϕn → Tϕ in R whenever ϕn → ϕ in the D(Ω)
sense. The dual space (D(Ω))′ of D(Ω) is called the space of (Schwartz)
distributions on Ω and denoted by D ′(Ω).

Important examples of distributions include locally integrable functions,
since every f ∈ L1

loc(Ω) induces a distribution Tf ∈ D ′(Ω) defined by

〈Tf , ϕ〉D ′,D =

∫
Ω
f(x)ϕ(x) dx

for all ϕ ∈ D(Ω). If there exists f ∈ L1
loc(Ω), which induces a given distri-

bution Tf ∈ D ′(Ω), then Tf is called a regular distribution. Often a regular
distribution Tf and its associated function f are identified with each other
and no distinction is made in notation. We note that not every distribu-
tion is regular. For example, assuming 0 ∈ Ω, there is no locally inte-
grable function which induces the Dirac delta function δ ∈ D ′(Ω) defined by
〈δ, ϕ〉D ′,D := ϕ(0).

Furthermore, given a distribution T ∈ D ′(Ω), we may define the distri-
butional derivatives of T by

〈 ∂
∂xi

T, ϕ〉D ′,D := −〈T, ∂ϕ
∂xi
〉D ′,D

for all i = 1, . . . , d. If T is a regular distribution induced by f ∈ L1
loc(Ω) and

f has a weak derivative g := ∂f
∂xi
∈ L1

loc(Ω), then ∂
∂xi
T is the distribution cor-

responding to g. Using this notion, one may understand the Sobolev space
W 1,1

loc (Ω) as the space of regular distributions f such that the distributional

derivatives ∂f
∂xi

are all regular distributions.
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