N- widths for the Sobolev classes

on the unit sphere

This is a joint work with Gavin, conducted
when I was a student at the University of Syd-
ney. Our main interest is to find the sharp
orders of the Kolmogorov and the linear n-
widths of Sobolev’s classes on the unit sphere
S¢=1. The key tool in our research is the pos-
itive cubature formulas and Marcinkiewicz-
Zygmund (MZ) inequalities on the sphere.
Our work also reveals a close relationship be-
tween positive cubature formulas and MZ in-
equalities on S¢—1.



§1 N-widths on S¢-1

e Notation. Let S?~1 denote the the unit
sphere of the d-dimensional Euclidean space
R4, Given 0 < p < oo, we denote by
LP = LP(S% 1) the usual Lebesgue space
on S4-1. We shall use the notation A ~ B
to mean that there exists an inessential
constant ¢ > 0O, called the constant of
equivalence, such that

c A < B < cA.

e Definitions. For a given subset K of a
normed linear space (X,]||l -||), the Kol-
mogorov n-width d, (K, X) is defined by

dn(K,X) =infsup inf ||z —y|,
Ln xe K yE€ln
with the left-most infimum being taken
over all n-dimensional linear subspaces Ly,
of X,



while the linear n-width 6,(K,X) is de-
fined by

5n (K, X) = inf sup ||z — Tn(z)],
K

n re
with the infimum being taken over all lin-
ear continuous operators 1, on X with

dim(Tn(X)) <n.

Sobolev’s classes. Given r > 0, we de-
note by (—A)" the rth order Laplace -
Beltrami operator on Sd—l, defined in a
distributional sense. For 1 < p < oo, the
Sobolev space W} = W (S471) is defined
by

wpi={rer: (—ay’A(pery,

while the Sobolev class Bg is defined as
the unit ball of W§:

By = {feW,: [(=2)2(f)|lp <1}
As is well known, if 1 < p, ¢ < oo and

r> (d— 1)(% — %)Jr then

d—1
W, C LI(S" ).



Thus, both dn(B!, L?) and 6,(Br,L?) are
well defined whenever r > (d — 1)(% —
)+ Our main interest here is the sharp
asymptotic orders of d,(Br, L?) and 6, (B, LY)
as n — oo for all the pairs 1 < p,q <
co. We will find a(p,q,7) and G(p,q,r)
for which

dn (B, L9) ~ no®ar) s (BT L1) ~ nfPar)

with the constants of equivalence inde-
pendent of n.

In the case d = 2 (i.e. the periodic case)

this problem was completely solved during
1940—1970s, due to the work of several
famous mathematicians, including Kolmogorov,
Tikhomirov, Kashin, Hollig, Maiorov etc.

(We refer to [Pin] and [Te] for more infor-
mation.) We shall restrict our attention

to the higher dimensional case (i.e. d > 3)

for the rest of the talk.



e Previously known results for d > 3. De-
fine

A={(p,q): 1<p<qg<2}
B={(p,q): 1<p<2<q<oo}

C={(pq): 2<p<qg<L oo},
D={(,q): 1<qg<p<oo}.

Clearly, [1,0]2 = AUBUCUD.

T he following results were previously proved
in [BKLT, Kal, Ka2]:

__r _|_l_l
dn(B), LY) ~n d17p a  (p,g) €A

—F1+i—3 (p,q) € A

n - p ) ) E )
(B LY ~ 3" i P

n d-1'pr a  (p,q)eC.



e Our main resuilt.

In the joint work with Gavin and Yong-
sheng Sun, we obtained the sharp orders
of dn(By, L) and o, (B}, L) for all the re-
maining pairs (p,q) € [1, c0]2.

Theorem. Letr > (d—1)(2-1) . Then

p q
_L_|_l_l
d—1 2
dn(B’I“,LQ) ~ n_ . p ) (p7 Q) S B
n d-1, (p,q) e CUD

r 1 11 1
p TIN50 (pg) € B
n d-1, (p,q) € D.



This theorem was proved in [BD] and [BDS].

The main idea in the proof of the above
theorem: Decompose the Sobolev spaces
W), into a countable sum of certain finite
dimensional subspaces of spherical poly-
nomials, and then estimate the n-widths
of the unit balls of those subspaces. The
MZ inequalities and related positive cuba-
ture formulas, discussed in the next sec-
tion, will play a crucial role in this second

step.



32 MZ inequalities and cubature formu-
las

e Notation. Given an integer n > 0, the
restriction to S¢~1 of a polynomial in d-
variables of degree n is called a spherical
polynomial of degree at most n. We de-
note by MY the space of all spherical poly-
nomials of degree at most n on S¢-1. nd
is a linear space with dim N4 ~ nd—1 WwWe

refer to [Wa-Li] for harmonic analysis on
Sd-1,

We denote by d(z,y) the geodesic dis-
tance arccosz-y between z and y on sd-1
by B(xz,r) the spherical cap {y € S¢1
d(z,y) <r}.

A finite subset A of S9! is said to be

e-separable if min d(¢,€) > . A set A
£,6'en
E£¢E
IS maximal e-separable if it is e-separable
and ST = [ ] B(¢,e).
EEN



Given B C S%1 and f € C(S% 1), we de-
fine
osc(f,B) := sup |f(z) — f(y)|.
x,yeB
For simplicity, we also write

osc(f;xz,r) := osc(f, B(x,r)).

Our main results.

Theorem. If0<p < oo, s € (0,m7) and
A C S¢1 js s-separable, then for any f €
Nné and g > 1,

1S (osc(fiw,s) ) < cns)IFIE

weN
where ¢ depends only on d, p and (3.

Of particular interest is the case when s =

% and J is an absolute constant.



Corollary. Assume 0 < p < oo, § € (0,7)
and f € N4,

(i) For any 8 > 1 and § /n-separable subset
A C Si—1

S\d—1
() X max, 1f@P <l

n weN T€EB(w,-
where ¢ depends only on d, p and (.

(ii) There exists a constant g > 0 de-
pending only on the dimension d such that
for any maximal § /n-separable subset \ C
Se=1 with 6 € (0,g] we have

d—1
1A <e(S) X min 1@,

where ¢ depends only on d and p.

Combing (i) and (ii) above, we have, un-
der the condition of (ii),

d—1
1A~ (2) % min s

we z€EB(w, —)

~ (DTS max, @

n we TEB(w, —)



Our next result reveals a close relation-
ship between MZ inequalities and cuba-
ture formulas:

Theorem. Suppose we have a positive
cubature formula of degree 2n on S¢—1:

/Sd—l f)do(y) = Y Mf(w), feng,

weN

d
where Ao > 0. Then for any f € T, 5,

K<Z >‘w|f(w)|p)%, if p e (0,00),

||f||p ~ 4 CweA
max | f(w)|; if p= oo,
L weN

with the constants of equivalence depend-
ing only on p and d.



Conversely, suppose we have the follow-
ing MZ inequalities for some 0 < pg < o0
and large positive integer n:

1
I ~ g 3 IF )P, vF e N,

weN

where A is a finite subset of S%~1 then
there exist positive A\, ~ # for each w €
N\, and a number v € (0,1) independent
of n and N\, for which

/Sd—l fdo(y) = > Af(w), Vfe H%R],

weN

For MZ inequalities and positive cubature
formulas on S%-1, we refer to [BD, BDS,
MNW, NPW1, NPW2]. In one-dimensional
case, we refer to the remarkable paper [MT]
of Mastroianni and Totik.



References.

[BKLT]

[BDS]

[Kal]

[Ka2]

B. Bordin, A. K. Kushpel, J. Levesley
and S. A. Tozoni, Estimates of n-widths
of Sobolev's classes on compact globally
symmetric spaces of rank one, J. Funct.
Anal. 202(2003), no. 2, 307-326.

G. Brown, F. Dai and Sun Yongsheng,
Kolmogorov width of classes of smooth
functions on the sphere S4—1. J. Complex-
ity 18 (2002), no. 4, 1001-1023.

A.I. Kamzolov, The best approximation
of the classes of functions W;‘(Sd_l) by
polynomials in spherical harmonics, Math.
Notes 32(1982), 622—626.

A.I. Kamzolov, On the Kolmogorov diam-
eters of classes of smooth functions on a



sphere, Russian Math. Survey 44(1989),
no. 5, 196—197.

[IMNW] H. N. Mhaskar, F. J. Narcowich and J. D.
Ward, Spherical Marcinkiewicz-Zygmund
inequalities and positive quadrature, Math.
Comp. 70 (2001), 1113—-1130 (Corrigen-
dum: Math. Comp. 71 (2001) 453—
454).

[IMT] G. Mastroianni and V. Totik, Weighted
polynomial inequalities with doubling and
Aso weights, Constr. Approx. 16 (2000),
no. 1, 37—71.

INPW1] . Narcowich; P. Petrushev; J. Ward, De-
composition of Besov and Triebel-Lizorkin
spaces on the sphere, J. Funct. Anal.
238 (2006), no. 2, 530-564.

INPW?2] arcowich, F. J.; Petrushev, P.; Ward, J.
D. Localized tight frames on spheres, SIAM



J. Math. Anal. 38 (2006), no. 2, 574—
594.

[Pin] A. Pinkus, n-widths in approximation the-
ory, Springer, New York, 1985.

[Te] V. N. Temlyakov, Approximation of peri-
odic functions, Nova Science Publishers,
New York, 1993.

[WL] Wang Kunyang and Li Luoging, Harmonic
Analysis and Approximation on the unit
Sphere, Science press, Beijing, 2000.



