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The Brown-Michon-Peyrière 1992 paper

µ : probability measure on [0,1]

In,j : the jth c-adic interval of length cn (0 ≤ j < cn)

In(x) : the c-adic interval of length cn containing x

Eα =







x ∈ [0,1] ; lim
n→∞

logµ
(

In(x)
)

−n log c
= α







τ(q) = lim
n→∞

1

n log c
log

cn−1
∑

j=0

µ
(

In,j

)q

Then dimEα = τ∗(α) = inf
t∈R

τ(t) + α t

if α = −τ ′(q) and if there exists a measure µq such that

C−1µ(I)qc−nτ(q) ≤ µq(I) ≤ C µ(I)qc−nτ(q) for any c-adic interval

of order n
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q

(q)

slope −α

τ∗ τ (q)

−α

O

τq

(α)

q

The Legendre Transform : τ∗(α) = infq∈R τ(q) + αq
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The setting in BMP is more general:

{

{In,j}0≤j<Nn

}

n>0
is a sequence of nested partitions of [0,1) by

semi-open intervals.

Set Cn(q, t) =
∑

j

µ
(

In,j

)q
|In,j|

t

and C(q, t) = lim sup
n→∞

Cn(q, t)

The boundary of the convex set {(q, t) ; C(q, t) = 0} is the graph

of a function τ , which is convex and non-increasing.

Then

always dimEα ≤ τ∗(α),

sometimes dimEα = τ∗(α).
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Hausdorff measures and dimension

Let (X, d) be a metric space.

B(a, r) = {x ∈ X | d(a, x) ≤ r}

For A ⊂ X, t > 0 and δ > 0

Ht
δ(A) = inf

{

∑

rt
j | A ⊂

⋃

B(xj, rj), rj ≤ δ
}

Ht(A) = lim
δ↘0

Ht
δ(A)

dimA = inf{t ≥ 0 | Ht(A) = 0}

= sup{t ≥ 0 | Ht(A) = +∞}
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A general setting

ξ : a positive function defined on the balls of Rn

X(α) =

{

x ; lim
r↘0

log ξ(B(x, r))

log r
= α

}

Task : to compute the dimension of X(α); more precisely, to

express α 7→ dimX(α), as a Legendre transform.

Common choices

– ξ is a measure,

(this is the case considered in [BMP], with boxes instead of

balls)

– ξ
(

B(x, r)
)

is the modulus of continuity at x of a function.
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Indeed, one could think of other choices, e.g.

– a Choquet capacity

– ξ
(

B(x, r
)

=

∫

B(x,r)

∣

∣

∣

∣

∣

f(y) −
1

|B(x, r)|

∫

B(x,r)
f(z) dz

∣

∣

∣

∣

∣

dy

One could also wish to perform simultaneous analysis of several

functions ξ. Expressions such as

∑

ξ1(Bj)
q1ξ2(Bj)

q2 · · · ξk(Bj)
qk|Bj|

t

would be involved.

To be able to consider infinitely many ξ’s at a time, it is better

to write ξ = exp−κ.
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Let (X, d) be a metric space satisfying the Besicovitch covering

property.

B(a, r) = {x ∈ X | d(a, x) ≤ r}

We are given a function κ from X × R+ to E′, the dual of a

separable real Banach space E. We denote by 〈 , 〉 the duality

bracket between E and E′.

We are going to define several quantities and sets, as L. Olsen.
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Multifractal Hausdorff measures

For A ⊂ X, q ∈ E, t ∈ R, and δ > 0, we set

H
q,t

(A)= inf
∑

j

e
−

(

〈q,κ(xj,rj)〉−t log rj

)

,

where the infimum is taken over the families {(xj, rj)} such that

{B(xj, rj)} is a centered δ-cover of A,

H
q,t

(A)= lim
δ↘0

H(A), and Hq,t(A) = sup
F⊂A

H
q,t

(F ).

When κ = 0, these measures reduce to the usual Hausdorff mea-

sures.

If H
q,t

(A) < ∞, then for all s > t, H
q,s

(A) = 0, so there is a

critical index t0 such that H
q,t

(A) = 0 for t > t0 and H
q,s

(A) = ∞

for t < t0.
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Packing measures

For A ⊂ X, q ∈ E, t ∈ R, and δ > 0, we set

P
q,t
δ (A) = sup

∑

j

e
−

(

〈q,κ(xj,rj)〉−t log rj

)

,

where this supremum is taken on collections {(xj, rj)} such that

rj ≤ δ and {B(xj, rj)} is a centered δ-packing of A.

P
q,t

(A) = lim
δ↘0

P
q,t
δ (A),

Pq,t(A) = inf







∑

j

P
q,t

(Fj) | A ⊂
⋃

j

Fj







.
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One defines, as Olsen,

B(q) = inf{t ∈ R | Pq,t(X) = 0},

and

b(q) = inf{t ∈ R | Hq,t(X) = 0}.

We have the inequality b ≤ B.

Proposition 1. The function B is convex.
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Proof. Let p, q ∈ E, t > B(p), and u > B(q).

So, for all n ≥ 1, Pp,t(X) = Pq,u(X) = 0. One can write X =
⋃

j≥1 Aj =
⋃

k≥1 Fk so that
∑

j≥1P
p,t

(Aj) ≤ 1 and
∑

k≥1P
q,u

(Fk) ≤

1. Then, for all α ∈ (0,1)

P
αp+(1−α)q,αt+(1−α)u

(Aj∩Fk) ≤
(

P
p,t

(Aj ∩ Fk)
)α (

P
q,u

(Aj ∩ Fk)
)1−α

Then, due to the Hölder inequality, one has

∑

1≤j,k≤m

P
αp+(1−α)q,αt+(1−α)u

(Aj ∩ Fk)

≤





∑

1≤j,k≤m

P
p,t

(Aj ∩ Fk)





α 



∑

1≤j,k≤m

P
q,u

(Aj ∩ Fk)





1−α

≤



m
∑

1≤j≤m

P
p,t

(Aj)





α 

m
∑

1≤k≤m

P
q,u

(Fk)





1−α

≤ m.
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It results that

Pαp+(1−α)q,αt+(1−α)u





⋃

1≤j,k<m

Aj ∩ Fk



 ≤ m.

Therefore, if ε > 0,

Pαp+(1−α)q,αt+(1−α)u+ε(X) = 0

and

B
(

αp + (1 − α)q
)

≤ αt + (1 − α)u + ε
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Local Hölder exponent – Chernoff-like inequalities

For α ∈ E′ and E ⊂ E, we set

X(α, E) =

{

x | lim sup
r↘0

〈w, κ(x, r)〉

− log r
≤ 〈w, α〉 for all w ∈ E

}

.

X(α, E), simply denoted by X(α), is the set of points x such that

lim
r↘0

κ(x, r)

− log r
= α (in the σ(E, E′) topology).

Proposition 2. DimX(α, {q}) ≤ 〈q, α〉 + B(q).

Corollary 3. For α ∈ E′ and E ⊂ E, one has

DimX(α, E) ≤ inf
q∈E

〈q, α〉 + B(q).

DimX(α) ≤ infq∈E〈q, α〉 + B(q) = B∗(α) (Legendre transform).
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Proof. Let ε > 0, η > 0, q ∈ E, m ≥ 1.

Set Am(ε) =

{

x ∈ X |
〈q,κ(x,r)〉
− log r ≤ 〈q, α〉 + ε for r < 1/m

}

.

Let {B(xj, rj)} be a δ-packing of F ⊂ Am(ε), with δ < 1/m. One

has

∑

j

e

(

〈q,α〉+ε+B(q)+η
)

log rj ≤
∑

j

e
−

(

〈q,κ(xj,rj)〉−log(rj)(B(q)+η)
)

,

so

P
〈q,α〉+ε+B(q)+η

(F ) ≤ P
q,B(q)+η

(F ).

Since Pq,B(q)+η(X) = 0,

inf

{

∑

j P
q,B(q)+η

(Fj) | Xn ⊂
⋃

Fj

}

= 0. It results

P〈q,α〉+ε+B(q)+η
(

Am(ε)
)

= 0.
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Since P〈q,α〉+ε+B(q)+η
(

Am(ε)
)

= 0 for any η > 0,

DimAm(ε) ≤ 〈q, α〉 + ε + B(q). But as
{

x ∈ X | lim sup
r↘0

〈q, κ(x, r)〉

− log r
≤ 〈q, α〉

}

⊂
⋂

p≥1

⋃

m≥1

Am(1/p),

we get the announced inequality.

Remark. If the formula gives a negative dimension, this means

that the corresponding set is empty.

Proposition 4. Set

X∗(α, E) =

{

x | lim inf
r↘0

〈w, κ(x, r)〉

− log r
≤ 〈w, α〉 for all w ∈ E

}

.

Then

dimX∗(α, E) ≤ inf
q∈E

〈q, α〉 + B(q).
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The converse inequality

Notations:

• If |B(q)| < ∞ and v ∈ E, one sets

∂vB(q) = lim
t↘0

B(q + tv) − B(q)

t
;

• B′(q) stands for the derivative (considered as an element of

E′) of B at point q, when it exists.

When B has a partial derivative at point q along the direction v,

one has ∂−vB(q) = −∂vB(q).

When B′(q) exists, ∂vB(q) = 〈v,B′(q)〉.
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Lemma 5. Let v ∈ E and q such that |B(q)| < ∞. Then

Hq,B(q)

{

x | lim inf
r↘0

〈v, κ(x, r)〉

− log r
< −∂vB(q)

}

= 0.

Lemma 6.Let x ∈ X. Consider the function ρx(v) = lim inf
r↘0

〈v, κ(x, r)〉

− log r
and the cone Cx = {v ∈ E | ρx(v) > −∞}. The function ρx is

concave and the cone Cx is convex. If the interior C◦
x of Cx is

nonempty two alternatives may occur: either ρx(v) = +∞ for one

v ∈ C◦
x and then ρx(v) = +∞ for all v ∈ C◦

x, or ρx is continuous

on C◦
x.

Proposition 7. If |B(q)| < ∞ and if the function v 7→ ∂vB(q) is

lower semi-continuous, one has

Hq,B(q)

{

x | lim inf
r↘0

〈v, κ(x, r)〉

− log r
< −∂vB(q) for some v ∈ E

}

= 0.
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Proposition 8. If, for some q, Hq,B(q)(X) > 0, and if the function

v 7→ ∂vB(q) is lower semi-continuous, then

dim

{

x | lim inf
r↘0

〈v, κ(x, r)〉

− log r
+ ∂vB(q) ≥ 0 for all v ∈ E

}

≥

B(q) − ∂qB(q).

Theorem 9. If, for some q, the function B is differentiable with

derivative B′(q) and if Hq,B(q)(X) > 0, then one has b(q) = B(q)

and

dimX
(

−B′(q)
)

= DimX
(

−B′(q)
)

= B∗
(

−B′(q)
)

.
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Proof of Lemma 7

Take λ > ∂vB(q) and t > 0 such that B(q + tv) < B(q) + λt.

Consider the set

F =

{

x ∈ X | lim inf
r↘0

〈v, κ(x, r)〉

− log r
< −λ

}

.

Given δ > 0, for each x ∈ Fn, one can find rx > 0 such that rx < δ

and 〈v, κ(x, rx)〉 − λ log rx ≤ 0.

Let ∅ 6= F ′ ⊂ F . One can find (Besicovitch covering property)

θ sequences (xi,j)j (1 ≤ i ≤ θ) of points of F ′ such that, for

i = 1,2, · · · , θ, the balls
(

B(xi,j, rxi,j)
)

j
form a packing of F ′ and

that these packings altogether form a cover of F ′.
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H
q,B(q)
δ (F ′) ≤

∑

1≤i≤θ

∑

j

e
−

(

〈q,κ(xi,j,rxi,j)〉−B(q) log rxi,j

)

≤
∑

1≤i≤θ

∑

j

e
−

(

〈q+tv,κ(xi,j,rxi,j)〉−(B(q)+λt) log rxi,j

)

≤ θ P
q+tv,B(q)+λt
δ (F ′).

H
q,B(q)

(F ′) ≤ θ P
q+tv,B(q)+λt

(F ′).

If F ′ =
⋃

F ′
j,

H
q,B(q)

(F ′) ≤
∑

H
q,B(q)

(F ′
j) ≤ θ

∑

P
q+tv,B(q)+λt

(F ′
j).

H
q,B(q)

(F ′) ≤ θPq+tv,B(q)+λt(F ′) = 0,

Hq,B(q)(F ) = 0.
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Proof of Proposition 10

Set X =

{

x | lim inf
r↘0

〈v, κ(x, r)〉

− log r
+ ∂vB(q) ≥ 0 for all v ∈ E

}

.

We have Hq,B(q)(X) > 0.

Take ε > 0. For m ≥ 1, consider

Fm,ε =
{

x ∈ X | 〈q, κ(x, r)〉 −
(

∂qB(q) + ε
)

log r > 0 for r ≤ 1/m
}

.

As X =
⋃

m≥1 Fm,ε, there exists m so that Hq,B(q)(Fm,ε) > 0.

Therefore, there exist m and a subset F of Fm,ε such that H
q,B(q)

(F ) >

0.
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If
{

B(xj, rj)
}

is a centered δ-cover of F , with δ < 1/m, one has

∑

e

(

B(q)−∂qB(q)−ε
)

log rj ≥
∑

e
−

(

〈q,κ(xj,rj)〉−B(q) log rj

)

≥ H
q,B(q)
δ (F ),

which gives

HB(q)−∂qB(q)−ε(Fm,ε) ≥ H
B(q)−∂qB(q)−ε

(F ) ≥ H
q,B(q)

(F ) > 0.

So, dimX ≥ dimFm,ε ≥ B(q) − ∂qB(q) − ε.
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Gibbs and Frostman measures

Lemma 10. If there exists a measure µ[q] such that

lim sup
r↘0

µ[q](B(x, r))

e−(〈q,κ(x,r)〉−B(q) log r)
< +∞ for µ[q]-almost every x, then

Hq,B(q)(X) > 0.

We call such a measure a Frostman measure at q.

When there exists a Borel measure µ[q], and two positive numbers

η and C such that, for all x ∈ X, and for all r ≤ η, one has

1

C
≤

µ[q](B(x, r))

e−(〈q,κ(x,r)〉−B(q) log r)
≤ C

we say that µ[q] is a Gibbs measure at q.

In [BMP], it was proven that the multifractal formula holds when

Gibbs measures exist.
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The Λ function

P
q,t
δ (A) = sup







∑

j

e
−

(

〈q,κ(xj,rj)〉−t log rj

)

| packing, rj ≤ δ







P∗q,t
δ (A) = sup







∑

j

rt
je

−〈q,κ(xj,rj)〉 | packing, δ/2 < rj ≤ δ







P
q,t

(A) = lim
δ↘0

P
q,t
δ (A), P∗q,t(A) = lim

δ↘0
P∗q,t

δ (A)

Λ(q) = lim
R→+∞

inf
{

t | P
q,t

(

B(x0, R)
)

= 0
}

≥ B(q)

Alternate definition:

Λ(q) = lim
R→+∞

inf
{

t | P∗q,t
(

B(x0, R)
)

= 0
}

When eκ is a measure and X is the boundary of an homogeneous

tree, one gets the τ function of [BMP].
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Theorems by Besicovitch and Eggleston

Theorem 11 (Besicovitch). Let Bf be the set







x ∈ [0,1] | lim sup
1

n

n
∑

i=1

xj ≤ f







,

where
∑

xj2
−j is the dyadic expansion of x.

Then dimBf = −f log2 f − (1− f) log2(1− f) if 0 ≤ f ≤ 1/2, and

dimBf = 1 if f ≥ 1/2.

Theorem 12 (Eggleston). Let f = (f0, f1, . . . , fc−1) be a proba-

bility vector. Consider the set

Ef = {x ∈ [0,1] | frequency of digit j = fj for j = 0,1, . . . , c − 1}.

Then dimEf = −
∑c−1

j=0 fj logc fj.
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Let c be an integer ≥ 2

and X = {0,1,2, . . . , c − 1}N endowed with the usual ultrametric

distance: two sequences (εn)n≥0 and (αn)n≥0 are distant from

c−k if εk 6= αk and if εj = αj for all j such that 0 ≤ j < k.

If x = (xn)n≥0 ∈ X, set ϕn(x, j) =
1

n
card{0 ≤ k < n | xk = j}

for j = 0,1, . . . , c − 1.

Let p = (p0, p1, · · · , pc−1) be a family of positive numbers. If

x = (xn)n≥0 ∈ X, one sets

κ(x, c−k) = − log
∏

0≤j<k

pxj = −k
∑

0≤j<c

ϕk(x, j) log pj.

and take E′ to be R..

It is easily seen that Λ(q) = logc

∑

0≤j<c

p
q
j.

27



If q ∈ R, one sets, for 0 ≤ j < c,

rj = p
q
j

/

∑

0≤k<c

p
q
k.

A measure µ[q] is defined on X by the formula

µ[q]
(

B(x, c−k)
)

=
k−1
∏

l=0

rxl.

It is easy to check that

µ[q]
(

B(x, c−k)
)

= e
−

(

q κ(x,c−k)+kΛ(q) log c)
)

.

So, µ[q] is a Gibbs measure. This implies Hq,Λ(q)(X) > 0, which

has two consequences: b(q) = B(q) = Λ(q) and the fact that the

multifractal formalism holds for all q.
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By taking c = 2 and p = (1/2,1), one gets the Besicovitch

theorem.

By taking p = (1/c,1, . . . ,1) one gets that the set of numbers of

which the frequency of digit 0 in their base c expansion is f has

−f logc f − (1 − f) logc
1 − f

c − 1

for its Hausdorff dimension.
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Generalization

Let p =
{

(pl,0, pl,1, · · · , pl,c−1)
}

0≤l<ν
be a family of positive num-

bers. If x = (xn)n≥0 ∈ X, one sets

κ(x, c−k) =
(

− log
∏

0≤j<k

pl,xj

)

0≤l<ν

and take E′ to be Rν.

It is easily seen that Λ(q) = logc

(

∑

0≤j<c
∏

0≤l<ν p
ql
l,j

)

.

If q ∈ Rν, one sets, for 1 ≤ j ≤ ν, rj =
∏

0≤l<ν

p
ql
l,j

/

∑

0≤k<c

∏

0≤l<ν

p
ql
l,k.

As previously, one considers the multinomial measure µ[q] defined

on X by the formula µ[q]
(

B(x, c−k)
)

=
k−1
∏

l=0

rxl. As before, this is a

Gibbs measure, which has two consequences: b(q) = B(q) = Λ(q)

and the fact that the multifractal formalism holds for all q.
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Recalling the notation ϕn(x, j) =
1

n
card{0 ≤ k < n | xk = j}

for j = 0,1, . . . , c − 1,

one has κ(x, c−k) =



−k
∑

0≤j<c

ϕk(x, j) log pl,j





0≤l<ν

.

Theorem 13. Let ν < c and f0, f1, . . . , fν−1 be positive numbers

such that
∑

0≤j<ν fj ≤ 1. Then,

dim

{

x ∈ X | lim
n→+∞

ϕn(x, j) = fj for 0 ≤ j < ν

}

= −



1 −
∑

0≤j<ν

fj



 logc
1 −

∑

0≤j<ν fj

c − ν
−

∑

0≤j<ν

fj logc fj.
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Proof. Take pj,j = c−1 and pl,j = 1 if l 6= j. Then

Λ(q) = logc



c − ν +
∑

0≤j<ν

c−qj





and

κ(x, c−k)

k log c
=

(

ϕk(x, j)
)

0≤j<ν
.

Then, it is easy to complete the computation of the Legendre

transform.
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Set Hc(x0, x1, . . . , xc−1) = −
∑c−1

j=0 xj logc xj.

Theorem 14. Suppose ν < c. Let f0, f1, . . . , fν−1 be non-negative

numbers and consider the set

Bf =

{

x ∈ X | lim sup
n→∞

ϕj(x, n) ≤ fj for 0 ≤ j < ν

}

.

Let f∗
0 ≥ f∗

1 ≥ · · · ≥ f∗
ν−1 be the sequence (fj)0≤j<ν rearranged in

decreasing order, and f∗∗
j =

∑

j≤k<ν f∗
k . Then

1. If (c − ν)f∗
0 + f∗∗

0 < 1,

then dimBf = Hc(f∗
0, . . . , f∗

ν−1,
1−f∗∗

0
c−ν ,

1−f∗∗
0

c−ν , . . .).

2. For 0 ≤ k < ν − 1, if (c − ν + k)f∗
k + f∗∗

k ≥ 1 and (c − ν + k +

1)f∗
k+1 + f∗∗

k+1 < 1,

then dimE = Hc(f∗
k , . . . , f∗

ν−1,
1−f∗∗

k+1
c−ν+k+1,

1−f∗∗
k+1

c−ν+k+1, . . .).

3. If f∗
ν−1 ≥ 1

c , then dimE = 1.
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