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The Brown-Michon-Peyriere 1992 paper

1 . probability measure on [0, 1]
I, ; . the jth c-adic interval of length ¢ (0 <j < c")
I,(z) : the c-adic interval of length ¢"™ containing x

Eq = {:UE [0,1] ; lim 09 1(In()) =a}

n—oo  —nlogc

Then dimEy = 77 (o) = tinﬂgT(t) + at
c

if a« = —7'(q) and if there exists a measure u, such that
Clu(Dc (@) < pg(I) < C ("D for any c-adic interval
of order n



slope —

NS
f —

The Legendre Transform: 7*(a) = inf cr7(q) + ag



The setting in BMP is more general:

{{In,j}O§j<Nn}n>o is a sequence of nested partitions of [0,1) by
semi-open intervals.

q
Set Cn(q,t) =Y pu(Ln ;) | In gl
j
and C(q,t) = limsup Cn(q,t)
n—~oo

The boundary of the convex set {(q,t) ; C(q,t) = 0} is the graph
of a function 7, which is convex and non-increasing.

Then

always dim Eq < 7% (),
sometimes dim Eq = 7"(a).



Hausdorff measures and dimension

Let (X,d) be a metric space.

B(a,r) ={r € X |d(a,x) <r}

For ACX,t>0and 6>0

H5(A)
HY(A)

dim A

inf {Zr§ | A C UB(a:j,rj), r; < (5}

lim H5(A)

inf{t >0 | H!(A) =0}
sup{t > 0 | H'(A) = 400}



A general setting

£ . a positive function defined on the balls of R"

X(a) = {:c . lim 109 £(B(z, 7)) = oz}

r\,0 log r
Task: to compute the dimension of X(«); more precisely, to
express a — dim X («), as a Legendre transform.

Common choices

— £ IS 2@ measure,

(this is the case considered in [BMP], with boxes instead of
balls)

— 5(B(w,r)> is the modulus of continuity at = of a function.



Indeed, one could think of other choices, e.g.

— a Choquet capacity

1

fly) — f(z)dz

d
Bz, )| /B 7

~€(B@r) = [,

One could also wish to perform simultaneous analysis of several
functions &. Expressions such as

N €1(B)1ex(B;)2 - - £.(B;) | By

would be involved.

To be able to consider infinitely many &'s at a time, it is better
to write £ = exp —.



Let (X,d) be a metric space satisfying the Besicovitch covering
property.

B(a,r) ={r e X |d(a,z) <r}
We are given a function » from X X Rt to E’ the dual of a
separable real Banach space E. We denote by ( , ) the duality

bracket between E and FE’.

We are going to define several quantities and sets, as L. Olsen.



Multifractal Hausdorff measures

For AC X, q€eE, teR, and 6 > 0, we set

ﬁq,t(A): mfze—(@,%(fcﬂj»—tlog Tj))
J
where the infimum is taken over the families {(z;,7;)} such that
{B(z;,7;)} is a centered J-cover of A,

HY'(A)= lim H(A), and H?'(A) = sup HY'(F).
N0 FCA
When » = 0, these measures reduce to the usual Hausdorff mea-
sures.

If H?'(A) < oo, then for all s > t, H¥*(A) = 0, so there is a
critical index tq such that H%'(A) = 0 for ¢t > tg and HY*(A) = o
for t < tp.



Packing measures

For AC X, q€eE, teR, and 6 > 0, we set

Pg,t(A) — Supze (<Q7%(x]arj)> t1og 7“]>7
J
where this supremum is taken on collections {(z;,7;)} such that

r; <0 and {B(zj,r;)} is a centered é-packing of A.

PH(4) = lim PFH(A),

PHE(A) = inf {ZPq’t(Fj) | A C UFJ} .

J J
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One defines, as Olsen,
B(q) = inf{t € R | P#*(X) = 0},

and

b(q) = inf{t e R | H**(X) = 0}.

We have the inequality b < B.

Proposition 1. The function B is convex.
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Proof. Let p,q € E, t > B(p), and u > B(q).

So, for all n > 1, PPH(X) = P?%(X) = 0. One can write X =
Uj>1A4; = Uk>1 Fi SO that 3 >4 fp’t(Aj) <1and Yp>1 PP(F) <
1. Then, for all « € (0,1)

fap—l-(1—a)qaat+(1—a)u(AjﬂFk) < (fp,t(Aj A Fk))a (fq,U(Aj A Fk))l_a

Then, due to the Holder inequality, one has

v port-a)gett-adu s o gy
1<j,k<m

Q l—«
S( > Pp’t(AjﬂFw) ( > Pq’u(AjﬂFk)>

1<j,k<m 1<j,k<m

o l-«
S(m > Pp’t(Aj)) (m > Pq’u(Fk)) < m.

1<j<m 1<k<m

12



It results that

Pozp—l—(l—oz)q,ozt-l—(l—oz)u ( U Aj N Fk) < m.

1<5,k<m
Therefore, if e > 0,

part(l-a)gat+(l-ajute xy =
and

B<ozp—|—(1—oz)q) <at+ (1 —-—a)u-+e

13



Local Holder exponent — Chernoff-like inequalities

For « € E' and E C E, we set

X(o,E) = {a: | limsup (w, #(,7))
r\0 —logr

X (o, E), simply denoted by X («), is the set of points x such that
(1) = o (in the o(E,E’) topology).

< (w, a) for all w e E}

lim
rN\0 — logr

Proposition 2. Dim X («, {q}) < (q,a) + B(q).
Corollary 3. For a € E' and E C E, one has

(g, ) + B(q).

DimX(a, F) < inf
qe

Dim X (a) <inf cg(g, o) + B(q) = B*(a) (Legendre transform).
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Proof. Let e >0, n>0,qe€E, m>1.

Set An(e) = {.CU e X | (q,_%éag?;» <{q,a)+¢e for r< 1/m}.
Let {B(z;,7;)} be a d-packing of F' C Ap(e), with 6 <1/m. One

J
has

Y

Z e((Q,a>+8+B(Q)+n> log r; < Z e—((q,%(:vj,rj)>—Iog(rj)(B(q)+n)>
J j
SO
f(q,a>+s—|—B(Q)+n(F) S fq,B(q)—l—n(F).

Since P4Bla)+n(X) = 0,
inf {Zj fq’B(qH”(Fj) | Xy, C UFj} = 0. It results

plg,a)+e+B(a)+n (Am(€)> — 0.

15



Since P<q’a>+5+B(Q)+”(Am(e)> = 0 for any n > 0,

Dim Ap(e) < {q,a) + e+ B(qg). But as

{:c € X | limsup (g, (2, 7))
r\,O —logr

IA

<q,a>} c N U Am(1/p),

p>1m>1
we get the announced inequality.

Proposition 4. Set

X*(a, B) = {a; [ lim inf 2748 7)

< A({w,a) for all w € E}
r\,0 —logr

T hen

dim X*(a, E) < inf
qe

(g, ) + B(q).

16



The converse inequality

Notations:

e If IB(q)| < 00 and v € E, one sets

ouB(a) = i BT ) = BW),

e B/(q) stands for the derivative (considered as an element of
E") of B at point ¢, when it exists.

When B has a partial derivative at point g along the direction v,
one has 0_,B(q) = —9,B(q).

When B'(q) exists, 9y,B(q) = (v, B'(q)).

17



Lemma 5. Let v € E and q such that |B(q)| < co. Then

+H3,B(0) {a; [lim inf <”’_%|22’:)> < —(%B(q)} — 0.

Lemma 6. Let x € X. Consider the function p,(v) = liminf (w, (2, 7))

r\,0 —logr
and the cone Cy = {veE|pz(v) >—x}. The function pg is

concave and the cone Cy is convex. If the interior C, of Cy is
nonempty two alternatives may occur: either p;(v) = 400 for one
v € C?Y and then pz(v) = 400 for all v € C2, or pg is continuous
on C3.

Proposition 7. If |B(q)| < oo and if the function v — 0,B(q) is
lower semi-continuous, one has

+2,8(a) {x [lim inf w, %IS;’T» < —0,B(q) for some v € E} — 0.
r — r
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Proposition 8. If, for some ¢, H%B(@)(X) > 0, and if the function
v — 0wB(q) is lower semi-continuous, then

dim {az liminf (w, (7))
r\,0 —logr

+ 0uB(q) > 0 for all v € E} >
B(q) — 9,B(q).

Theorem 9. If, for some q, the function B is differentiable with
derivative B'(q) and if H9B(@)(X) > 0, then one has b(q) = B(q)
and

dim X(—B’(q)) = Dim X(—B’(q)) - B*(—B’(q)).

19



Proof of Lemma 7

Take A > 9y,B(q) and t > 0 such that B(q + tv) < B(q) + Xt.
Consider the set

F= {a; e X [ liminf & Z@& ) —/\}.
r\,0 —logr

Given § > 0, for each x € F,,, one can find r > 0 such that r, < §
and (v, »#(x,rz)) — Alogrg < 0.

Let = F’ ¢ . One can find (Besicovitch covering property)
0 sequences (z;;); (1 < i < 6) of points of F' such that, for
1 =1,2,---,0, the balls (B(a;i,j,rxi’j))j form a packing of F/ and

that these packings altogether form a cover of F'.

20



ﬁg’B(Q)(F/) < Z Ze_<<Qa%($i,j>T:Bi,j)>_B(Q) |Og7°:1:2-’j)
1<i<6 j

< Z Z o <<Q+tv,%(£vz',j,m;i,j)>—(B(q)—l—)\t) log Tf’%,j)

1<:<60
< efg‘l‘thB(Q)‘l‘)\t(F/)'

ﬁ%B(q)(F,) <0 fq—l—tv,B(q)—F)\t(F/).
If F'=UF],
HQ’B(Q)(F’) < Zﬁq,B(q)(Fj{) < Gqu_l_tv’B(q)_l_)‘t(Fj’-).
H2BW (phy < g pattoB@+N gy = g

H2B@)(F) = 0.
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Proof of Proposition 10

Set X = {:c liminf 22 )
r\,0 —logr

+ 0,B(q) > 0 for all v € ]E} .
We have H%B(D(X) > 0.

Take € > 0. For m > 1, consider
Fre= {:13 € X | {(q,»(x,1)) — (GqB(q) + 5) logr > 0 for r < 1/m}.

As X = Ule Fm.e, there exists m so that H%B(CI)(Fm,g) > 0.

Therefore, there exist m and a subset F of F, - such that ﬁq’B(Q)(F) >
0.
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If {B(a:j,rj)} is a centered §-cover of F', with 6 < 1/m, one has

Z e<B(q)—8qB(q)—5) log r; Z o <(q,%(xj,rj)>—B(q) log Tj)

AV,

> HIBD (),
which gives

HB(Q)_an(Q)_g(Fm ) > WB(Q)_an(Q)_a(F) > ﬂan(Q)(F) >~ 0.
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Gibbs and Frostman measures

Lemma 10. If there exists a measure M[Q] such that

lq]
“T\Sgp e—((g,%(z,r))—B(q) logr)

+H4:B(@)(X) > 0.

< 400 for y[Q]—a/most every x, then

We call such a measure a Frostman measure at q.

When there exists a Borel measure M[Q], and two positive numbers
n and C' such that, for all x € X, and for all » <7, one has
1 pld(B(z,r))

oS (@ —Blgioar = ¢

we say that M[Q] is a Gibbs measure at gq.
In [BMP], it was proven that the multifractal formula holds when
Gibbs measures exist.

24



rne /A tunction

)

~"

PL(A) = sup {Z o~ (o) =tlonr;) | ing, rj <9
J J

)

Ve

Py (A) = sup {Z ?";e_@’%(xj’rj» | packing, 6/2 <r;j <4

J J
—q,t e ==t t T R’
PI(A) = Im P54, PHI(A) = lim P (A)
P 1 1 _Q7t P
Ag) = lim inf{t|P"(B(zo, R)) =0} > B(q)
Alternate definition:
—_ ; . *q,t —_
A(q) = lim_inf {t | P***(B(z0, R)) =0}

When e*” is a measure and X is the boundary of an homogeneous
tree, one gets the 7 function of [BMP].
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Theorems by Besicovitch and Eggleston

Theorem 11 (Besicovitch). Let By be the set

{xe[0,1]|limsup1§:wj§f},
n

=1

where ijQ_j is the dyadic expansion of x.

Then dim By = —flogs f — (1 — f)loga(1 - f) ifO< f<1/2, and
dimBy=11if f > 1/2.

Theorem 12 (Eggleston). Let f = (fo, f1,...,fc—1) be a proba-
bility vector. Consider the set

E; = {x € [0,1] | frequency of digit j = f; for j =0,1,...,c— 1}.
Then dimE; = — z;;g filoge. f;.
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Let ¢ be an integer > 2

and X =4{0,1,2,...,¢c— 1}N endowed with the usual ultrametric
distance: two sequences (en)p>0 and (an),>0 are distant from
¢k if e, # oy and if e; = o for all j such that 0 < j < k.

1
If £ = (zn)n>0 € X, set pp(z,j) = —card{0< k< n|z,=j}
- T
for ,=0,1,...,c— 1.

Let p = (po,p1, - ,pc—1) be a family of positive numbers. If
r = (Tn)p>0 € X, One sets
ez, c ) =—1og [[ pr;=-k 3 ¢p(z,5)logp;.
0<j<k 0<j<c

and take E’ to be R..

It is easily seen that A(q) =log. > p?.
0<j<c

27



If ¢ € R, one sets, for 0 < j5 <c,

rj =p§"/ > P

0<k<c

A measure N[Q] is defined on X by the formula

k—1
,u[Q] (B(:U,c_k)) =[] ra-
[=0
It is easy to check that
— %:zc_k C
Wl (Ba, ) = e (a5 +kA@ l0g ) )

So, N[Q] is a Gibbs measure. This implies HqﬁA(Q)(X) > 0, which

has two consequences: b(g) = B(g) = A(g) and the fact that the
multifractal formalism holds for all q.

28



By taking ¢ = 2 and p = (1/2,1), one gets the Besicovitch
theorem.

By taking p =(1/¢,1,...,1) one gets that the set of numbers of
which the frequency of digit O in their base ¢ expansion is f has

~flogef— (1~ f)log, ™

for its Hausdorff dimension.
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Generalization

Let p = {(pl,o,pu, o ,pl7c_1)}0<l<y be a family of positive num-

bers. If x = (zn)y>0 € X, One sets
—k
e = (=108 11 s)ours,
0<j<k =
and take FE’ to be RY.

It is easily seen that A(q) = log. (ZO§j<C H0§l<ypzlj>.

If g€ R”, one sets, for 1 <j<vw, r;= ][] p?lj/ > I pf-
o<i<v | 0<k<cO<l<v

AS previously, one considers the multinomial measure N[Q] defined

k—1

on X by the formula M[Q] (B(:U,c_k)) = [ 7« As before, this is a
1=0

Gibbs measure, which has two consequences: b(q) = B(q) = A(q)

and the fact that the multifractal formalism holds for all q.
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1

Recalling the notation pp(z,j) = —card{0 <k <n |z, =j}
n

for ,=0,1,...,c—1,

one has x(z,c %) = (—k > oz, 5) |ngl,j> .
0<j<ec O<I<v

Theorem 13. Let v < c and fo, f1,.-., fu—1 be positive numbers
such that 20§j<u fj < 1. Then,

dim{x€X| im  pn(x,j) = f; for0§j<1/}

nN—rmaoo

> filog. fj.

0<y<v
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Proof. Take p;; =c 1 and p;; =1 if I 7 j. Then

A(q) = log. (c —v+ ) cqj)

0<y<v

and

s(x,c k) ,

Then, it is easy to complete the computation of the Legendre
transform.

0<j<v
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Set He(xg,21,...,Zp_1) = —ZJ Oac] log. z;.
Theorem 14. Supposev < c. Let fo, f1,..., f,—1 be non-negative
numbers and consider the set

By = {:U c X|limsupy;(z,n) < f; for 0 <j< V}.
n—aoo

Let f§ > f1 >---> f,_1 be the sequence (f;)o<j<, rearranged in
decreasing order, and f;* = > j<k<v f,- Then

1. If(C—V)f6k+f6k*
then dim By = Hc(f§, ..., f;) o )

_17 c—1U 9 cC—1U 9 o oo .

2. FOFO§k<V—1 if(c—u—l—k)f];k—l—f];k*21 and (c—v+k+
D) fqp1 + fida <

: —_ fk 1 fk 1
then dlmE—Hc(f,j,...,fj_l,c V_|_,j_|_1,c V_|_,j_|_1,...).

3. If ff_4 > <, then dimE = 1.
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