Last time: vector fields

Let C be the line segment from (0,0) to (1,2). Consider the vector field $\mathbf{F}(x,y) = \langle 1,2y \rangle$.

What is $\int_C \mathbf{F} \cdot d\mathbf{r}$?

- (a) 9
- (b) 5
- (c) 0
- (d) 20
- (e) I don't know what to do.

(If you're done, sketch the curve and the vector field, and check whether your answer is a reasonable one.)

Computing the integral of a vector field using the unit tangent vector

Consider the circle $C = \{x^2 + y^2 = 1\}$ oriented clockwise. Use the formula

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_C \mathbf{F} \cdot \mathbf{T} ds$$

to find $\int_C \langle y, -x \rangle \cdot d\mathbf{r}$, without choosing a specific parametrization of C.

- (a) π
- (b) $-\pi$
- (c) 2π
- (d) -2π
- (e) I don't know how.

If you're done, choose a parametrization and check your answer by computing the integral using the original definition.

Practice with the fundamental theorem of line integrals

Let *C* be a circle in \mathbb{R}^2 with centre *P* and radius *r*. Let $f(x,y) = 3x^2 + \sin(x+y)$, and let $\mathbf{F} = \nabla f$.

What is $\int_C \mathbf{F} \cdot d\mathbf{r}$?

- (a) Not enough information: I can't do it unless you tell me the starting and ending points of the path.
- (b) Not enough information: I can't do it because you haven't told me the orientation of the circle.
- (c) I think I can do it, but I need more time to compute this integral.
- (d) It's zero.

Is the vector field conservative?

We're going to look at the vector field describing wind velocity. Discuss with your neighbour: is this vector field conservative? https://earth.nullschool.net/ (Remember the options below:)

- (a) Yes, we think it is.
- (b) No, we think it's not.
- (c) We don't agree/we don't know.