
Last time: More on Stokes’ theorem

Consider the complicated surface S drawn on the board. Let
F = ⟨P,Q,R⟩ be a vector field (with continuous first order partial
derivatives) defined on an open set D containing S . What can you
say about

∫︀∫︀
S curlF · dS?

(a) It’s zero, because 𝜕S is empty.

(b) It’s not defined unless F is defined over the entire solid
bounded by the surface S .

(c) We can’t say anything unless we know more about F.

(d) I don’t know.

If you want to come to extra office hours/review session, fill
out the form on the course diary. You can do it right now, if
you’re done!



Physical meaning of div

Recall that for a fluid flow F, the flux of F across an oriented
surface S measures the amount of fluid crossing S (in the direction
of the positive normal vector) in unit time. It is calculated by∫︁∫︁

S
F · dS =

∫︁∫︁
S
F · ndS.

So if S is the boundary of some solid E (oriented to point away
from E ), the Divergence Theorem tells us that

Flux =

∫︁∫︁
𝜕E

F · dS =

∫︁∫︁∫︁
E

divF dV .



Physical meaning of div
So

Flux =

∫︁∫︁∫︁
E

divF dV .

If E is a tiny ball with volume V (E ) centered around a point P, we
approximate the flux as follows:∫︁∫︁∫︁

E
divF dV = V (E ) · (average value of divF on E )

≈ V (E ) · divF(P).

So

∙ Fluid is leaving E when divF(P) > 0 —we say P is a source

∙ Fluid is entering E when divF(P) < 0 —we say P is a sink

∙ If divF(P) = 0, the total amount of fluid leaving E is equal to
the total amount of fluid entering E .



Calculating flux using the divergence
theorem

Given E , S and S ′ as on the board, what is∫︁∫︁
S
F · dS?

(a) 16

(b) 4

(c) -4

(d) -12

(e) I don’t know.



Summary: We wanted to find the integral of F over S . S was
pretty hard, because it has five faces.

But we could put a lid S ′ on S , making it into the boundary of a
solid box E .

∙ So
∫︀∫︀

S F · dS +
∫︀∫︀

S ′ F · dS =
∫︀∫︀

𝜕E F · dS.

∙
∫︀∫︀

S ′ F · dS is pretty easy to compute.

∙
∫︀∫︀

𝜕E F · dS would be hard to compute directly (because it has
six faces!), but it’s the boundary of a solid E , so we have a
trick—the divergence theorem tells us that∫︁∫︁

𝜕E
F · dS =

∫︁∫︁
E

divF dV .



Example

Let S = {(x − x0)2 + (y − y0)2 + (z − z0)2 = r2}, (r > 0). Let
F = ⟨x , y , z⟩. How much fluid flows across S in unit time?

(a) 𝜋r3

(b) 4𝜋r3

(c) 4
3𝜋r

3

(d) The answer depends on (x0, y0, z0) and r .

(e) The calculation is too complicated.



Solution

Let E be the solid ball with boundary S . By the divergence
theorem ∫︁∫︁

S
F · dS =

∫︁∫︁
E

divF dV .

But divF = 1 + 1 + 1 = 3, so this is

3 · (volume of E ) = 4𝜋r3,

(as before for the sphere at the origin).

Key observation here: divF is constant, so it doesn’t matter if we
move the solid around, as long as the volume is constant—we get
the same flux.


