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We explore chaos in the Kuramoto model with multimodal distributions of the natural frequencies of oscilla-
tors and provide a comprehensive description under what conditions chaos occurs. For a natural frequency
distribution withM peaks it is typical that there is a range of coupling strengths such that oscillators belong-
ing to each peak form a synchronized cluster, but the clusters do not globally synchronize. We use collective
coordinates to describe the inter- and intra-cluster dynamics, which reduces the Kuramoto model to 2M − 1
degrees of freedom. We show that under some assumptions, there is a time-scale splitting between the slow
intracluster dynamics and fast intercluster dynamics, which reduces the collective coordinate model to an
M − 1 degree of freedom rescaled Kuramoto model. Therefore, four or more clusters are required to yield the
three degrees of freedom necessary for chaos. However, the time-scale splitting breaks down if a cluster inter-
mittently desynchronizes. We show that this intermittent desynchronization provides a mechanism for chaos
for trimodal natural frequency distributions. In addition, we use collective coordinates to show analytically
that chaos cannot occur for bimodal frequency distributions, even if they are asymmetric and if intermittent
desynchronization occurs.

Synchronization of coupled oscillators occurs in
many natural processes and engineering applica-
tions. The dynamics of the globally synchronized
state is regular and the phases typically rotate
with a constant mean frequency. In the case of
multimodal distributions of natural frequencies of
the oscillators, one can observe more complex dy-
namics including chaos. Under which conditions
the synchronized state may exhibit chaos has not
been fully addressed. Distinct peaks in a multi-
modal natural frequency distribution correspond
to synchronized clusters for a range of coupling
strengths and network parameters. We study the
intercluster and intracluster dynamics using a col-
lective coordinate approach, which reduces the
dimension of the full Kuramoto model to a small
number of active degrees of freedom. We find
necessary conditions for chaos to occur. In partic-
ular, at least four peaks in the natural frequency
distribution are required to produce phase chaos,
and chaos can also occur for three peaks via in-
termittent desynchronization of clusters.

I. INTRODUCTION

Synchronization in networks of coupled oscillators oc-
curs in many natural systems, including the activity of
the brain1,2 and synchronous firefly flashing,3 as well as
many engineering applications, such as power grids,4 and
Josephson junction arrays.5,6
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In typical models of synchronization, the dynamics is
either incoherent, partially synchronized, or fully syn-
chronized. In the case of a unimodal frequency distribu-
tion, the dynamics transitions upon increasing the cou-
pling strength from the incoherent state at low coupling
strength, to a partially synchronized state where a col-
lection of oscillators synchronize (those with native fre-
quency closest to the mean frequency), to the fully syn-
chronized state at high coupling strengths. For multi-
modal frequency distributions, however, several synchro-
nized clusters may emerge in the partially-synchronized
regime. That is, there are clusters of oscillators that re-
main synchronized within themselves, but the oscillators
do not form a single synchronized cluster. These clus-
ters may have complex interactions, both inter-cluster
and intra-cluster, producing complex dynamics, includ-
ing chaos.

Chaos in coupled oscillator networks has been previ-
ously studied. For the Kuramoto model,7–14 which is the
model focused on here, chaos has been observed in the in-
coherent state, termed phase chaos,15–17 provided there
are at least four oscillators. This type of phase chaos
occurs at the microscopic level and is associated with
the chaotic dynamics of individual phase oscillators. For
such microscopic phase chaos, the Lyapunov exponent
was found to scale inversely proportionally to the num-
ber of oscillators.18 In particular, this implies that in the
thermodynamic limit of infinitely many oscillators the
Lyapunov exponent is zero, i.e., no chaos. Here we focus
on collective chaotic behavior of synchronized subpop-
ulations of phase oscillators. Such collective chaos has
been studied for systems with symmetric bimodal natural
frequency distributions which were subjected to a time-
periodic coupling strength,19 or for different inter- and
intra-cluster coupling strengths as well as a phase lag.20
However, for the classical Kuramoto model, it has been
shown that in the thermodynamic limit with bimodal
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natural frequency distributions chaos is impossible.19 For
trimodal frequency distributions, which yield three syn-
chronized subpopulations, chaos has been observed for
superposed Lorentzian natural frequency distributions,
but only in the partially synchronized state, which in-
volves microscopic chaos of incoherent oscillators.21

Here we present and analytically study generic situa-
tions of collective chaos in which the dynamics of syn-
chronized subpopulations of coupled oscillators, termed
clusters, can be chaotic. We distinguish between two
types of chaotic dynamics, one akin to phase chaos and
the other due to intermittent desynchronization. Here
we refer to collective phase chaos when each of the syn-
chronized clusters preserves their shape while the phases
of the clusters (phase differences) show chaotic behavior.
In this case, the possibility of chaos is determined by the
number of synchronized clusters, which determines the
number of active degrees of freedom. We shall see that
to obtain phase chaos at least four synchronized clusters
are necessary. This is analogous to needing at least four
oscillators to generate microscopic phase chaos in the in-
coherent state of the Kuramoto model.15–17

A different type of chaos is observed when clusters in-
termittently desynchronize through their mutual interac-
tions. In this case, as we will show, chaos may occur even
for trimodal natural frequency distributions.

The key underlying reason for both types of chaos is
that chaos can only occur when there are at least three
degrees of freedom. Each synchronized cluster is char-
acterized by a time-varying shape and a mean phase
variable, which are the active degrees of freedom, and
the interaction of these collective coordinates can lead
to chaos. We reduce the full Kuramoto model to the
evolution equations for these collective coordinates.22–24
We demonstrate a time-scale splitting between the (slow)
shape and the (fast) phase variables, that enables fur-
ther reduction. Under this reduction, the full Kuramoto
model with M clusters reduces to a renormalized Ku-
ramoto model with M oscillators, which has M − 1 de-
grees of freedom, implying that M ≥ 4 is necessary for
phase chaos to occur. However, when a cluster intermit-
tently desynchronizes, the time-scale splitting is invalid,
yielding additional active degrees of freedom, and the po-
tential for chaos with three clusters.

The paper is organized as follows; in §II we describe
the Kuramoto model. Then in §III we define the collec-
tive coordinate ansatz and derive the evolution equations
for the collective coordinates. In §IV we show that phase
chaos occurs for four clusters, and that there is quantita-
tive agreement between the leading Lyapunov exponent
for the full Kuramoto model and the collective coordi-
nate reduction. In §V we show that chaos can occur
for three clusters via intermittent desynchronization of a
cluster, and provide a detailed description of this mecha-
nism. Again, there is quantitative agreement between the
leading Lyapunov exponent for the full Kuramoto model
and the collective coordinate reduction. In §VI we show
that chaos is not possible for two clusters in the thermo-

dynamic limit of infinitely many oscillators. Lastly, in
§VII we summarize our results and provide an outlook
for future studies.

II. THE MODEL

The Kuramoto model has been widely used to model
networks of coupled oscillators,7–14 in large part due to
its analytical tractability. For a network of N coupled
oscillators, each with phase φi, the dynamics are given
by

φ̇i = ωi +
K

N

N∑
j=1

Aij sin(φj − φi), (1)

where the natural frequencies, ωi, have distribution g(ω),
A is the adjacency matrix of the network, i.e., Aij = 1 if
nodes i and j are connected, otherwise Aij = 0, and K is
the coupling strength. We shall later restrict our study
of collective chaos to an all-to-all coupling topology with
Aij = 1 − δij . For the exposition of the model reduc-
tion technique presented in §III, however, we choose to
present the Kuramoto model (1) with a general topology.
It is widely known that if the coupling strength is suffi-
ciently large, then the oscillators spontaneously synchro-
nize, all oscillating at the same frequency, even though
their natural frequencies are different. Furthermore, be-
low the global synchronization threshold, synchronized
clusters can emerge due to either clusters in the network
topology, or distinct modes in the natural frequency dis-
tribution, or both. Here we primarily consider all-to-all
coupling (Aij = 1− δij), unless otherwise stated.

We consider multimodal natural frequency distribu-
tions g(ω) of the form

g(ω) =

M∑
m=1

γmgm(ω; Ωm, σ
2
m), (2)

such that each gm is a normal distribution with mean
Ωm and variance σ2

m, and the weights 0 ≤ γm ≤ 1 satisfy∑
γm = 1. In particular, we primarily consider the case

of well-separated peaks, such as the the example shown in
Fig. 1. The distribution (2) hasM peaks, which typically
correspond to M clusters of synchronized oscillators for
a range of coupling strengths. Note that the Kuramoto
model is invariant under uniform phase shifts. Therefore,
we may assume without loss of generality that the mean
natural frequency is zero, i.e.,

∑
m γmΩm = 0.

A characterization of the state of the system is the
instantaneous order parameter r(t) which is defined as

r(t)eiψ(t) =
1

N

N∑
j=1

eiφj(t),

and describes the mean position of all oscillators in the
complex plane. The long term dynamics can be charac-
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FIG. 1. A multimodal natural frequency distribution of the
form (2) with four peaks and equal weights, γm = 1/4. The
means Ωm are equally spaced between −1 and 1 and the stan-
dard deviations are all equal with σm = 0.05.
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FIG. 2. Time averaged order parameter r̄ for the multimodal
natural frequency distribution shown in Fig. 1 over a range
of coupling strengths K for the Kuramoto model (1) with
N = 100 oscillators.

terized by the time-averaged order parameter

r̄ =
1

T

∫ t0+T

t0

r(t)dt,

which is independent of t0 and T for sufficiently long
transient times t0 and averaging times T . If r̄ is close to
1, the oscillators are globally synchronized. If r̄ ≈ 1/

√
N ,

the oscillators are in the incoherent state. In addition, for
cases with multiple synchronized clusters, we can define
analogous instantaneous and time-averaged order param-
eters for each cluster. For example, the instantaneous
order parameter for the m-th cluster is

rm(t)eiψm(t) =
1

Nm

∑
j∈Cm

eiφj(t),

where Cm is the set of oscillators in cluster m, and Nm is
the number of oscillators in Cm.

Consider, for example, the frequency distribution
shown in Fig. 1, with four peaks. The modes Ωm
are equally spaced between −1 and 1, and the stan-
dard deviations are all the same with σm = 0.05. For
N = 100 equiprobably25 drawn oscillators from this dis-
tribution, the time-averaged order parameter, r̄, is shown

for 0 < K < 2.5 in Fig. 2. For K < 0.3, the oscilla-
tors are incoherent, and r̄ is of the order 1/

√
N . For

K > 1.6, the oscillators globally synchronize, forming a
single cluster, and r̄ ≈ 1. For intermediate values, i.e.,
0.3 < K < 1.6, the oscillators corresponding to each
peak in g(ω) synchronize to form a cluster, but they do
not globally synchronize, resulting in r̄ ≈ 0.45. In this
study we are mostly interested in these intermediate val-
ues, where there can be complex interactions within and
in between clusters. Note that r̄ exhibits unusual non-
monotonic behavior around 1 < K < 1.25, which, as we
shall see, is the region where chaotic dynamics occurs.

Synchronization of clusters is shown by the snapshots
of oscillators in the complex plane in Fig. 3 for four differ-
ent values ofK. The oscillators of each color (correspond-
ing to the same colored peak in Fig. 1) are synchronized,
but there are clearly four distinct clusters. These clusters
interact, both with themselves and with the other clus-
ters. For K = 0.9, the dynamics is quasiperiodic, demon-
strated by the trajectory of the complex order parame-
ter r(t)eiψ(t) shown as the blue curve inside the circle in
Fig. 3(a) (Multimedia view). Increasing K, at a criti-
cal coupling strength Kc the dynamics becomes chaotic.
For example, with K = 1.2, shown in Fig. 3(b) (Mul-
timedia view), the dynamics is chaotic (which is con-
firmed by computing the leading Lyapunov exponent,
λ = 6.18 × 10−2). The dynamics then becomes regu-
lar again, for example with K = 1.22 and K = 1.3 the
trajectory of the complex order parameter is periodic (cf.
Fig. 3(c) (Multimedia view) and Fig. 3(d) (Multimedia
view), respectively). For K = 1.3, the trajectory is con-
fined to a straight line due to the existence of an attract-
ing symmetric manifold. Four cluster cases such as these
will be discussed in more detail in §IV.

III. MODEL REDUCTION VIA COLLECTIVE
COORDINATES

Since we are primarily interested in the macroscopic
inter- and intracluster dynamics, we use model reduc-
tion to reduce the high dimensional full Kuramoto
model (1) to a small number of active degrees of free-
dom. One frequently used method is the Ott-Antonsen
approach,26 which assumes infinitely many oscillators
and a Lorentzian (or at least rational) natural frequency
distribution. Recently, an alternative approach for model
reduction has been proposed, termed collective coordi-
nate reduction,22–24 which can be readily applied to finite
networks of coupled oscillators, and more general natural
frequency distributions.

The idea of the collective coordinate reduction22–24 is
to express the N -dimensional phase vector φ as a linear
combination of a small number of dynamically relevant
modes. Intuitively, the reduction is motivated by the
fact that synchronization is characterized by oscillators
forming a collective entity which is described by its mean
phase and its shape. The time-varying coefficients of the
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FIG. 3. Snapshots of oscillators in the complex plane, and
the trajectories of the complex order parameter r(t)eiψ(t) af-
ter a transient integration time for the Kuramoto model (1)
with N = 100 oscillators with natural frequency distribu-
tion shown in Fig. 1. (a) For K = 0.9 the dynamics are
quasiperiodic. (Multimedia view) (b) For K = 1.2 the dy-
namics are chaotic (computation of the Lyapunov exponent
confirms this). (Multimedia view) (c) For K = 1.22 the dy-
namics are periodic. (Multimedia view) (d) For K = 1.3 the
dynamics are periodic, and the complex order parameter is
confined to a symmetric invariant manifold (a straight line).
(Multimedia view)

linear combination are coined collective coordinates, and
encode the temporal evolution of the modes. Identifica-
tion of the relevant modes is situation-dependent. In the
case of a single synchronized cluster of oscillators, where
the global phase is not relevant, a single mode Φ describ-
ing the shape suffices, and we approximate φ(t) ≈ α(t)Φ.
When multiple clusters interact, phase variables need to
be accounted for. We will denote the shape modes by
Φ(m) and the phase modes by 1Nm (the vector consist-
ing of Nm one’s, where Nm is the size of the m-th cluster
Cm), with associated collective coordinates αm and fm,
respectively, such that

φ(t) ≈
M∑
m=1

αm(t)Φ(m) + fm(t)1Nm , (3)

where typically 2M � N .
The method of collective coordinates22–24 is in effect a

Galerkin approximation, where the residual error made
by the ansatz (3) is minimized and the minimization leads
to a system of evolution equations for the collective co-
ordinates αm(t) and fm(t).

The choice of basis functions is crucial. The shape
mode Φ(m) can be chosen via linearization of the Ku-

ramoto model (1), restricted to oscillators in Cm. For
sufficiently large coupling strengths K, Φ(m) will solve
the Kuramoto model to good accuracy (ignoring the in-
teractions with any oscillators outside of Cm).

We follow the methods outlined previously22–24 and
derive a collective coordinate reduction for multimodal
natural frequency distributions of the form (2). We first
present the reduction for a single synchronized cluster of
oscillators, and then present results for several interacting
clusters.

A. Single cluster ansatz

Linearizing the full Kuramoto model (1) around φi −
φj = 0 for all i, j results in

φ̇ = ω − K

N
Lφ, (4)

where L = D − A is the graph Laplacian, and D is the
diagonal degree matrix, i.e., Dii is the degree of node
i. Note that L has a nontrivial kernel with L1N = 0,
associated with the invariance to a constant phase shift
of all oscillators. Global synchronization corresponds to
all oscillators rotating at the mean natural frequency Ω =
(1/N)

∑
i ωi. Substituting φ̇ = Ω1N into (4) we obtain

the global synchronization mode

φ̂ =
N

K
L+ω, (5)

where L+ denotes the pseudoinverse of L, and we note
that L+1n = 0. Therefore, the single cluster ansatz func-
tion is

Φ = α(t)φ̂, (6)

with collective coordinate α(t). For all-to-all coupling,
L = NIN −1N1TN . Therefore, L+ = 1

N (IN − 1
N 1N1TN )27

and

φ̂ =
1

K
(ω − Ω1N ).

Note that for a single synchronized cluster, as a result
of the phase shift invariance, we may assume, without
loss of generality, that Ω = 0. For multiple synchronized
clusters, the different mean natural frequencies of each
cluster must be accounted for, which we show in §III B.

The evolution equation for the collective coordinate
α(t) can be found as a Galerkin approximation using the
same approach as in previous studies.22–24 The ansatz
(6) is substituted into the Kuramoto model (1), yielding
a residual error

Ei = α̇φ̂i − ωi −
K

N

N∑
j=1

Aij sin
(
α
(
φ̂j − φ̂i

))
.
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This residual error, which is a two-dimensional manifold
parametrized by α and α̇, is minimized when it is or-
thogonal to the one-dimensional line αφ̂ that we are re-
stricting the solution to. Setting E · φ̂ = 0 we obtain an
evolution equation for the collective coordinate α

α̇ =
φ̂Tω

φ̂T φ̂
+

1

φ̂T φ̂

K

N

N∑
i,j=1

φ̂iAij sin
(
α
(
φ̂j − φ̂i

))
.

For all-to-all coupling with mean frequency Ω = 0, this
simplifies to

α̇ = K +
K2

Σ2N2

N∑
i,j=1

ωi sin
( α
K

(ωj − ωi)
)
,

where Σ2 = (1/N)
∑
i ω

2
i is the variance of the natural

frequencies. Setting β = α/K, so that φ ≈ βω, yields

β̇ = 1 +
K

Σ2N2

N∑
i,j=1

ωi sin (β (ωj − ωi)) . (7)

Stationary points of (7) correspond to synchronized
states for the Kuramoto model.

In the thermodynamic limit, N →∞, (7) becomes

β̇ = 1 +
K

Σ2

∫∫
ω sin (β (η − ω)) g(ω)g(η)dωdη = I(β).

(8)
For normally distributed natural frequencies, with mean
zero and variance σ2, we obtain

I(β) = 1−Kβ exp
(
−σ2β2

)
. (9)

Since I(0) = 1, it follows that β has a stationary point
if and only if I has a negative local minimum. Solving
dI
dβ = 0 and d2I

dβ2 > 0 yields β = (σ
√

2)−1. Therefore, β

has a stationary point if and only if I
((
σ
√

2
)−1
)
≤ 0,

which is equivalent to

K ≥ σ
√

2e. (10)

If the condition (10) is satisfied, the oscillators synchro-
nize and form a single cluster.

The instantaneous order parameter for the collective
coordinates can be calculated as

r(t) = exp

(
−σ

2β2

2

)
. (11)

This relation shows that β measures the spread of the os-
cillators. Large values of β correspond to small r, mean-
ing the oscillators are evenly distributed on the circle,
whereas small values of β for which |Φ| � 1 correspond
to r ≈ 1, corresponding to tightly clustered oscillators.

For the multimodal natural frequency distribution (2)
with M peaks we obtain

I(β) =1 +
K

Σ2

M∑
i,j=1

γiγje
− 1

2β
2(σ2

i+σ2
j )×

[
Ωj sin (β (Ωi − Ωj))− βσ2

j cos (β (Ωi − Ωj))
]
.

As for a unimodal distribution, I(0) = 1, and a stable
stationary solution of (8), corresponding to global syn-
chronization of oscillators, exists if and only if the mini-
mum of I(β) (obtained numerically) is negative. There-
fore, the condition for global synchronization is

min
β
I(β) < 0. (12)

B. Multiple cluster ansatz

For multimodal frequency distributions, there is gener-
ally a range of K values which are sufficiently large that
oscillators form synchronized clusters, C1, . . . , CM , cor-
responding to each peak in the distribution, but which
are not sufficiently large to allow for global synchroniza-
tion. In such a case, we use a modified ansatz, which ac-
counts for intracluster and intercluster dynamics. Note
that while we are primarily concerned with clusters origi-
nating from a multimodal natural frequency distribution,
the same analysis can be performed for topological clus-
ters, as described by Hancock and Gottwald.24 For oscil-
lators in cluster Cm, the intracluster dynamics is given
by the restricted Kuramoto model

φ̇
(m)
i = ω

(m)
i +

K

N

∑
j∈Cm

Aij sin
(
φ

(m)
j − φ(m)

i

)
,

where for now we ignore the influence of oscillators be-
longing to different clusters k 6= m. Following the same
linearization procedure as for the full Kuramoto model
yields the intracluster mode

φ̂(m) =
N

K
L+
mω

(m), (13)

where L+
m is the pseudo-inverse of the graph Laplacian of

the subgraph obtained by restricting to nodes in cluster
Cm. In the case of all-to-all coupling we obtain

φ̂(m) =
N

KNm

(
ω(m) − Ωm1Nm

)
,

where Nm is the number of oscillators in cluster m, and
Ωm is the mean frequency of cluster m. Note that for
well separated peaks in the frequency distribution, such
as the example in Fig. 1, Nm/N ≈ γm, where γm is the
weighting of peakm in the natural frequency distribution
(2), and Nm/N = γm if Nγm is an integer.

The intracluster mode φ̂(m) does not account for in-
teractions with oscillators not belonging to cluster m.
Therefore, φ̂(m) does not capture the asymptotic dynam-
ics of the system for large K, where the oscillators will
globally synchronize and form a single cluster. For global
synchronization, the single cluster ansatz φ̂ in (5) is a
more appropriate mode.

We remark that one can perform a Galerkin approxi-
mation valid for all coupling strengths by considering a
linear superposition of the single cluster mode (5), the
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superposition of all possible synchronized clusters (13),
as well as all possible mergings of synchronized clusters,
each of these equipped with their own collective coordi-
nate. However, since the advantage of employing the col-
lective coordinate reduction is simplicity, which allows us
to study the dynamics of the N -dimensional Kuramoto
model, we prefer to use Galerkin approximations tailored
for a particular dynamical range, parametrized by the
coupling strength K.

When studying intercluster dynamics between cluster
modes (13), the Galerkin approximation needs to account
for the mean phases of each cluster, denoted fm. These
phases vary in time due to interactions between clusters.
Accounting for these phase interactions, and the possi-
bility of all clusters merging into a single cluster, for os-
cillators in cluster m we propose the ansatz

Φ(m) = απ(m)φ̂+ αmφ̂
(m) + fm1Nm , (14)

where π(m) denotes projection onto the nodes in cluster
m, i.e. π(m)(vi) = vi if i ∈ Cm and π(m)(vi) = 0 if i /∈ Cm.
Here α, αm and fm, m = 1, . . . ,M , are the collective co-
ordinates. As for the single cluster ansatz, the dynamics
for the collective coordinates are obtained by substitut-
ing the ansatz (14) into the Kuramoto model (1) to de-
termine the residual error. Then, to ensure errors are
minimized, we require the error to be orthogonal to the
restricted solution hyperplane, spanned by φ̂, φ̂(m) and
1Nm . The condition that the residual error is orthogonal
to φ̂ is given by

φ̂T φ̂α̇+

M∑
m=1

(π(m)φ̂)T
(
φ̂(m)α̇m + 1Nm ḟm

)
= φ̂TG(Φ),

(15)
where

G(Φ) = ω +

K
N

N∑
j=1

sin(Φj − Φi)


i=1,...,N

(16)

is the right hand side of the Kuramoto model (1) in vector

form. The condition that the residual error is orthogonal
to φ̂(m) is given by

(φ̂(m))Tπ(m)φ̂α̇+ (φ̂(m))T φ̂(m)α̇m = (φ̂(m))Tπ(m)G(Φ).
(17)

(We note that since φ̂(m) is orthogonal to 1Nm there is
no ḟm term). Lastly, the condition that the residual error
is orthogonal to 1Nm is given by

1TNmπ
(m)φ̂α̇+Nmḟm = 1TNmπ

(m)G(Φ).

Equations (15)–(17) form a system of linear equations

Aẋ = b(x),

where x = (α, α1, . . . , αm, f1, . . . , fm)T is the vector com-
prised of the collective coordinates. This linear system
can be solved to find the evolution equations for each of
the collective coordinates.

In the case of all-to-all coupling, the projection π(m)φ̂

(5), the cluster modes φ̂(m) (13) and the constant vec-
tors 1Nm are linearly dependent, and so the ansatz (14)
simplifies to

Φ
(m)
i = α

ωi
K

+ αm

(
N

KNm
(ωi − Ωm)

)
+ fm

= βm (ωi − Ωm) + f̃m, (18)

where βm = 1
K

(
N
Nm

αm + α
)
and f̃m = fm +αΩm

K . This
means that the global synchronization ansatz (5) can be
fully described by the cluster modes (13) with suitable
mean phases of each mode, and so the collective coordi-
nate α associated with global synchronization can effec-
tively be ignored.28 In essence, βm measures the spread
of the oscillators within cluster m, and f̃m determines
the collective phase of the cluster.

For the ansatz (18), the evolution equations for the
collective coordinates obtained from (15)–(17) become

β̇m = 1 +
1

NmΣ2
m

K

N

M∑
k=1

∑
j∈Ck

∑
i∈Cm

(
ω

(m)
i − Ωm

)
sin
(
βk

(
ω

(k)
j − Ωk

)
− βm

(
ω

(m)
i − Ωm

)
+ fk − fm

)
, (19)

ḟm = Ωm +
1

Nm

K

N

M∑
k=1

∑
j∈Ck

∑
i∈Cm

sin
(
βk

(
ω

(k)
j − Ωk

)
− βm

(
ω

(m)
i − Ωm

)
+ fk − fm

)
, (20)

where we have dropped the tilde on fm, and Σ2
m =

1
Nm

∑
i∈Cm

(
ω

(m)
i − Ωm

)2

is the variance of the frequen-
cies in cluster m. In the following, we consider all-to-
all networks, unless stated otherwise, and consider (19)–

(20). Therefore, for M peaks in the frequency distribu-
tion, there are 2M equations of motion. By introducing
phase difference variables, Fm = fm+1 − fm, we can re-
duce the dimension of the system to 2M − 1 degrees of
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freedom. This suggests that chaos may be possible as
long as M ≥ 2. However, as we will show, chaos is only
possible if M ≥ 3.

In the thermodynamic limit, N → ∞, with a mul-
timodal natural frequency distribution of the form (2),
Nm/N → γm (the weight of cluster m), and the evo-
lution equations for the collective coordinates (19)–(20)
can be evaluated as

β̇m = 1−Kβme−
σ2mβ

2
m

2

M∑
k=1

γke
−σ

2
kβ

2
k

2 cos (fk − fm) ,

(21)

ḟm = Ωm +Ke−
σ2mβ

2
m

2

M∑
k=1

γke
−σ

2
kβ

2
k

2 sin (fk − fm) .

(22)

Note that forM = 1, i.e., unimodal, normally distributed
frequencies with γ1 = 1 and Ω1 = 0, (21) recovers the sin-
gle cluster evolution equation (9), and (22) is identically
zero.

C. Slow-fast splitting of the shape and phase coordinates

Each synchronized cluster viewed in isolation contains
oscillators with normally distributed natural frequencies.
Therefore, the instantaneous order parameter for each
cluster is given in the thermodynamic limit (cf. (11)) by

rm(t) = exp

(
−σ

2
mβ

2
m

2

)
.

Expressing the evolution equations (21)–(22) for the col-
lective coordinates βm and fm in terms of rm, we obtain

ṙm = −σmrm
√

log r−2
m ×(

1− Krm
σm

√
log r−2

m

M∑
k=1

γkrk cos (fk − fm)

)
, (23)

ḟm = Ωm +Krm

M∑
k=1

γkrk sin (fk − fm) . (24)

In the case that each cluster remains tightly clus-
tered for all time, we have rm(t) = 1 − εm(t), with
0 < εm(t) � 1 for all t. This occurs provided the σm
are sufficiently small, K is sufficiently large (i.e., the con-
dition (10) is satisfied for each σm), and the means Ωm
are sufficiently far apart relative to the coupling strength
(i.e., condition (12) fails and global synchronization does
not occur). Expanding (23)–(24) in powers of ε yields

ṙm=−ε1/2m σm
√

2 + 2Kεm

M∑
k=1

γk cos (fk−fm) +O
(
ε3/2

)
(25)

ḟm = Ωm +K

M∑
k=1

γk sin (fk−fm) +O (ε) . (26)

We can view the order parameters rm as describing
the intracluster dynamics and the phase coordinates fm
as describing the intercluster dynamics. Since εm � 1,
the evolution equations (25)–(26) for rm and fm reveal a
time-scale splitting of the dynamics, whereby the order
parameters rm evolve slowly, whereas the phase variables
fm evolve on a fast time scale. The intercluster dynamics
is, to first-order, decoupled from the intracluster dynam-
ics (cf. (26)). Hence, the intercluster dynamics obeys
a reduced, renormalized Kuramoto model. Since the re-
duced intercluster dynamics has M − 1 degrees of free-
dom (taking into account a change to phase difference
variables), chaos is only possible if M ≥ 4. We label this
type of chaos where clusters remain localized, with only
small changes in their order parameter, as phase chaos.
However, it is possible that one or more of the clusters
intermittently break-up, such that rm � 1 and εm is not
small anymore. In such a case, there is significant inter-
play between the intracluster and intercluster dynamics.
This will be discussed in more detail in §V.

IV. FOUR CLUSTERS: COLLECTIVE PHASE CHAOS

Phase chaos is typically observed in systems with mul-
timodal natural frequency distributions with at least four
peaks [cf. Fig. 3(b)]. The simplest case is to take four
oscillators with natural frequencies equally spaced be-
tween −1 and 1 and let them interact to produce chaotic
dynamics.15–18 One may then consider N oscillators dis-
tributed over these four distinct natural frequencies, or,
more generally, consider the natural frequency distribu-
tion of M distinct mean frequencies Ωm

g(ω) =

M∑
m=1

1

M
δ (ω − Ωm) , (27)

where δ(x) denotes the Dirac delta-function. If N fre-
quencies, ω1, . . . , ωN , are distributed equiprobably onto
the M mean frequencies Ωm, with N divisible by M ,
then each mean frequency Ωm is populated by N/m os-
cillators with ωi = Ωm. That is, we can relabel such
that ω1, . . . , ωN/M = Ω1, ωN/M+1, . . . , ω2N/M = Ω2, and
so on. The Kuramoto model (1) for an oscillator with
natural frequency Ωm and all-to-all coupling in this case
becomes

φ̇
(m)
i = Ωm +

K

N

M∑
k=1

N/M∑
j=1

sin
(
φ

(k)
j − φ

(m)
i

)
. (28)

Since the coupling is all-to-all, oscillators with the same
natural frequency will synchronize, such that φ(m)(t) =
fm(t)1N/M and (28) becomes

ḟm = Ωm +
K

M

M∑
k=1

sin (fk − fm) , (29)
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which is of the exact form as the Kuramoto model for M
oscillators. Hence, chaos is expected for arbitrarily many
oscillators if their natural frequencies are distributed
according to (27) with M ≥ 4 with equally spaced Ωm.
Note that the evolution equation for the phases fm (29)
is equivalent to the collective coordinate equations for
M clusters (25)–(26) in the limit εm → 0, which is the
limit of perfectly synchronized clusters, with identical
phases within each cluster.

Considering the Dirac δ-function as the limit of normal
distributions, i.e., δ(x) = limσ→0N (0, σ), we expect mul-
timodal distributions of the form (2) withM ≥ 4 to yield
phase chaos for sufficiently small σ and sufficiently large
spacings between peaks in the natural frequency distri-
bution, |Ωm+1 − Ωm|. Our focus in this section is to ex-
plore the collective dynamics of the Kuramoto model for
natural frequency distributions g(ω) of the form (2) with
identical weights γm = 1/4, identical standard deviations
σm = σ, and equally spaced means Ωm = −1+2(m−1)/3
for m = 1, . . . , 4, that is

g(ω) =
1

4σ

4∑
m=1

P

(
ω − Ωm

σ

)
,

where P is the standard normal distribution.
We now numerically explore these cases for the full

Kuramoto model (1) with N = 100 oscillators; and shall
compare our results with the reduced collective coordi-
nate description (19)–(20) for N = 100 oscillators as
well as with the reduced collective coordinate descrip-
tion (21)–(22) in the thermodynamic limit of infinitely
many oscillators. The collective coordinate systems in-
volve 7 degrees of freedom: four shape parameters βm
and three phase-difference variables fm+1− fm (the evo-
lution equations, however, are written for fm and hence
are 8-dimensional). We shall see that the collective coor-
dinate equations provide a reduced model that allows for
quantitative description of the chaotic dynamics of the
Kuramoto model, and, in particular, for the estimation
of the Lyapunov exponents of the full Kuramoto model.
We compute and compare the time-averaged order pa-
rameter r̄ and the leading Lyapunov exponent λ across a
multitude of cases for different coupling strengths K and
for different standard deviations of the natural frequency
distribution σ.

Before discussing the results on the leading Lyapunov
exponent we shall describe the dependence of r̄ on K and
σ, shown in the left column of Fig. 4. Shown is the or-
der parameter r̄ for the full Kuramoto model (1) with
N = 100 oscillators [Fig. 4(a)], the 8D collective coordi-
nate model (19)–(20) with N = 100 oscillators [Fig. 4(c)],
and the 8D collective coordinate model with infinitely
many oscillators (21)–(22) [Fig. 4(e)]. We see good quan-
titative agreement between all three models throughout
most of the parameter space. All three models show
transitions from r̄ ≈ 0.45 to r̄ ≈ 1 near K ≈ 1.58,
which is the transition from four synchronized clusters

to global synchronization with one synchronized cluster.
This transition can be predicted by the collective coordi-
nate ansatz, using the single cluster ansatz (6) applied to
the full distribution g(ω). The transition curve is given
by the condition (12) for global synchronization, and is
shown by the dashed, approximately vertical, curves in
Fig. 4. The transition from the incoherent state (r̄ ≈ 0)
to the synchronized cluster state (r̄ ≈ 0.45) is predicted
by the line K = σ

√
2e (dot-dashed in Fig. 4), which

derives from condition (10) for the collective coordinate
ansatz. However, this line does not accurately capture
the transition from incoherence to synchronized clusters
in the full Kuramoto model with N = 100 oscillators
[cf. Fig. 4(a)] for which the transition occurs at lower
values of K. This discrepancy is due to the fact that
the collective coordinate models (19)–(20) and (21)–(22)
do not account for partial synchronization of the clus-
ters. In the full Kuramoto model (1) the transition from
the incoherent state to a partially synchronized state is a
soft second-order phase transition whereby upon increas-
ing the coupling strength, more and more oscillators with
natural frequencies close to the mean frequency mutually
synchronize until at a critical coupling strength all oscil-
lators in a cluster have synchronized. Although this can
be quantitatively described by the collective coordinate
ansatz22,24 we knowingly do not account for this in our
simulations here to limit the computational cost of the
parametric sweep.

It is remarkable that the collective coordinate mod-
els — (19)–(20) for N = 100 oscillators [Fig. 4(d)] and
(21)–(22) for N → ∞ [Fig. 4(f)] — reproduce the lead-
ing Lyapunov exponent λ of the full Kuramoto model (1)
[Fig. 4(b)] with good quantitative agreement. In partic-
ular, there is a chaotic “bubble” within the region with
four synchronized clusters (between the dot-dashed and
dashed curves) whose width shrinks as σ increases. The
occurrence of partial synchronization of clusters in the
full Kuramoto model with N = 100 results in a positive
Lyapunov exponent above and near to the dot-dashed
line in Fig. 4(b), which is not captured by the collective
coordinate models [Fig. 4(d) and Fig. 4(f)]. This differ-
ence is due to complex interactions between the synchro-
nized clusters and the small number of oscillators that
do not synchronize, which are not accounted for by the
collective coordinate models.

In the limit as σ → 0, the dynamics of four inter-
acting clusters becomes equivalent to the dynamics of
four interacting oscillators (cf. (29)), which has been
studied extensively by Maistrenko et al.16 and Popovych
et al.15 Following the approach of previous studies, we
consider the first four Lyapunov exponents of the col-
lective coordinate model (21)–(22). For small values of σ
(σ < 10−2) we obtain Lyapunov exponents that are qual-
itatively the same as those observed for four individual
oscillators (compare Fig. 5(a) with Fig. 1(a) in Ref. 15).
Therefore, for these small values of σ the bifurcation se-
quence is essentially the same as for four individual os-
cillators. At K = Ksn ≈ 0.91 there is a saddle-node
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FIG. 4. Time averaged order parameter, r̄ (left column), and leading Lyapunov exponent, λ1 (right column), for a range of
coupling strengths, K, and multimodal natural frequency distributions with four peaks and means Ωm = −1 + 2(m − 1)/3,
weights γm = 1/4, and identical standard deviations σm = σ, for m = 1, . . . , 4. (a),(b) Full Kuramoto model (1) with N = 100
oscillators. (c),(d) Collective coordinate model (19)–(20) with M = 4 and N = 100. (e),(f) Collective coordinate model in the
thermodynamic limit (21)–(22) with M = 4. Dot-dashed line denotes the condition (10), K = σ

√
2e, for synchronized clusters.

Dashed, approximately vertical, curve denotes the condition (12) for global synchronization.

bifurcation, which transitions from quasiperiodic to peri-
odic dynamics. At K = Ktd ≈ 0.94 there is a transition
to chaos via the Afraimovich-Shilnikov torus destruction
scenario.29 At K = Kcr ≈ 1.22 the chaotic attractor is
destroyed in a boundary crisis, yielding a chaotic sad-

dle. Lastly, at K = Kc ≈ 1.58 the transition to global
synchronization occurs. There are many periodic regions
observed within the chaotic region Ktd < K < Kcr, and
also near K = 1.5, which correspond to the resonances
discussed by Maistrenko et al.16 The resonances within
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FIG. 5. The first four Lyapunov exponents of the collective
coordinate model (21)–(22) for a range of coupling strengths
K and multimodal natural frequency distributions with four
peaks and means Ωm = −1 + 2(m− 1)/3, weights γm = 1/4,
and identical standard deviations σm = σ, for m = 1, . . . , 4,
(a) σ = 10−2, (b) σ = 5× 10−2.

the chaotic region can also be observed within the chaotic
bubble shown in the right plots of Fig. 4, evident as white
bands (λ1 = 0) that extend approximately vertically from
the horizontal axis σ = 0 (most clearly seen in Fig. 4(f)
which has the highest resolution). The resonances near
K = 1.5 can be seen in the right plots of Fig. 4 as thin
bands of positive largest Lyapunov exponent. For larger
values of σ, such as σ = 5× 10−2 shown in Fig. 5(b), we
see similar dynamics, but there are some key differences.
First, the chaotic window is smaller, and is punctuated
by a large periodic region near K = 1.05. In addition,
there appears to be only one resonance near K = 1.5.

The complex bifurcation structure shown in Fig. 5 also
explains the discontinuous transition curves between dif-
ferent shades of gray in the plots for r̄ (left plots of Fig. 4).
These transitions are due to bifurcations between differ-
ent stable chaotic, periodic, and quasiperiodic states.

V. THREE CLUSTERS: CHAOS VIA INTERMITTENT
CLUSTER DESYNCHRONIZATION

For three clusters, as discussed previously, if the reduc-
tion and time-scale splitting shown in (25)–(26) is valid,

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

2.0

2.5

FIG. 6. Trimodal natural frequency distribution that
results in chaotic dynamics of the Kuramoto model
(1). Parameters in the distribution function (2)
are chosen as (σ1, σ2, σ3) = (0.05617, 0.1042, 0.04521),
(Ω1,Ω2,Ω3) = (−0.9423, 0.3517, 1), and (γ1, γ2, γ3) =
(0.3628, 0.4552, 0.1818).

the dynamics is essentially phase dynamics of three os-
cillators, excluding chaotic dynamics because there are
only two degrees of freedom (recall that due to the phase-
gauge invariance of the Kuramoto model, we may assume
without loss of generality that

∑
i fi = 0). However, the

time-scale splitting requires εm = 1 − rm � 1 for all
time. If this is not true, e.g. one cluster intermittently
desynchronizes, then chaos is possible.

As an example, consider the trimodal natural fre-
quency distribution shown in Fig. 6. Simulating the 6D
collective coordinate model, (23)–(24), for K = 1.205 we
find a positive largest Lyapunov exponent, λ = 0.036,
as well as time-averaged cluster-wise order parameters
r̄1 = 0.989, r̄2 = 0.981, r̄3 = 0.918. Hence the sys-
tem is both chaotic and collectively organized. While
r̄3 is close to one, and, hence, the cluster would be con-
sidered synchronized, the time series for r3(t), shown in
Fig. 7(c), intermittently dips to values around 0.5, show-
ing that the cluster intermittently desynchronizes, with
oscillators spreading over the entire circle. Therefore, we
cannot say that ε3 is close to zero for all time, meaning
the time-scale splitting is invalid for r3, and, hence, chaos
is possible.

This intermittent desynchronization phenomenon
predicted by our collective coordinate reduction is
confirmed in the full Kuramoto model (1). For N = 200
oscillators, with natural frequencies drawn equiprobably
from the distribution g(ω) shown in Fig. 6, we compute
the leading Lyapunov exponent as λ = 0.039, which
is within 10% of the Lyapunov exponent computed
using collective coordinates in the thermodynamic
limit, (23)–(24), which has λ = 0.036. Furthermore,
the time-series of r1, r2, r3, shown in Fig. 7(d–f), are
qualitatively similar to those shown in Fig. 7(a–c). In
particular, r1 and r2 remain close to 1 for all time,
whereas r3 experiences intermittent dips. The dips
occur in the collective coordinate model (23)–(24) with
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FIG. 7. Time series of the cluster order parameters, r1, r2 and r3 for the trimodal natural frequency distribution shown in
Fig. 6. Note the different scales on the vertical axis for r3 compared to r1 and r2. (a–c) Collective coordinate reduction in
the thermodynamic limit (23)–(24) with M = 3. (d–f) Full Kuramoto model (1) with N = 200 oscillators drawn equiprobably
from the distribution shown in Fig. 6. (g–i) Full Kuramoto model (1) with N = 1000 oscillators drawn equiprobably from the
distribution shown in Fig. 6.

an average period of 48.9, compared to an average
period of 52.6 in the full Kuramoto model. For the
full Kuramoto model (1) with N = 1000 oscillators,
which is closer to the thermodynamic limit, the dips
occur at the same frequency as with N = 200, i.e., with
a period of 48.9, and the time series of r1,2,3, shown
in Fig. 7(g–i), are even more similar to the collective
coordinate model in the thermodynamic limit (23)–(24),
shown in Fig. 7(a–c), in that the dynamics between
the dips becomes more regular, with high frequency
oscillations and a slow negative trend. The collective
coordinate model is representative of the full Kuramoto
model, and has the advantage of being more analytically
tractable.

We now investigate more closely the nature of this type
of chaotic dynamics and how it is generated. We first de-
scribe qualitatively the dynamics of a single desynchro-
nization event in the full Kuramoto model (1). We then
show that these desynchronization events can be resolved
by considering further reductions of the collective coordi-
nate equations (23)–(24). This collective coordinate re-

duction is then used to show that chaos via intermittent
desynchronization is a robust phenomenon.

We describe the dynamics of a desynchronization event
qualitatively using the snapshots of the phases of oscil-
lators shown in Fig. 8(b–g) (Multimedia view), which
correspond to the red points marked on the time series
of r3 shown in Fig. 8(a). In the lead-up to a dip in r3,
the second and third clusters are phase-locked, with an
approximately constant phase difference F2 = f3 − f2.
However, each time the first cluster passes by the second
cluster, the second cluster slows down, which causes a
small increase in the phase separation between the sec-
ond and the third clusters, implying a small increase in
F2, as shown in Fig. 8(b) and Fig. 8(c) as a small in-
crease in separation between the second and third clus-
ters. Eventually, a critical point is reached, such that the
oscillators in the third cluster that are furthest from the
second cluster [those with the highest natural frequen-
cies, closest to i = 1000 in Fig. 8(b–i)] begin to desyn-
chronize with the rest of the oscillators in the cluster,
as shown in the transition from Fig. 8(b) to Fig. 8(d).
This desynchronization results in the oscillators in the
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FIG. 8. (a) Time series of r3 for the full Kuramoto model (1) with N = 1000 oscillators [the same as Fig. 7(i)]. The labels of the
red circles correspond to the snapshots of the oscillator phases φi, shown in (b–g) illustrating the intermittent desynchronization
of the third cluster from a coherent cluster that is phase-locked with the second cluster (b), to a desynchronized state (c)–(f),
and back to a synchronized state (g). (Multimedia view)

third cluster wrapping around and covering the entire
circle, and corresponds to a sharp dip in r3, as shown
in Fig. 8(a). The desynchronization of the third cluster
occurs as a traveling front, starting first with the oscil-
lators with highest natural frequency, traveling down to
the oscillators with the lowest frequency. The oscillators
in the third cluster eventually cover the entire circle, and
those with the highest natural frequencies (furthest to
the right in Fig. 8) overtake those with the lowest nat-
ural frequencies (furthest to the left in Fig. 8), meaning
they experience additional revolutions during each “dip”
event. Once the oscillators in the third cluster with low-
est natural frequencies catch up with the second cluster,

the third cluster re-synchronizes, as shown in Fig. 8(f)
and Fig. 8(g), once again becoming phase-locked with
the second cluster, and the process repeats.

We now use collective coordinate reductions to analyze
the dynamics described above. As seen in Fig. 7, r1(t)
and r2(t) are close to one for all time, demonstrating that
the time-scale splitting remains valid for those variables.
This suggests that we may set r1(t) = r̄1 and r2(t) = r̄2

as constant in the collective coordinate equations (23)–
(24). Then the collective coordinate model reduces to
a system of four fast variables, r3, f1,2,3, with three de-
grees of freedom (again since, without loss of generality,∑
i fi = 0). The evolution equations are

ṙ3 = −σ3r3

√
−2 log r3

(
1− Kr3

σ3

√
−2 log r3 (γ1r̄1 cos (F1 + F2) + γ2r̄2 cos(F2) + γ3r3)

)
(30)

Ḟ1 = ∆Ω1 +K [−(1− γ3)r̄1r̄2 sinF1 + γ3r̄2r3 sinF2 − γ3r̄1r3 sin(F1 + F2)] (31)

Ḟ2 = ∆Ω2 +K [γ1r̄1r̄2 sinF1 − (1− γ1)r̄2r3 sinF2 − γ1r̄1r3 sin(F1 + F2)] , (32)

where Fm = fm+1−fm and ∆Ωm = Ωm+1−Ωm. We see good agreement in the time series plots of r3 for the 3D
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FIG. 9. Time series of r3 for the 6D collective coordinates
three-cluster equations (23)–(24) with M = 3 (solid gray),
and the reduced 3D collective coordinate system (30)–(32)
(dashed black).
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FIG. 10. Poincaré section of the collective coordinate dynam-
ics for the trimodal natural frequency distribution shown in
Fig. 6 through the plane F1 = 0, shown in the (r3, F2)-plane.
Shown are results for the 6D collective coordinate equations
(23)–(24) with M = 3 (gray), and for the reduced 3D sys-
tem (30)–(32 (black). The zoomed in region shows a fractal
folding pattern for both models, indicating the presence of
chaos.

system (30)–(32), shown as dashed black in Fig. 9) and
the 6D collective coordinate system (23)–(24), shown as
solid gray in Fig. 9. In both models, r3 experiences the
same oscillations at the start and end, and both have
a significant dip to r3 ≈ 0.4 between t = 10 and t =
30. Furthermore, the Poincaré sections through the plane
F1 = 0, shown in the (r3, F2)-plane in Fig. 10, are similar
for both models.

To explain the pronounced dips in r3 in more detail,
observe that for the time series of r3, shown in Fig. 7(c),
in between the sharp dips, r3 exhibits small oscillations
and a small negative trend. To explain this, let us as-
sume that r3 is constant, so the dynamics (30)–(32) re-
duces to a 2D system for F1 and F2, given by (31)–(32),
with r3 being a parameter. For r3 > rc ≈ 0.981, this 2D

system (31)–(32) has one stable and one unstable limit
cycle, as demonstrated in Fig. 11(a) for r3 = 1 by the
thick solid and dashed red curves, respectively. The gray
arrows in Fig. 11(a) are the 2D velocity field. As r3 de-
creases, the stable and unstable limit cycles move toward
each other, as demonstrated is Fig. 11(b) for r3 = 0.981.
At r3 = rc, the stable and unstable limit cycles annihi-
late via a saddle-node bifurcation, and the dynamics is
topologically equivalent to quasiperiodic rotation on the
torus. We observe in Fig. 11(c) that trajectories of the
full 6D collective coordinate system (23)–(24), projected
onto the F1, F2 plane, follow curves that closely match
the limit cycles corresponding to constant r3. The tracer
(whose trajectory is shown in thin black) slowly advances
upward in between the lower limiting stable limit cycle
corresponding to r3 = 1 (lower thick red curve), and the
upper limiting stable limit cycle corresponding to r3 = rc
(upper thick red curve). This slow advance upward cor-
responds to the slow decay of r3 in between the sharp
dips.

Expanding further, starting at a time t0 when r3 ≈ 1,
a tracer in the full 6D collective coordinate model (23)–
(24) will have a trajectory in the F1, F2 plane that is very
similar to the limit cycle obtained from the assumption
that r3 is constant (equal to r3(t0)). However, while
r3 is approximately constant, it decreases slightly over
one period of the limit cycle. We can approximate the
decrease in r3 by computing ∆r3 = r3(t0 + T ) − r3(t0),
where T = T (r3(t0)) is the period of the stable limit
cycle, denoted by Cr3 , of the 2D system (31)–(32) with
r3 = r3(t0) held constant. Here r3(t0 + T ) is found
by integrating (30) along the stable limit cycle Cr3 .
This is valid under the assumption that r1,2,3 are all
constant between t = t0 and t = t0 + T . Note that the
values r3(t0 + T ) and ∆r3 are independent of the initial
locations of F1, F2 on the limit cycle Cr3 . We find that
∆r3 < 0 for all r3 > rc, and so it is inevitable that r3

will eventually reach the critical value, rc, where the
stable limit cycle bifurcates.

The scenario of chaotic dynamics through intermittent
desynchronization events is a robust phenomenon, occur-
ring for a range of parameters of the natural frequency
distribution (2). We show this by investigating the ef-
fect of varying σ3. As σ3 decreases, we observe that the
average time interval between dips in r3 increases, and
at a critical value of σ3 = σc ≈ 0.035 the dips no longer
occur. For σ3 < σc, r3 remains close to 1 for all time, and
so the slow-fast splitting found in §III C is valid, and the
dynamics is non-chaotic. The value of σc can be approx-
imated using the collective coordinate system (30)–(32).
Consider ∆r3, the change in r3 over the stable limit cy-
cle that exists under the assumption that r3 is constant.
The distribution of ∆r3 across a range of r3 and σ3 val-
ues is shown in Fig. 12. The turning point of the curve
∆r3 = 0 (dashed black in Fig. 12) gives the approxima-
tion σ∗c = 0.038 (solid black line in Fig. 12) for σc. For
σ3 > σ∗c , ∆r3 is negative for all values of r3 that have a
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FIG. 11. (a,b) The velocity field (31)–(32) and stable (thick solid red) and unstable (thick dashed red) limit cycles in the
(F1, F2) plane for fixed r3. (a) r3 = 1 and (b) r3 = 0.981 ≈ rc, the critical value at which the limit cycles annihilate via
a saddle-node bifurcation. (c) The stable limit cycles from (a) and (b) are shown together with a trajectory of the full 6D
collective coordinate model (23)–(24), projected onto the (F1, F2)-plane (thin black). The tracer spends most of its time in the
region between the stable limit cycles.

stable limit cycle. Hence r3 decreases after each period
of the limit cycle until reaching the saddle-node bifur-
cation (solid gray curve in Fig. 12). For σ3 < σ∗c , the
curve ∆r3 = 0 (dashed black in Fig. 12) indicates the
locations of fixed points of the map r3 7→ r3 + ∆r3, with
the right-most fixed point being stable. The presence
of these stable fixed points indicates a periodic solution
of the three-dimensional system (30)–(32). Therefore,
σ∗c represents a bifurcation between periodic dynamics
and intermittent desynchronization dynamics, i.e., it is
an approximation for σc. Note that σ∗c = 0.038 slightly
over-predicts σc = 0.035, which is due to the inaccura-
cies that occur from making the assumption that r3 is
constant over the period of the limit cycle Cr3 , when, as
we have seen, it is both oscillating and slowly decreasing
[cf. Fig. 8(a)]. A similar approach can be used to deter-
mine critical values at which chaos ceases to occur when
other parameters in the natural frequency distribution
are varied, such as the distance between peaks, and the
proportion of oscillators in each cluster.

We now explain why the transition into desynchroniza-
tion occurs on a fast time-scale, as observed in Fig. 8(a),
using the collective coordinate equations (30)–(32) for
the three-cluster interactions. The intercluster interac-
tion term between the second and third cluster in ṙ3

is G(r3) cosF2, where G(r3) scales as r2
3

√
−2 log r3 [see

(30)], which is positive for 0 < r3 < 1, and equal to zero
at r3 = 0 and r3 = 1. On the stable limit cycles, F2

oscillates around π/2. Therefore, the interaction term is
small while on the limit cycles, but when r3 < rc, and the
saddle-node bifurcation occurs, F2 increases away from
π/2, and so ṙ3 becomes strongly negative, explaining the
sharp decline of r3. At the point where F2 crosses 3π/2,
the sign of cos(F2) changes, and so ṙ3 becomes strongly
positive, until F2 once again approaches π/2, at which
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FIG. 12. The change in r3 over one period of the associated
limit cycle, ∆r3, over a range of r3 and σ3 values. Limit
cycles do not exist in the gray region, to the left of the saddle-
node (SN) bifurcation curve (solid gray). The curve ∆r3 = 0
(dashed black) indicates fixed points of the map r3 7→ r3+∆r3
for each value of σ3. The line σ3 = σ∗

c (solid black) separates
chaotic cases (σ3 > σ∗

c ) and non-chaotic cases (σ3 < σ∗
c ).

point r3 once again becomes slow, and the system relaxes
to a limit cycle corresponding to r3 ≈ 1. This restarts
the cycle of slow decay followed by a sharp decline and
recovery.

We have now established how chaos is generated
through the delicate interaction of three clusters using
the collective coordinate framework. As a summary,
chaos occurs as a sensitivity between the entry and exit
locations to the regular limit cycle zone. This sensitivity
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is shown by the infinite, fractal accumulation of folds in
the zoomed in Poincaré section through the plane F1 = 0
(cf. Fig. 10). The folds accumulate in the small region
with r3 ≈ 1 and F2 ≈ π/2, corresponding to the regu-
lar limit cycle dynamics and slow, predictable decay of
r3. While we have shown that chaos is possible for tri-
modal natural frequency distributions, it is a rare phe-
nomenon. In the process of finding the natural frequency
distribution shown in Fig. 6, we computed the maximal
Lyapunov exponent for 5 × 104 randomly drawn sets of
natural frequency distribution parameters (Ω,σ,γ) and
coupling strengthsK that produce synchronized clusters,
and found that only 90 cases were chaotic (with a positive
Lyapunov exponent), i.e., only 0.18%.

VI. TWO CLUSTERS: NO CHAOS

For two clusters, M = 2, the thermodynamic limit
collective coordinate equations (23)–(24) become

ṙ1 = −σ2
1β1r1 (1−Kβ1r1 (γ1r1 + γ2r2 cosF )) (33)

ṙ2 = −σ2
2β2r2 (1−Kβ2r2 (γ2r2 + γ1r1 cosF )) (34)

Ḟ = ∆Ω−Kr1r2 sinF, (35)

where F = f2 − f1 is the phase difference of the two
clusters, and ∆Ω = Ω2−Ω1. Hence, it appears that there
are three degrees of freedom, and chaos is theoretically
possible.

We now show, using the collective coordinate ap-
proach, that chaos is not possible. In particular, phase
chaos is not possible as it would reduce the dimension of
the system to 1D with both r1 and r2 being constant.
The case of intermittent desynchronization leads to de-
coupled 1D slow and 2D fast dynamics, excluding the
possibility of chaos.

Let us begin with excluding the possibility of phase
chaos. If the time scale splitting between r1, r2 (slow)
and F (fast) is valid, i.e., if the two clusters remain syn-
chronized for all time, we can average the slow r1, r2 dy-
namics over the fast dynamics F . Assuming r1 and r2 are
constant, the dynamics of F can be solved analytically,
with solution

F (t) = 2 arctan

(
κ

∆Ω
+

B

∆Ω
tan

(
B

2
t+ C

))
(36)

where κ = Kr1r2, B =
√

∆Ω2 − κ2, C =

arctan

(
−κ+∆Ω tan

F0
2

B

)
, and F (0) = F0. Note that F is

a periodic function, with period T = 2π/B. For the bi-
modal frequency distribution shown in Fig. 13(a), where
the peaks have very little overlap, the approximate solu-
tion (36) [dashed black in Fig. 13(b)] for the phase differ-
ence closely matches the time series of F of the collective
coordinate model (33)–(35) [solid red in Fig. 13(b)].

Furthermore, since F (t) ranges from 0 to π, we can
choose, without loss of generality, our starting time such

that F0 = π/2, and so C = arctan ∆Ω−κ
B . It can be

shown that

F (t) =
π

2
+ 2 arctan

[
∆Ω− κ
B

tan

(
B

2
t

)]
,

which means that

cosF (t) = − sin

(
2 arctan

[
∆Ω− κ
B

tan

(
B

2
t

)])
.

Therefore, cosF (t) is an odd periodic function, and so its
average over one period, 〈cosF (t)〉, is zero. This means
the dynamics of the time-averaged variables r̄1, r̄2 be-
comes decoupled from one another. The dynamics for
each cluster is equivalent to the single cluster ansatz
equation (9), with K replaced by Kγi for i = 1, 2. This
means, that r1(t) [solid blue curve in Fig. 13(c)] and r2(t)
[solid red curve in Fig. 13(c)] oscillate around the stable
equilibria, r∗1 and r∗2 (dashed blue and red resp.), ob-
tained from the respective single cluster ansatz equations,
and phase chaos cannot occur.

Now we go on to exclude the case that one cluster in-
termittently desynchronizes, like in the three cluster case
in the previous section. This occurs for the natural fre-
quency distribution shown in Fig. 13(d), where the sec-
ond cluster intermittently desynchronizes, approaching
r2 ≈ 0.4, as shown by the solid red curve in Fig. 13(f).
In this case, the dynamics of r1, which remains close to
1 for all time, is slower than r2 and F . This is con-
firmed in Fig. 13(e), where it is shown that the time evo-
lution of F given by numerical simulation of (33)–(35)
(solid red) is not well approximated by the function (36)
(dashed black), which assumes perfect time-scale split-
ting. Therefore, we may not assume time-scale separa-
tion between r2 and F . We have an effective 2D fast
system for r2 and F . This 2D system has a stable limit
cycle in cases with two clusters that do not globally syn-
chronize. In turn, the dynamics of r1 cannot be chaotic,
since the time-averaged dynamics is a 1D system with
time-periodic forcing.

The only other possibility is that both clusters
intermittently desynchronize. However, since it is the
intercluster terms in ṙ1 and ṙ2 that drive the push
away from the single cluster ansatz equilibria, and both
intercluster terms are multiples of r1r2 cosF , it follows
that r1 cannot rapidly decay without r2 also rapidly
decaying. If one, say r1, decays faster than the second,
r2, then it will asymptote toward r1 = 0, and so it has no
effect on the second cluster. The second cluster is then
governed by the single cluster ansatz, and will either
approach the stable synchronized state, or approach
r2 = 0, depending on whether r2 crosses the unstable
fixed point of the single cluster ansatz equation while
the first cluster is desynchronizing. In either case, the
dynamics is regular, and stationary in the long run.
If both r1 and r2 decay at the same rate, then the
system possesses a symmetry, which further reduces
the effective dimension, excluding the possibility of chaos.
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FIG. 13. Dynamics for two bimodal frequency distributions. (a,d) Natural frequency distributions, g(ω). (a): (σ1, σ2) =
(0.15, 0.1), (Ω1,Ω2) = (−0.5, 1), (γ1, γ2) = (2/3, 1/3). (d): (σ1, σ2) = (0.2, 0.3), (Ω1,Ω2) = (−0.8, 1), (γ1, γ2) = (5/9, 4/9).
(b,e) Time series of F for the 3D collective coordinate model (33)–(35) (solid red), and the function F (t) given by (36) (dashed
black). (b) K = 1, (e) K = 1.85. (c,f) Time series of r1 (solid blue, upper) and r2 (solid red, lower). Also shown are the values
of r1 (dashed blue) and r2 (dashed red) that are the stable solutions to the single cluster ansatz (9) for each cluster. These are
also the stationary solutions of the time-averaged dynamics, assuming the time-scale splitting between F (fast) and r1,2 (slow)
is valid.

The above discussion used the thermodynamic limit.
However, chaos can occur for bimodal natural frequency
distributions in finite size networks. This occurs due to
sampling effects. In our numerical simulations of finite
size networks, we found that it is typical that a small
group of oscillators, with natural frequencies at one or
the other extreme of the distribution (i.e., very high or
very low), do not synchronize with the other oscillators
corresponding to the same peak in the natural frequency
distribution. This group of “rogues” may either consti-
tute a set of incoherent oscillators or another small clus-
ter. In either case, the system must be considered as hav-
ing more than two clusters, which agrees with our results
obtained in §IV and §V. We find fewer chaotic cases as
the number of oscillators increases, which confirms that
the issue is a finite-size effect. It is important to note
that we have found no bimodal cases with finite N that
are chaotic and do not have unsynchronized oscillators.

VII. SUMMARY AND OUTLOOK

A. Summary

Employing detailed numerical simulations guided by
analytical results from a collective coordinate reduction
we have established necessary conditions for collective
chaos in the Kuramoto model with multimodal natural
frequency distributions. We have shown that phase chaos
can occur provided there are at least four peaks in the

natural frequency distribution. This is due to a time-
scale splitting between slow intracluster collective coor-
dinates and fast intercluster collective coordinates, which
reduces the Kuramoto model to M − 1 active degrees of
freedom, where M is the number of peaks in the natural
frequency distribution.

For three peaks in the natural frequency distribution,
we have shown that chaos can occur via intermittent
desynchronization of clusters. When a cluster desyn-
chronizes, its intracluster collective coordinate becomes
fast, resulting in an additional active degree of freedom.
Through the slow-fast splitting, the collective coordinate
description has allowed us to study the intricate dynam-
ics of intermittent desynchronization, and show that it is
a robust phenomenon.

For two peaks in the natural frequency distribution,
the collective coordinate description has allowed us to
rule out the possibility of chaos.

We have shown that for both phase chaos and chaos
via intermittent desynchronization, the reduced collec-
tive coordinate description can be used to quantitatively
predict the leading Lyapunov exponent, and, hence, re-
gions of the parameter space where chaos occurs.

However, it is important to note that these results are
primarily for the thermodynamic limit. For finite size
networks, even bimodal natural frequency distributions
can be chaotic. In those cases, there are rogue oscillators
that do not synchronize with the rest of their cluster.
These rogues can be treated as separate clusters, each of
which requiring its own additional collective coordinates,
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FIG. 14. Multistability of the order parameter r̄ for K =
0.95 and multimodal natural frequency distributions with four
peaks, as in Fig. 1, such that each peak has variance σ2.
Shown are results for the full Kuramoto model (1) with N =
100 oscillators (green squares) and the collective coordinate
model (19)–(20) with N = 100 (red +’s). For each model,
100 random initial conditions are seeded to determine regions
of multistability.

increasing the number of active degrees of freedom, open-
ing up the possibility of chaos.

B. Outlook

In our numerical simulations, we have observed regions
of the parameter space of multimodal natural frequency
distributions with four peaks that exhibit multistabil-
ity, including natural frequency distributions that yield
both strange attractors and limit cycles, depending on
the initial condition. For example, Fig. 14 shows that
for K = 0.95 and multimodal distributions like Fig. 1,
a second stable branch exists for σ > 0.022 for the full
Kuramoto model (1) with N = 100 oscillators (green
squares). This multistability is well reproduced by the
collective coordinate model (19)–(20) with N = 100 (red
+’s) and by the collective coordinate model in the ther-
modynamic limit (21)–(22) (not shown). On the lower
branch, the dynamics is periodic, and has the property
that r1(t) = r4(t+T/2) and r2(t) = r3(t+T/2), where T
is the period of the system. On the upper stable branch
there is no such relation between the cluster order pa-
rameters. Further study is required to understand this
phenomenon, and the bifurcations that control it. Since
the reduced collective coordinate models are more ana-
lytically tractable than the full Kuramoto model and ac-
curately predict the existence of multistability, they may
be used to provide deeper insight into this phenomenon.

Here we have considered all-to-all networks with syn-
chronized clusters that result from distinct peaks in the
natural frequency distribution. However, synchronized
clusters can also occur due to the network topology. Fu-
ture studies should consider whether topological clusters
can yield chaos. Furthermore, chaos could result from a

combination of frequency clustering and topological clus-
tering. For example, a bimodal natural frequency distri-
bution and a network with two clusters, which would
result in four synchronized clusters of oscillators and the
three degrees of freedom required for chaos.
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