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ABSTRACT. We present a supervised learning method to learn the propagator map
of a dynamical system from partial and noisy observations. In our computation-
ally cheap and easy-to-implement framework a neural network consisting of random
feature maps is trained sequentially by incoming observations within a data assimi-
lation procedure. By employing Takens’ embedding theorem, the network is trained
on delay coordinates. We show that the combination of random feature maps and
data assimilation, called RAFDA, outperforms standard random feature maps for
which the dynamics is learned using batch data.

Determining computationally inexpensive surrogate maps, trained on
partial and noisy observations, is of utmost significance. Such surrogate
maps would allow for long-time simulation of dynamical systems, the gov-
erning equations of which are unknown. Similarly, they would allow for
long-time integration of complex high-dimensional dynamical systems with
known underlying equations where one is however only interested in the
dynamics of a select subset of resolved variables. Surrogate maps should
produce trajectories which are consistent with the dynamical system even
after long time integration. We consider here the situation when such sys-
tems are accessible only by partial observations of the resolved variables
and where these observations are contaminated by measurement noise. By
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formulating a machine learning framework in delay coordinate space, we
show that a partial and noisy training data set can be used to learn the
dynamics in the reconstructed phase space. The learned surrogate map
provides a computationally cheap forecast model for single forecasts up
to several Lyapunov times as well as for dynamically consistent long-time
simulations.

1. INTRODUCTION

Recent years have seen an increased interest in data-driven methods with the aim
to develop cheap surrogate models to perform forecasting of dynamical systems. A
main driver behind this endeavour is the potential saving of computational run-
ning time required for simulation. This is particularly important for stiff multi-
scale systems for which the fastest time-scale puts strong restrictions on the time
step which an be employed (Han et al., 2018, 2019; Raissi and Karniadakis, 2018;
Raissi et al., 2019). Promising applications for such surrogate models come from at-
mospheric and ocean dynamics and from climate dynamics (Schneider et all, 2017;
Dueben and Bauer, 2018; Rasp et all, [2018; (Gagne II et all,2020; Bolton and Zannal,
2019; Brajard et al., 2021; Nadigal, 2020; [Cleary et all, [2021).

A particularly simple and efficient machine learning architecture are random feature
maps (Rahimi and Recht, 2008; [Rahimi and Recht), [2008; Bach, 2017a,b; [Sun et al.,
2019). Random feature maps provide a representation of the surrogate propagator for
a dynamical system by a linear combination of randomly generated high-dimensional
nonlinear functions of the input data. The training of random feature map networks
only requires linear least-square regression and it was proven rigorously that random
feature maps enjoy the so called universal approximation property which states that
they can approximate any continuous function arbitrarily close (Park and Sandberg,
1991; ICybenka, 1989; Barron, 11993). The framework of random feature maps was
extended to include internal dynamics in so called echo-state networks and reservoir
computers with remarkable success in forecasting dynamical systems (Maass et all,
2002; Jaeger, [2002; Jaeger and Haas, 2004; [Pathak et al., 20184 lJiingling et al.,2019;
Algar et all,2019; Nadiga, 2020; Bollt, [2021; \Gauthier et al., [2021; [Platt et al.,[2021).

These linear regression based training methods assume model errors rather than
measurement errors in the data (Gottwald and Reichl, 2021). However, the skill of
random feature maps in providing a reliable surrogate forecast model can be severely
impeded when the data used for training are contaminated by measurement noise. In
previous work |Gottwald and Reich (2021) showed that by combining random feature
maps with ensemble-based sequential data assimilation, in a framework coined RAn-
dom Feature map Data Assimilation (RAFDA), the noise can be effectively controlled
leading to remarkable forecast skills for noisy observations. Moreover, RAFDA was
shown to be able to provide model closure in multi-scale systems allowing for sub-

gridscale parametrization as well as to provide reliable ensembles for probabilistic
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forecasting. In RAFDA the parameters of the random feature maps are learned se-
quentially with incoming observations in conjunction with the analysis of the state
variables using an ensemble Kalman filter (EnKF) (Evensen, 2006). RAFDA thus
combines a powerful approximation tool in the form of random feature maps with an
advanced sequential and derivative-free data assimilation technique, which is partic-
ularly well suited for high-dimensional state and parameter estimation problems.

Several alternative combinations of data assimilation and machine learning tech-
niques have recently been explored. Recently proposed methodologies include purely
minimization-based approaches (Bocquet et all, 2019), approaches which combine
ensemble-based sequential state estimation with minimization-based parameter es-
timation (Brajard et al., 2020; Bocquet et al., 2020), and purely ensemble-based se-
quential joined state and parameter estimation (Bocquet et all, 2021). Furthermore,
an intimate formal equivalence between certain neural network architectures and data
assimilation has been noted by [Abarbanel et all (2018). Finally, sequential data as-
similation has also been extended to echo-state networks and reservoir computers
(Tomizawa and Sawada, 2021; Wikner et al., [2021)).

In this work, we extend RAFDA to the situation when only partial observations
are available. In this case, the propagator map, that updates the system in the
partially observed subspace only, is non-Markovian and knowledge of the past his-
tory is required. This problem was recently addressed within a machine learning
context using appropriate model closures (Levine and Stuart, 2021). To account
for the non-Markovian nature of the propagator map, we follow here a different
path instead and employ phase-space reconstruction and Takens’ embedding theo-
rem (Takens, [1981). Takens’ embedding theorem has been successfully used in data
assimilation before where a forecast model was non-parametrically constructed us-
ing analogs (Hamilton et all, [2016). Recently reservoir computers, which may be
viewed as providing an embedding of the dynamics in the reservoir space (Lu et all,
2017; Hart et all, 2020), were used to reconstruct dynamics in the reconstructed
phase space using delay coordinates and linear regression for parameter estimation
(Nakai and Saiki, 2021)). Here we use delay coordinates in combination with sequen-
tial data assimilation to learn a surrogate forecast model directly in the reconstructed
phase-space from noisy and partial observations.

While we follow a non-parametric or model-free approach in this paper, another
promising direction is to combine machine learning and knowledge-based modelling
components (Pathak et all, 2018b; |Gagne II et al., 2020; Bolton and Zanna, [2019;
Wikner et all, 2020; Brajard et all, 2021; [Wikner et al.,[2021). We note that RAFDA
also allows for such extensions (Gottwald and Reich, 2021).

The paper is organised as follows. In Section2lwe develop our RAFDA methodology
for partial observations. In Section [3lwe show how RAFDA performs on the Lorenz 63
system and that RAFDA exhibits significantly increased forecast skill when compared
to standard random feature maps trained on delay coordinates using linear regression.
We close in Section [ with a discussion and an outlook.



2. RANDOM FEATURE MAP AND DATA ASSIMILATION (RAFDA)

Consider a D-dimensional dynamical system @ = F(u) which is accessed at equidis-
tant times ¢, = nAt of interval length At > 0, n > 0, by partial noisy observations

yo = Gu, +T'’n, (1)

with u,, = u(t,), observation operator G : RP — R? measurement error covariance
matrix I' € R¥™? and d-dimensional independent and normally distributed noise n,,,
that is, m, ~ N(0,1).

The aim we set out to pursue is the following: using noisy observations y; for
0 < j < n find an approximation to the propagator map which maps previous ob-
servations (or a suitable subset of them) to the unobserved variable y,,; at future
time t,,1. In the Markovian case d = D with G = I the propagator map is only
a function of the observation at the current time ¢,. This case was studied in our
previous work (Gottwald and Reich, [2021)). Here the focus is on partial observations
with d < D for which the propagator map is non-Markovian. Our method judiciously
incorporates three separate methods which we discuss in the following three subsec-
tions: 1.) Takens embedding and delay coordinates to deal with the aspect of having
only access to partial observations and the resulting non-Markovian propagator map,
2.) random feature maps which form our approximation for the propagator map and
3.) data assimilation and EnKFs to control the observation noise and to determine
the parameters of the random feature maps leading to the desired surrogate model.

2.1. Delay coordinates. When only partial observations are available Takens’ em-
bedding theorem allows to represent the dynamics faithfully by means of phase space
reconstruction and delay vectors (Takens, [1981); |[Sauer et al., [1991; Sauer and Yorke,
1993). Takens’ embedding theorem assumes noise-free observations, but has been
successfully applied to noise-contaminated observations (Kantz and Schreiber, 2004;
Schreiber, [1999; [Small, 2005; |Casdagli et al., [1991; [Schreiber and Kantz, [1995).

We describe here the key steps for scalar-valued observations, that is, d = 1 in ().
Hence, given a time-series y;, define the m-dimensional delay vectors

Cg = (y;)m y;)z+7—> y;)z+27—a () yg+(m—1)7—)T (2)

for n = 0,..., N, with integer delay time 7 > 0. If the underlying dynamics lies
inside an D-dimensional phase space, then the delay reconstruction map y2 — ¢?° is
an embedding provided the embedding dimension is sufficiently large with m > 2 Dy,
where Dy, denotes the fractal box-counting dimension of the attractor (Sauer et all,
1991; [Sauer and Yorke, 11993). Under these conditions, the reconstructed dynamics
¢, ¢y, ¢35, ... in R™ faithfully represents the underlying dynamics. For finite time
series, the choice of the embedding dimension m and the delay time 7 are crucial and
need to be carefully chosen. See for example Kantz and Schreiber (2004); [Schreiber
(1999);|Casdagli et _al. (1991); Schreiber and Kantz (1995); Small (2005) for a detailed
discussion. Specifically, if the embedding dimension is chosen too small, then the

delay reconstruction map does not represent the underlying dynamics, if it is chosen
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too large, the reconstruction involves redundancy reducing the length of the delay
vector time series €. We choose the embedding dimension m using the false nearest
neighbour algorithm (Kennel et all, [1992). The embedding dimension is chosen as
the smallest value m such that the number of false nearest neighbours is less than
10%. False nearest neighbours (at dimension m) are defined as those points ¢° for
which the Euclidean distance to their nearest neighbour changes upon increasing the
embedding dimension to m + 1 by a factor of 10 (relative to their smallest Euclidean
distance). An appropriate delay time 7 is determined by determining the time for
which the average mutual information has its first zero-crossing (Fraser and Swinney,
1986). We use the command phaseSpaceReconstruction from MATLAB (2020)
which implements these algorithms to determine the embedding dimension m, the
delay time 7 as well as generating the delay vectors.

The extension of the delay vectors (2)) to multivariate observations () is straight-
forward and leads to delay vectors of dimension D, = dm.

2.2. Random feature maps. In this subsection we describe the traditional random
feature map network architecture (Rahimi and Recht), 2008; Rahimi and Recht, 2008;
Bach, 2017ab; [Sun et al!, 2019). This is a particularly easy-to-implement network
architecture in which the input is given as a linear combination of randomly sampled
nonlinear functions of the input signal, and the coefficients of this linear combination
are then learned from the whole available training data set via linear ridge regression.
Our RAFDA extension, as described further below, instead determines the coefficients
sequentially within a data assimilation procedure.

Applied to our setting, the delay coordinates ¢ € RP<*! are first linearly mapped
by a random but fixed linear map into a high-dimensional subspace of RPr with
D, > D; and then nonlinearly transformed by feature maps ¢ as

o(¢) = tanh(Wi,¢ + by,) € RP! )
with weight matrix
Wi, = (Win 1, ..., Wi p,)T € RPP
and a bias
bin = (bint, - - -, bin,p,) " € RV

The weight matrix and the bias are chosen randomly and independently of the ob-

served delay coordinates {2, n =0, ..., N, according to the distributions p(w;,) and
p(bin), respectively. We choose here
(Wfin)ij ~ Z/{[—w, w] and (bin>i ~ U[—b, b] (4)

The choice of the hyperparameters w > 0 and b > 0 is system-dependent and needs
to ensure that the observations cover the nonlinear domain of the tanh-function. The
reader is referred to |Gottwald and Reich (2021) for further details. Note that the

hyperparameters Wi, and by, are kept fixed once drawn and are not learned. This
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restriction is made for computational simplicity and can be relaxed following [E et al.
(2020); Rotskoff and Vanden-Eijnden (2018).

An approximation of the propagator map in the delay coordinates ¢ € R”¢ is then
provided by

Ys(C) = Wo(Q), ()

where the matrix W € RP<*Pr maps back into the delay coordinate vector space to
approximate the delay vector at the next time step, and is to be learned from the
noisy delay vectors ¢, n = 0,...,N. More specifically, the weights W should be
chosen such that

G~ Us(Cy), (6)

which is achieved by minimizing the regularized cost function

1 a o o 2 B 2
LW) =5 3716 — Bs(Ga)IP+ S 1w
n=1

1, I6;
=120 - Wi+ J|wk, @
where ||A||r denotes the Frobenius norm of a matrix A, Z° € RPN is the matrix
with columns ¢°, n=1,..., N, and ® € RP"*¥ is the matrix with columns
d)n = ¢( 2—1)7 (8>
n=1,...,N. The parameter § > 0 is used for regularization. The solution to the
minimization problem for (@) can be explicitly determined as
Wik = 2°®" (887 + g1) ", (9)

and uses all available training data Z° at once. In |Gottwald and Reich (2021) it
was shown that standard random feature maps have difficulty dealing with noisy
observations, and instead it was proposed to learn the output weights W sequentially
within a data assimilation procedure which is described in the next section.

2.3. Data assimilation. RAFDA uses a combined parameter and state estimation
within a data assimilation procedure. The main idea is to use the surrogate prop-
agator (Bl) consisting of the random feature maps as the forecast model within an
EnKF and to estimate sequentially the weight matrix W. Concretely, we consider
the forecast model for given weight matrix W2 _; and given delay coordinates ¢%_;
as

¢ = Wi 0(Ci) (10a)
W, =W, (10b)

where the superscript f denotes the forecast and the superscript a denotes the analysis

defined below.
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To incorporate the parameter estimation into an EnKF analysis step, we consider
an augmented state space x = (¢T,wT)" € RP=*! with D, = D¢(1 + D,). Here
w € RP<Prx1 ig the vector consisting of all matrix elements of the weight matrix W
with its entries defined block-wise, that is, wi.p, = (Wiy,...,Wip )T, wp, 410p, =
(War, ..., Wsp )T and so forth.

We now also treat xf and &2, n > 0 as random variables. Assuming a Gaussian
distribution for f_,, the analysis step for the mean T2 is given by

T, =, - K,(Hz, - (;) (11)

n

with the observation matrix H € RP¢*P= defined by Hz = ¢ and the measurement
error covariance matrix of the delay vectors given by I'c = I T' € RP<*P¢ (compare
(). Here A ® B denotes the Kronecker product of two matrices. The Kalman gain
matrix K, is given by
K,—P'H" (HP H" +T%)" (12)
with forecast covariance matrix
P, = (&, ®,)
_( Ged) (¢ el
(w, ®¢,) (w, ®w,) )
The angular bracket denotes the expectation value and the hat denotes the pertur-

bation of & from its mean & xf). asin
n )

n = n
: —f
Cn = Cn— G- (14)
Since Hx = (, we can separate the state and parameter update of the Kalman
analysis step () as

(13)

—a —f c\—1
Co = Cn— Pl (Pye +T%) AL (15a)
—a oy —1
wh =w, — P, (P +T%)  AI, (15b)
with innovation
AL :=C, — ¢ (16)

and covariance matrices PcfC = ({f @ ¢f) and Pﬁ,c = (w! ® ¢f). Note that the delay
vectors ¢° are correlated in time as after each 7 steps (m — 1)d components reappear.
This implies that the setting described above is not strictly Bayesian. However, if
the delay time 7 is sufficiently large the dynamics of the combined forecast-analysis
dynamical system will have sufficiently decorrelated and for practical purposes we
can treat the observations as independent.

To implement the Kalman analysis step, we employ a stochastic EnKF
(Burgers et _al., [1998; [Evensen, 2006). This allows to estimate the forecast covari-

ances adapted to the dynamics and has advantages for the nonlinear forward model
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(I0) and the non-Gaussian augmented state variables. Consider an ensemble of states
X € RP=*M consisting of M members ) € RP=*1 =1, ... M, that is,

X = [:c(l), x? .. :c(M)] , (17)
with empirical mean
1 e .
T = sz@, (18)
i=1
and associated matrix of ensemble deviations
X = [ar;(l) —E,w(z)—i,...,w(w—i] . (19)

Ensembles for the forecast are denoted again by superscript f and those for the analysis
by superscript a. In the forecast step each ensemble member is propagated individ-
ually using (I0), updating the previous analysis ensemble X2 ;| to the next forecast
ensemble X!. The forecast covariance matrix (I3)) used in the analysis step (1] can
be estimated as a Monte-Carlo approximation from the forecast ensemble deviation
matrix X,fl via

1
Pf =
"M -1

In the stochastic ensemble Kalman filter observations ¢ receive a stochastic per-
turbation ny(f) € RP<x1 i =1,..., M, drawn independently from the Gaussian obser-
vational noise distribution A/(0,T¢). The associated ensemble of perturbed observa-

tions ZP € RP<*M ig given by

XI(XHT ¢ RP=xDe, (20)

ZE = |:C1?L - 7(L1)> C;)L - 771(12)> CIREI) Cg - 7(LM)} . (2]_)
The EnKF analysis update step is then given by
X*=X' - K,AIL, (22)

with the Kalman gain defined by (I2) using (20) and stochastic innovation
AL, =HX! — zp. (23)

To mitigate against finite ensemble size effects covariance inflation with P! — o P! is
typically introduced with o > 1 (Anderson and Anderson, 1999). Such multiplicative
inflation preserves the ensemble mean but increases the forecast error covariance.
In (Gottwald and Reich (2021), which considers the fully observed case with D = d,
localisation was employed by only considering covariances between a component of
the state variable and its associated block in the parameter w. This localisation
was found here not to be advantageous; we believe that this is due to the fact that
each component of the delay vectors appears in all components at different times.
We therefore do not perform any localisation in the numerical simulations presented

below.
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The initial ensemble X is initialized as ¢ ~ N(¢5, T%) and wi ~ N (wrg,v1)
where wrg is the vectorial form of the solution Wi to the ridge regression formula-
tion (@) and v > 0 is a parameter specifying the spread of the initial ensemble.

We remark that the EnKF does not minimize the cost function () but rather
approximates the posterior distribution in the weights W given the observed delay
vectors 2, n = 0,..., N, under the assumed measurement model () and vanishing
model errors in the propagator (). Including stochastic model errors into RAFDA
would be straightforward.

The ensemble forecast step defined by (I0), together with the EnKF analysis step
[22)) constitute our combined RAFDA method. We run RAFDA for a single long
training data set of length N. The approximation of the propagator map is given by
the random feature model (B]) where the weight matrix W is given by the ensemble
mean of the weight matrix W at final training time ¢ty = AtN and is denoted by

WRAFDA-
We summarize our RAFDA method in Algorithm [II

Algorithm 1: Random Feature Map DataAssimilation (RAFDA)

input data : time series y,, n =0,..., N

parameters: random feature maps: dimension D,., internal parameters
vvin c RDT-XDC’ bin c ]RDT-xl
EnKF: ensemble size M,
measurement error covariance
' = I®T, inflation «, initial
ensemble parameters (wrg, )

PERFORM THE FOLLOWING:
delay coordinate embedding:
form delay vectors ¢° € RP¢*1;
initializing ensemble:
set X§ with members drawn according to
6 ~ N(¢, ) and wf ~ N(wrr, 71);
forn=1: N do
forecast X? , — X!: each ensemble member is propagated according
to
G =W 6(Choy);
Wrﬁ = Wi
data assimilation analysis update:
inflation: P! + aP!
X; =X, - K, (HX] - Z});

oﬁtput : Wrarpa = ensemble average of Wiy




3. NUMERICAL RESULTS

We consider the Lorenz-63 system (Lorenz, 1963)

y=10(y — ) (24a)
T=28x—y—uxz (24b)
z= —§z+xy (24c¢)

with u = (z,y,2)" € R3. Observations are only available for z, i.e. G = (1 0 0) and
d = 1in (), and are taken every At = 0.02 time units. We employ observational noise
with measurement error covariance I' = nI and use = 0.2 unless stated otherwise
(compare ([I])). We ensure that the dynamics evolves on the attractor by discarding
an initial transient of 40 model time units. The optimal embedding dimension and
delay time for these parameters are estimated as m = 3 and 7 = 10. In the following
times are measured in units of the Lyapunov time ¢\, with the maximal Lyapunov
exponent Apa., = 0.91.

We use a reservoir of size D, = 300 with internal parameters w = 0.005 and b = 4,
and an ensemble size of M = 300 for the ensemble Kalman filter. The regularization
parameter is set to 3 = 2 x 107® and the inflation parameter to o = 1 + 0.01At =
1.0002. We employ a training set of length N = 4,000.

To test the propensity of RAFDA to learn a surrogate model (&) we generate a
validation data set Cyaia(tn), m > 0 sampled with the same rate as the training data
set with At = 0.02 from the z-component of the Lorenz-63 system (24)). To quantify
the forecast skill we measure the forecast time 77, defined as the largest time such
that the relative forecast error €(t,) = ||Catia(tn) — CulI?/||Cvatia(tn)]1? < 6, where the
¢, are generated by the learned surrogate model. We choose here 6 = 40.

The forecast skill depends crucially on the choice of the randomly chosen internal
parameters (Wi, by,) as well as on the training and validation data set. We there-
fore report on the mean behaviour over 500 realisations, differing in the training and
validation data set, in the random draws of the internal parameters (Wi, by,) and
in the initial ensembles for RAFDA. Each training and validation data set is gener-
ated from randomly drawn initial conditions which are evolved independently over 40
model time units to ensure that the dynamics has settled on the attractor.

In the following, we compare RAFDA with standard random feature maps using
linear regression (LR). Figure [[l shows the empirical histogram for both RAFDA and
LR when the surrogate model (B]) is trained on data contaminated with noise of
strength 7 = 0.2. The mean forecast time obtained by RAFDA is 7y = 2.12 and is
roughly three times larger than the forecast time obtained using standard random
feature maps which yields 7; = 0.77. Furthermore, it is seen that the distribution
of forecast times for RAFDA is heavily skewed towards larger forecast times. As
expected, these forecast times are smaller than for the fully observed case with G =1,
as considered in (Gottwald and Reichl (2021), where extreme values of 7y = 9.28 were

reported. Figure 2 shows a typical example of x(t) for a forecast time of 7, = 2.6,
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which is close to the mean forecast time. Figure[Blshows that the surrogate model ([
obtained using RAFDA produces a model which very well approximates the long-time
statistics of the full Lorenz system (24]) in the sense that its trajectories reproduce the
attractor in delay-coordinate space. Contrary, LR does not lead to surrogate models
which are consistent with the dynamics of the Lorenz system (24]). Reproducing
dynamically consistent trajectories is, of course, paramount for the purpose of using
such surrogate models for long-time integration when the interest is rather on the
overall statistical behaviour rather than on accurate short-term forecasts.

The ability of RAFDA to control noise present in a training data set depends on
the strength 7 of the noise. We show in Figure [ results of the mean forecast time for
a range of 7 € [6.25 x 107%,4.3 x 10°]. RAFDA outperforms standard random feature
maps with linear regression for noise levels logn < 5. Moreover, there is a robust
plateau with mean forecast times of around 7; ~ 2 for a large range of noise strengths
with n < 1. Notice that for n — 0, maybe surprisingly, the mean forecast time of
RAFDA does not converge to the one obtained by standard random feature maps but
remains threefold larger. This was discussed in |Gottwald and Reich (2021): although
LR achieves a smaller value of the cost function ([7]) for n < 1 it does not generalise as
well to unseen data. The cost function is not zero as generically the output data do not
lie in the span of the random feature maps. It is important to note that LR with 5 > 0
assumes model error (which is not present in our application of simulating the Lorenz-
63 system (24)) rather than observational error. We further note that, for very large
noise levels logn > 5, the forecast times 7y become zero for RAFDA. This is due to the
data assimilation component of our method and is an instance of the well-documented
problem of filter divergence (Ehrendorfer, 2007; [Nadiga et al., [2013). More precisely,
in finite-size ensembles, most ensemble members may align with the most unstable
direction (Ng et all, 2011) implying a small forecast error covariance. In combination
with large observation noise this leads to the filter trusting its own forecast and the
analysis is not corrected by incoming new observations. Filter divergence can be
avoided by increasing the ensemble size and/or employing covariance inflation. We
remark that we abstained here from fine-tuning all hyperparameters.

4. DISCUSSION

We proposed a new data-driven method to estimate surrogate one-step forecast
maps from noisy partial observations. Our method determines the surrogate map
in the reconstructed phase space for delay vector coordinates, thereby dealing with
the problem of having only access to partial observations. We employed the RAFDA
framework in the reconstructed phase space, in which the surrogate map is con-
structed as a linear combination of random feature maps the coefficients of which are
learned sequentially using a stochastic EnKF. We showed that learning the coeffi-
cients of the linear combination of random feature maps sequentially with incoming

new observations rather than by learning them using the method of least-squares on
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[T RAFDA

FIGURE 1. Empirical histogram of forecast times 74 in units of the Lya-
punov time for noise contaminated observations with n = 0.2. Results
are shown for standard LR and for RAFDA.

the whole data set greatly increases the forecast capability of the surrogate model
and significantly controls the measurement noise.

Our numerical results showed that the quality of the surrogate model exhibits some
degree of variance, depending on the draw of the arbitrarily fixed internal parameters
of the random feature map model W, and b;,. Being able to choose good candidates
for those parameters or learning them in conjunction with the rest of the surrogate
model would greatly improve the applicability of the method. In our previous work
we provided some guidance on what constitutes good hyperparameters enabling good
learning (Gottwald and Reichl, 2021). How to choose actual optimal values for these
hyperparameters requires, for example, an optimization procedure wrapped around
the RAFDA method described here, and is planned for future research. Apart from
W,, and b;, there are numerous hyperparameters which require tuning, such as the
regularization parameter (3, the inflation parameter «, the size and the variance of the
initial ensemble, as well as the assumed observational error covariance I'. To obtain
optimal performance of RAFD these would need to be tuned which can be done by

additional optimization procedures (Mdjga_e&jﬂ, lZQlQ)

The random feature map architecture is closely related to reservoir computers

(Jaegerl, 2002; Taeger and Haas, 2004; Pathak et all, 2018a; lJiingling et all, 2019). In
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Ficure 2. Comparison of a representative validation time series
(truth) and the corresponding RAFDA forecast, initialized with the
first three data points from the truth. The measured forecast time of
Tr = 2.6 is close to the mean forecast time.

reservoir computers the incoming signal is used in conjunction with an internal reser-
voir dynamics to produce the output. It is argued that this helps to take into account
non-trivial memory of the underlying dynamical system. It will be interesting to see
if random feature maps in the space of delay vectors performs as well as reservoir
computers. For systems with a fast decay of correlation such as the Lorenz 63 system
the additional reservoir dynamics did not lead to an improvement of the surrogate
map (Gottwald and Reichl, [2021), but incorporating memory for systems with slow
decay of correlation taking into account information from past observations may be
important.
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