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Abstract. The computationally cheap machine learning architecture of random feature maps can be viewed
as a single-layer feedforward network in which the weights of the hidden layer are random but fixed and

only the outer weights are learned via linear regression. The internal weights are typically chosen from a

prescribed distribution. The choice of the internal weights significantly impacts the accuracy of random
feature maps. We address here the task of how to best select the internal weights. In particular, we consider

the forecasting problem whereby random feature maps are used to learn a one-step propagator map for a

dynamical system. We provide a computationally cheap hit-and-run algorithm to select good internal weights
which lead to good forecasting skill. We show that the number of good features is the main factor controlling

the forecasting skill of random feature maps and acts as an effective feature dimension. Lastly, we compare
random feature maps with single-layer feedforward neural networks in which the internal weights are now

learned using gradient descent. We find that random feature maps have superior forecasting capabilities

whilst having several orders of magnitude lower computational cost.

1. Introduction

Estimation and prediction of the state of a dynamical system evolving in time is central to our under-
standing of the natural world and to controlling the engineered world. Often practitioners are tasked with
such problems without the knowledge of the underlying governing dynamical system. In such scenarios a
popular approach is to reconstruct the dynamical model from observations of the system [31, 1, 5]. Predicting
the future state of the system from these reconstructions is particularly challenging for chaotic dynamical
systems. Chaotic dynamical systems cannot be accurately predicted beyond a finite time known as the
predictability time due to their sensitive dependence on the initial conditions.

In recent times machine learning has achieved remarkable progress in learning surrogate models for dy-
namical systems from given data. Recurrent networks such as Long Short-Term Memory networks [39, 41]
and gated recurrent units [8] have been successfully applied in a plethora of time series prediction tasks
[9, 6, 22]. These methods however often contain learnable parameters of the order of O(106), and require
substantial fine tuning of hyperparameters and costly optimization strategies [21]. An attractive alternative
is provided by random feature maps [36, 37, 33] and its extensions such as echo state networks and reservoir
computers [30, 29, 35, 32]. These architectures can be viewed as a single-layer feedforward network in which
the weights and biases of the hidden layer, the so called internal parameters, are randomized before training
and then are kept fixed. This renders the costly nonconvex optimization problem of neural networks to
a simple linear least-square regression for the outer weights. The output of random feature maps and its
extensions is hence a linear combination of a high-dimensional randomized basis. These methods have been
shown to enjoy the universal approximation property, which states that in principle they can approximate
any continuous function arbitrarily close [38, 3, 16, 12].

We focus here on classical random feature maps [36, 37, 33] which have recently been shown to have
excellent forecasting skill for chaotic dynamical systems [15, 14]. The fact that random feature maps enjoy
the universal approximation property does not provide practitioners with information on how to choose the
internal parameters. The internal parameters are typically drawn from some prescribed distribution such
as the uniform distribution on an interval or a Gaussian distribution. The forecasting capability of the
learned surrogate map sensitively depends on the choice of the distribution [15]. To generate good internal
parameters which lead to improved performance of random feature maps, several data-independent methods
such as Monte Carlo and quadrature based algorithms as well as data-dependent methods such as leverage
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score based sampling and kernel learning have been proposed; for a detailed survey see [23]. In recent work
Dunbar et al [34] choose the distribution of the random weights from a parametric family. The parameters
are chosen to optimize a cost function motivated from Empirical Bayes arguments, with the optimization
performed with derivative-free Ensemble Kalman inversion. Here we introduce a computationally cheap,
non-parametric, optimization-free and data-driven method to draw internal parameters which lead to im-
proved forecasting skill. We argue that good features, corresponding to good internal parameters, need to
explore the expressivity of a given activation function. We consider here as an example the tanh activation
function. To allow for good expressivity, good parameters should neither map the training data into the
linear range of the activation function nor into the saturated range in which different inputs cannot be dis-
cerned. This leads us to a definition of good features corresponding to good internal parameters. We show
that the set of good internal parameters is non-convex but can be expressed as a union of convex sets. To
sample from a convex set we employ a hit-and-run algorithm [40, 43]. Hit-and-run algorithms are a class
of Markov chain Monte Carlo samplers known for their fast mixing times in convex regions [26, 28, 20]. In
recent years, hit-and-run algorithms have also been analyzed for sampling nonconvex regions [7, 17, 2].
The hit-and-run algorithms we develop allow us to generate any desired ratio of good features. We show
in numerical experiments that the ratio of good features as defined by our criterion controls the forecasting
capabilities of the learned surrogate map. Moreover, we illustrate the mechanism by which the least-square
solution enhances good features and suppresses bad ones.
A secondary objective of our work is to demonstrate that a random feature map typically achieves superior
forecasting skill when compared to a neural network of the same architecture, trained with gradient descent,
while being several orders of magnitude cheaper computationally. We show that the bad performance of the
single-layer feedforward network can be attributed to the optimization procedure not being constrained to
the set of good internal parameters. This can potentially lead to new design and improved training schemes
for more complex networks.

The outline of this paper is as follows. In Section 2 we describe the setup of data-driven surrogate maps
for dynamical systems and how to assess their forecasting capabilities. Section 3 introduces random feature
maps and illustrates how the choice of the internal weights effects the forecasting capabilities of the associated
trained surrogate maps. Section 4 defines the set of good internal parameters and introduces hit-and-run
algorithms to uniformly sample from this set. Section 5 illustrates the effect of sampling from the good
set of internal parameters on the forecasting skill and how the least-square training learns to distinguish
good features associated with good parameters from those associated with internal parameters drawn from
the complement of the good set. Section 6 compares random feature maps with single-layer feedforward
networks in which the internal parameters are learned using backpropagation, and establishes that random
feature maps with good parameters far outperform the single-layer feedforward neural network. Finally, we
conclude in Section 7 with a summary of our results and possible future extensions.

2. Dynamical setup

We consider the forecasting problem for chaotic dynamical systems. Consider the following D-dimensional
continuous-time system,

u̇ = F(u), (1)

with initial data u(0) = u0, which we observe at discrete times tn = n∆t for n = 1, 2, . . . , N . We consider here
the case when the full D-dimensional state is observed and observations are noise-free. For the treatment of
noisy observations and partial observations see [15, 14]. We view the dynamical system of these observations
in terms of a discrete propagator map,

un+1 = Ψ∆t(un). (2)

The aim of data-driven modelling is to construct a surrogate map ΨS from the training data given by the
observations that well approximates the true propagator map Ψ∆t of (2). In the following we denote variables
associated with the surrogate map with a hat, and write the learned surrogate dynamical system as

ûn+1 = ΨS(ûn), (3)
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with initial data û0 = u0. Throughout this work we use the D = 3-dimensional Lorenz-63 system [24, 25]
with u = (x, y, z) and

ẋ = 10(y − x),

ẏ = x(28− z)− y,

ż = xy − 8

3
z,

(4)

as the underlying continuous dynamical system (1). The Lorenz-63 system is chaotic with a positive Lya-
punov exponent of λmax ≈ 0.91 [42]. We generate independent training and validation data sampled at
∆t = 0.02 by randomly selecting initial conditions u0. We discard an initial transient dynamics of 40 time
units to ensure that the dynamics has settled on the attractor.

To test the predictive capability of a surrogate model, we define the forecast time τf associated with the
surrogate model,

τf = inf

{
tnλmax :

∥ûvalidation
n − uvalidation

n ∥22
∥uvalidation

n ∥22
> θ

}
. (5)

The forecast time is measured in Lyapunov time units and measures when the prediction of the learned
surrogate map (3), initialized at ûvalidation

0 = uvalidation
0 , significantly deviates from the true validation

trajectory uvalidation
n . We employ here an error threshold of θ = 0.05.

3. Random feature maps

We consider random feature maps to learn the surrogate map (3) with

ΨS(u) = Wσ(Winu+ bin), (6)

where u is theD-dimensional state vector,Win ∈ RDr×D is the internal weight matrix, bin ∈ RDr the internal
bias and W ∈ RD×Dr the outer weight matrix. The nonlinear activation function σ is applied component
wise and we choose here σ = tanh. Random features are characterized by the internal weights (Win,bin)
being drawn before training from a prescribed distribution p(win) and p(bin). The internal weights remain
fixed and are not learned as it would be the case for a single-layer feedforward network which has the same
architecture as in (6). Random feature maps can hence be seen as a linear combination of Dr-dimensional
random features vectors

ϕ = σ(Winu+ bin). (7)

In the following we refer to components of this feature vector as features.
The matrix W, controlling the linear combinations of the feature vectors (7), is learned from training

data U ∈ RD×N the columns of which are the observations un, n = 1, . . . , N of the system (2). We do so
by solving the following regularized optimization problem,

W∗ = argmin
W

L(W;U), (8)

with loss function

L(W;U) = ∥WΦ(U)−U∥2 + β∥W∥2. (9)

Here ∥ · ∥ denotes the Frobenius norm, β > 0 is a regularization hyperparameter, and Φ(U) is the feature
matrix whose n-th column is given by,

ϕ(un−1) = tanh (Winun−1 + bin). (10)

The solution of the optimization problem (8) is given explicitly by linear ridge regression as

W∗ = UΦ(U)⊤(Φ(U)Φ(U)⊤ + βI)−1. (11)

The low computational cost of random feature maps makes them a very attractive architecture.
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Figure 1. Contour plots of the mean and standard deviation of the forecast time τf com-
puted using Win,bin sampled uniformly from intervals of variable size [−w,w] and [−b, b]
respectively. Samples were drawn for grid points (w, b) on a 30 × 30 regular grid over the
domain (0, 0.4) × (0, 4.0). Averages are taken over M = 100 realizations per grid-point
(w, b), for a feature dimension Dr = 300, training data length N = 20, 000 and regulariza-
tion parameter β = 4× 10−5, using fixed training and validation data.

3.1. The effect of the internal weights on the performance of random feature maps. Random
feature maps enjoy the universal approximation property [38, 3] and hence, in principle, for a sufficiently high
feature dimension Dr can approximate continuous functions arbitrarily close. The universal approximation
property however does not guide practitioners how to find the internal weights (Win,bin) which allow for
such an approximation. The main objective of this paper is to sample the internal parameters in a way that
increases the forecasting skill of the random feature maps.

Indeed, the forecasting skill of a learned random feature map surrogate model (3) sensitively depends
on the internal weights. To illustrate the effect of the hyperparameters (Win,bin) on the forecast time
τf we uniformly sample Win and bin from the intervals [−w,w] and [−b, b], respectively, with (w, b) ∈
(0, wmax) × (0, bmax). In particular, we use 30 × 30 regular grid points over (0, wmax) × (0, bmax) with
wmax = 0.4 and bmax = 4.0, and probe the statistics by generating M = 100 feature maps for each grid
point, while keeping the training data and the validation data fixed for all realizations to focus on the effect
of the internal weights. We fix the feature dimension at Dr = 300 and the regularization parameter at
β = 4× 10−5. Figure 1 shows a contour plot of the mean and the standard deviation of the forecast time τf
over the domain of the internal weights. We can clearly see that certain regions in the hyperparameter space
are associated with good performance with mean forecast times τf > 4 while other regions produce poor
mean forecast times. Moreover, regions in the hyperparameter space corresponding to high mean forecast
times τf may have large variance.

Ideally, we would like parameters which have both, high mean forecast time and low variance so that the
performance is not dependent on the particular training data used. It is clear that if the internal weights
(Win,bin) are chosen sufficiently small, the associated features (7) are essentially linear with ϕ ≈Winu+bin

for all input data u. This would render the random feature maps a linear model which are known to be
incapable of modelling nonlinear chaotic dynamical systems [10, 4]. On the other extreme, for sufficiently
large internal weights a tanh-activation function saturates, and one obtains ϕ ≈ ±1 independent of the
input data u, severely decreasing the expressivity of the random feature map. This suggests that one should
choose internal weights which sample the tanh-activation function in its nonlinear non-saturated range. This
is illustrated in Figure 2. We shall call features linear, if for all data u the argument of the tanh-activation
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function lies within the interval centred around the origin in [−L0, L0]. Those features obtained by the
tanh-activation function that are approximately ±1 for all input data u, i.e. where the arguments of the
tanh-activation function lie in either of two unbounded sets (−∞,−L1], [L1,+∞), we label saturated features.
Those features which for all input data are neither linear nor saturated, i.e. for which the argument of the
tanh-activation function lies in either of the two intervals (−L1,−L0) or (L0, L1), are labelled good features.
We use L0 = 0.4 and L1 = 3.5 to define good, linear and saturated features throughout this paper.

Figure 2. Domain and range of features produced by a tanh-activation function with
L0 = 0.4 and L1 = 3.5, leading to linear, saturated and good features respectively.

To illustrate the detrimental effect of saturated features on the forecasting skill of random features we
select from the random feature maps which were sampled in Figure 1, those if they fall into two groups,
those that lead to particularly large forecast times τf > 8 and those that lead to particularly low forecast
times τf < 0.5. For each of those feature vectors we determine the average fraction Fs of how much of the
data input u is mapped to the saturated values ±1, by probing for 800 randomly selected data points un.
For each group we randomly select 500 samples from the 90, 000 random feature maps used in Figure 1.
Figure 3 shows that the histograms of Fs for these two groups are clearly distinct. The group with low
forecast times τf < 0.5 has a significantly higher probability of having more saturated features compared
to the group with large forecast times τf > 8. The pronounced peak at Fs = 0 is a sampling effect: when
sampling uniformly from the grid (0, wmax) × (0, bmax) with wmax = 0.4 and bmax = 4.0, it is much more
likely to draw parameters which correspond to non-saturated features. Such random feature map samples
are much more likely to have higher forecast times and hence are concentrated entirely in the τf > 8 group.

In the following Section we develop a computationally cheap algorithm to sample from the set of good
weights and show in Section 5 how this increases the forecasting skill of random feature surrogate maps.

4. How to sample good internal weights

We would like our random feature maps to produce good features ϕ(u) = Winu + bin by restricting
(Win,bin) to be neither linear nor saturated for all training data un. To that end, we select (Win,bin) such
that

L0 < |Winun + bin| < L1, ∀ n = 1, 2, . . . N. (12)

The lower bound L0 controls the linear features and the upper bound L1 controls the saturated features (cf.
Figure 2). Note that (12) is a vector inequality and is equivalent to Dr scalar inequalities. Denoting the i-th
row of Win with win

i and the i-th entry of bin with bini , for each i ∈ {1, 2, . . . Dr} we require

L0 < |win
i · un + bini | < L1, ∀ n = 1, 2, . . . N. (13)
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Figure 3. Empirical histograms of average fraction of saturated features Fs for random
feature maps corresponding to large forecast times with τf > 8 and to low forecast times
with τf < 0.5. Each group has 500 samples and the histograms depict the probability of
having a certain value of Fs in each group.

Definition 4.1. We call the i-th row (win
i , bini ) of the internal parameters (Win,bin) good if it satisfies (13).

Similarly, we call (win
i , bini ) linear if

|win
i · un + bini | ≤ L0, ∀ n = 1, 2, . . . N, (14)

and we call (win
i , bini ) saturated if

|win
i · un + bini | ≥ L1, ∀ n = 1, 2, . . . N. (15)

For a streamlined discussion we call the i-th column of the outer weight matrix W, good if the associated
i-th row of the matrix of internal weights (Win,bin) is good and so on.

This categorization of rows of the internal parameters is useful for investigating the effects of different
realizations of the random feature map on its forecasting skill. Note that this is not an exhaustive classifica-
tion since there exist rows that satisfy different inequalities for different observations un and do not satisfy
(13) for the whole data set U. Although not considered here, such mixed rows may be an interesting topic
for further exploration.

We denote the set of good internal weights satisfying (12) by Ωg. The solution set Ωg is not convex, but
can be written as the disjoint union of two convex sets with

Ωg = S− ∪ S+, (16)

where

S− = {(w, b) ∈ RD+1 : −L1 < w · un + b < −L0 ∀ n = 1, 2, . . . , N}, (17)

S+ = {(w, b) ∈ RD+1 : +L0 < w · un + b < +L1 ∀ n = 1, 2, . . . , N}. (18)
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Since the convex subsets are reflections of each other with

S− = −S+, (19)

it suffices to sample from only one of these convex sets and then uniformly sample the sign of the internal
weights to sample from Ωg. Hence, the sampling problem is effectively a convex problem. Analogously, we
define Ωl and Ωs to be the solution sets to the problems (14) and (15) respectively, and again sampling these
sets are also convex problems.

We present in the next two subsections algorithms to effectively sample from the sets Ωg,l,s. A naive
choice of sampling algorithm would be to uniformly sample from the D-dimensional hypercube with the 2D

corners defined by the observed extremal training data points, and checking the inequality (12), if we want
to sample from Ωg, let’s say. This, however, is computationally very costly as typically the solution set only
occupies a small region within that hypercube. Instead, we begin with a hit-and-run algorithm sampling
from Ωg in Section 4.1 and then present a faster more efficient hit-and-run algorithm to sample from an
equivalent restricted solution set in Section 4.2.

4.1. Standard hit-and-run sampling of good internal parameters. We now describe a computation-
ally cheap and easy to implement numerical algorithm to uniformly sample from the solution sets Ωg,l,s.
We shall employ hit-and-run algorithms [40, 43]. To uniformly sample a set Ω with hit-and-run, one starts
from a feasible point inside the set, considers the line through that point in a randomly chosen direction,
and then randomly picks a point on the intersection of that line and the set Ω as a new point. This process
is then repeated to generate further samples. For convex sets the hit-and-run samples converge to uniform
samples in total variation distance. The convergence depends polynomially on the number of iterations and
dimension with the polynomial dependence on dimension being of low order [26, 2, 27]. This and the fast
mixing properties make hit-and-run algorithms an attractive method to uniformly sample from Ωg,l,s.

We sample the augmented internal weight matrix (Win,bin) row by row. Each sample lies then in a
D+1-dimensional search space for (win

i , bini ). Due to (19) it suffices to sample from S+. In order to perform
hit-and-run, given a point, we need to efficiently determine if a point lies in S+. Focusing on a convex conical
subset of S+, it turns out that we can determine if a point belongs to S+ by checking just two inequalities.
Define the convex cone

V (s, b) = {(w, b) : sgn(wi) ∈ {si, 0} ∀ i = 1, 2, . . . , D}, (20)

where s is aD-dimensional sign vector with entries ±1 labelling the 2D corners of aD-dimensional hypercube.
To control the range of the training data set, we further define the vectors x∓(s) ∈ RD as

x−,i(s) =

 min
1≤n≤N

un,i, if si = 1

max
1≤n≤N

un,i, otherwise

x+,i(s) =

 max
1≤n≤N

un,i, if si = 1

min
1≤n≤N

un,i, otherwise,

(21)

where un,i is the i-th entry of the n-th training data point. Now for (w, b) ∈ V (s, b) we have,

max
1≤n≤N

(w · un + b) ≤ w · x+(s) + b,

and

min
1≤n≤N

(w · un + b) ≥ w · x−(s) + b.

(22)

Therefore, for (w, b) ∈ V (sgn(w), b), we have (w, b) ∈ S+ if

w · x−(sgn(w)) + b > L0,

and

w · x+(sgn(w)) + b < L1

(23)

The feasibility inequalities (23) simply check if the internal weights (w, b) map the training data into the
smallest D-dimensional hypercube that contains the training data.
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To initialize the hit-and-run algorithm with a feasible point we choose (w, b) = (0, b0) ∈ S+ for b0 ∈
(L0, L1). To determine the line segments inside S+ we use bisection together with the feasibility criterion
(23). The hit-and-run algorithm requires a few iterations to ensure that the samples become independent of
the initial feasible weight point (w, b) = (0, b0).

We summarize this hit-and-run algorithm for randomly generating uniform samples from Ωg in Algo-
rithm 1.

Algorithm 1 Standard hit-and-run sampling for a good row

1: Input: training data U.
2: Choose number of decorrelation iterations K ∈ N and L0, L1 ∈ R>0. Below π denotes the canonical

projection: π(w, b) = w.
3: Sample b uniformly from (L0, L1).
4: w← 0.
5: k ← 0.
6: while k < K do
7: Randomly select a unit vector d ∈ RD+1.
8: A← {a ∈ R : (w+aπ(d)) ·x−(sgn(w+aπ(d)))+b+adD+1 > L0∧(w+aπ(d)) ·x+(sgn(w+aπ(d)))+

b+ adD+1 < L1}.
9: a0 ← inf A.

10: a1 ← supA.
11: Sample a uniformly from (a0, a1).
12: (w, b)← (w, b) + ad.
13: k ← k + 1.
14: end while
15: Uniformly sample a scalar z from {−1, 1} to determine which set to sample from, S− or S+.
16: if z = 1 then
17: (w, b) is our final good row sample.
18: else
19: (−w,−b) is our final good row sample.
20: end if

4.2. One-shot hit-and-run sampling. We now present a reduced hit-and-run algorithm which operates on
a smaller D-dimensional search space and does not require computationally costly bisection. This algorithm,
which we will coin one-shot hit-and-run algorithm, produces independent samples without the need for
sufficiently many iterations to ensure decorrelation from the fixed initial feasible point.

To generate good (or linear or saturated) random feature maps one can restrict the solution spaces
Ωg,l,s by first sampling b appropriately and then sampling w on a D-dimensional search space. For ease of
presentation we describe the algorithm for sampling from the good set Ωg. We sample b uniformly from the
interval (L0, L1). The weights w are then sampled from the restricted solution set ΩR

g = SR
+ ∪ SR

− with

SR
− = {(w, b) ∈ S− : −L1 < b < −L0}, (24)

SR
+ = {(w, b) ∈ S+ : +L0 < b < +L1}. (25)

Since SR
− = −SR

+ , sampling from the nonconvex set ΩR
g can again be done by sampling from the convex set

SR
+ and then multiplying the sample with 1 or −1 uniformly randomly. This restriction allows us to perform

hit-and-run sampling on a D-dimensional random convex set instead of a (D + 1)-dimensional convex set.
Note that fixing b is akin to shrinking the search space from S+ to πSR

+ where π is the canonical projection

with π(w, b) = w. Note that we can partition πSR
+ according to

πSR
+ =

⊔
s∈{−1,1}D

(πSR
+ ∩ V (s)), (26)

where we use
⊔

to denote almost disjoint union, and where V (s) = πV (s, b) are D-dimensional orthants. Let
us randomly select a sign vector s ∈ {−1, 1}D or equivalently pick the random convex subset πSR

+ ∩ V (s).
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Randomly choosing the sign vector or the corresponding convex subset is tantamount to assigning signs
randomly to the entries of w. In order to uniformly sample this conical subset we can a pick a random
direction d in the cone V (s), determine the maximal line segment starting at the origin parallel to d that
is contained in πSR

+ ∩ V (s) and uniformly sample a point on this line segment. Figure 4 shows a schematic
for this one-shot hit-and-run algorithm. Since x±(sgn(w)) is constant for all w ∈ V (s), we can analytically

Figure 4. Schematic of the one-shot hit-and-run algorithm 2. The weight point 0 is always
an interior point of πSR

+ and the cone V (s) is a D-dimensional orthant. The set πSR
+ is

drawn as bounded here, but it can be unbounded depending on the training data un.

determine the maximal line segment without having to resort to bisection. Moreover, the special structure
of the cone lets us sample with a single iteration unlike the standard hit-and-run algorithm 1. Thus the
computation of the line segment in the solution set and the final sampling both happen in one shot and
therefore the one-shot hit-and-run is much faster than its standard counterpart given by Algorithm 1.

Algorithm 2 summarizes the one-shot hit-and-run sampling of a good row described above. Note that,
depending on the training data U it is possible for πSR

+ to be unbounded which is why +∞ appears in
the algorithm. We can extend the notion of restriction to the coordinates of w as well by restricting the
intervals where we are allowed to sample them from which is akin to regularizing parameters in machine
learning [19, 18, 13] but we do not consider such algorithms here. Obvious modifications of Algorithm 1
and Algorithm 2 let us sample linear and saturated rows which we refrain from describing here to avoid
repetition.

4.3. Performance of the hit-and-run sampling. The two hit-and-run algorithms 1 and 2 are designed to
uniformly sample from the set of good rows (w, b). The resulting distributions for the weights and biases are
shown in Figure 5. For the standard hit-and-run algorithm 1 it was found that K = 10 decorrelation steps
were sufficient and results were very similar for K = 100 iterations. It is clearly seen that the distributions
are far from being the usually employed uniform or Gaussian distribution. The distributions are very similar
for both algorithms. In particular, the standard Algorithm 1 exhibits the same lack of biases with small
absolute value, as the one-shot hit-and-run Algorithm 2.
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Algorithm 2 One-shot hit-and-run sampling for a good row

1: Input: training data U.
2: Choose L0, L1 ∈ R>0.
3: Sample b uniformly from (L0, L1).
4: Select the sign vector s by uniformly generating D samples from {−1, 1}.
5: Randomly select a unit vector d ∈ V (s).
6: a0 ← 0.

7: a1 ← inf
({

L0−b
d·x−(s) ,

L1−b
d·x+(s)

}
∩ (R>0 ∪ {+∞})

)
with the convention inf ∅ = +∞.

8: Sample a uniformly from (a0, a1).
9: Uniformly sample a scalar z from {−1, 1} to determine which set to sample from, S− or S+.

10: if z = 1 then
11: (ad, b) is our final good row sample.
12: else
13: (−ad,−b) is our final good row sample.
14: end if

Figure 5. Empirical histograms for samples generated using standard and one-shot hit-
and-run algorithms 1 and 2, respectively. The left panel shows the distributions of the entries
of Win and the right panel shows the distributions of the entries of bin. For each algorithm
500 rows of internal parameters were generated. Algorithm 1 used K = 10 decorrelation
iterations.

Whereas the one-shot hit-and-run algorithm excludes biases with absolute values smaller than L0 by
design, this may seem surprising for the standard hit-and-run algorithm. This can be explained as follows.
For 0 < b < L0 and (w, b) ∈ S+ we require that w · u lies in the positive interval (L0 − b, L1 − b) for all
training data u. Since the directions of the vectors u in the training data are typically distributed over some
range, w ·u is typically not sign-definite for all data points u. This implies that for all parameters in Ωg we
typically have |b| > L0; a similar argument shows that typically |b| < L1. Hence, for typical data u ΩR

g = Ωg

and the search space of the one-shot hit-and-run algorithm 2 is the same as that of the standard algorithm 1.
We have tested that the forecasting skill is the same for both sampling algorithms.

For the weights and biases which were obtained by sampling uniformly from an interval as in Figure 1, we
checked that the weights corresponding to high forecasting skill indeed all satisfy our criterion of being good
rows (12). This highlights the advantage of our non-parametric sampling over sampling strategies involving
a set of parametrized distributions. In applications we hence use the computationally more efficient one-shot
hit-and-run algorithm 2.
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The hit-and-run algorithms 1 and 2 were designed to uniformly sample from the sets Ωg,l,s. This does not
imply, however, that winu+ bin is uniformly distributed in the interval (−L1,−L0) ∪ (L0, L1). To quantify
the occupied range of random features we introduce the following notation. A sample (win

i , bini ) produces
outputs the absolute values of which lie in the interval [mi,Mi], i.e.

mi = min
1≤n≤N

|win
i · un + bini |,

Mi = max
1≤n≤N

|win
i · un + bini |.

(27)

The effective range R of a random feature map vector can then be defined as

R =
1

Dr

Dr∑
i=1

(Mi −mi). (28)

Figure 6 shows that the features only occupy a relatively small part of the desired interval and the observed
maximum value of the effective range R ≈ 0.52 is much smaller than the desired range of L1 − L0 = 3.1.
This reduction of the range R can be explained by a simple approximate model. Consider the case when the
extreme valuesmi andMi are i.i.d random variables, andMi is drawn uniformly according toMi ∼ U [L0, L1].
The lower bound mi is then conditionally distributed according to mi ∼ U [L0,Mi].

By the central limit theorem, for Dr ≫ 1 the effective range (28) is a normally distributed random variable
with mean

E[R] ≈E[Mi]− E[mi|Mi] = E[Mi]− E
[
L0 +Mi

2

]
=

L1 − L0

4
. (29)

Hence the range is approximately E[R] = (L1 − L0)/4 which is significantly reduced from the desired range
L1 − L0. Similarly, by the central limit theorem, the standard deviation of the effective range converges to

σ[R] ≈ σ[Mi −mi]√
Dr

, (30)

which implies a concentration of the effective range R around the mean (29) for high feature dimensions Dr,
consistent with the observations in Figure 6.

One would like the range R to be as large as possible. Indeed, Figure 7 shows that R and τf are positively
correlated justifying our assumption that better exploration of the space of good features generally yields
better forecasting skill. The observation of a small effective range R suggests that tuning L0 and L1 to make
the interval (L0, L1) larger may be beneficial for the forecasting skill of the random feature map.

5. Results

In this section we explore how increasing the number of good features improves the forecasting skill of
a surrogate map for the Lorenz-63 system (4), and conversely explore the effect of linear and saturated
features. To do so we define the number of good, linear and saturated features in a random feature vector
of dimension Dr as

Ng = pgDr, Nl = plDr, Ns = psDr, (31)

where the respective fractions satisfy pg + pl + ps = 1. We construct random feature maps with internal
weights (Win,bin) with specified fractions of good, linear or saturated rows using the one-shot hit-and-run
algorithm 2.

5.1. Effect of the quality of internal weights on the forecast time τf . In this section we investigate
how the forecasting skill of a random feature surrogate model (3) improves with increasing the number of
good rows Ng. We would like to have internal parameters resulting in large mean forecast times τf with
relatively small standard deviations. For chaotic dynamical systems we expect a residual variance of the
forecast time due to the sensitivity to small changes in the model: small changes in the internal parameters
may cause the surrogate models to deviate from each other after some time.
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Figure 6. Empirical histogram of the effective range R of random features with only
good rows for L0 = 0.4 and L1 = 3.5. We used 500 independent samples and a feature
dimension of Dr = 300. The mean is estimated as E[R] = 0.44 and the standard deviation
as σ[R] = 0.03.

Figure 7. Scatter plot of the effective range R and the forecast time τf when only good
rows are used with pg = 1. Each dot represents a different realization of the random feature
map which was trained and tested on randomized data. We observe a Pearson correlation
coefficient of 0.37 between τf andR. The feature dimension isDr = 300 and a regularization
parameter of β = 4× 10−5 is used with training data length N = 20, 000.

We estimate the mean of the forecast time τf and its coefficient of variation as a function of the fraction
of good features pg, varying pg from pg = 0 with only bad features to pg = 1 with only good features present.
For each value of pg we approximately uniformly distribute the remaining (1−pg)Dr features over the linear
and saturated features with pl ≈ ps ≈ (1− pg)/2. Note that we cannot always impose perfect equality since
Ng = pgDr, Nl = plDr and Ns = psDr are integers. We use 51 equally spaced values of pg in [0, 1] and
compute averages over 500 realizations for each value of pg, differing in the draws of the random internal
weights, the training data and the validation data.
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Figure 8 shows the dependence of the mean forecast time E[τf ] and the associated coefficient of variation
σ[τf ]/E[τf ] on pg for various values of the feature dimensions Dr and training data lengths N . It is clearly
seen that increasing the number of good rows increases the mean forecast time and decreases the coefficient
of variation as desired. As expected, for fixed feature dimension Dr increasing the training data length N is
beneficial. Similarly, for fixed training data length N , increasing the feature dimension Dr is beneficial. The
observation that, for fixed data length N , the mean forecast time E[τf ] saturates upon increasing pg once
a sufficiently large number of good features Ng = pgDr are present, suggests that the distribution of the
forecast time τf converges reflecting a residual uncertainty of the chaotic surrogate model. This is confirmed
in Figure 9 where we see convergence of the empirical histograms of the forecast time for increasing values
of Dr in the case when pg = 1.

Figure 10 shows the dependency of the mean forecast time E[τf ] on the fraction of good rows pg for
different values of Dr. We can clearly see that beyond Ng = pgDr = 256 (indicated by the vertical line),
the mean forecast time E[τf ] depends only on the number of good rows Ng = pgDr and not on the overall
feature dimension Dr. For smaller number of good rows Ng < 256 the mean forecast time depends on the
feature dimension Dr with larger feature dimensions implying larger mean forecast times. This suggests that
the number of good features Ng constitutes an effective feature dimension D∗

r , which controls the forecast
skill of the learned surrogate model. This implies that on average the forecast time τf is the same for a
random feature surrogate model of dimension Dr with only good features pg = 1 as a surrogate map with
a larger feature dimension αDr with α > 1 but only a fraction of 1/α good rows. This is confirmed in
Figure 11 which shows the empirical histogram of τf for fixed number of good features Ng = pgDr = 1, 024.
We compare the distribution of the forecast times for random feature maps with Dr = 1, 024 and pg = 1 to
those with Dr = 2, 048 and pg = 0.5. We show examples when the remaining bad features are either equally
distributed between linear and saturated features, or only linear or only saturated. The distributions for
all three examples are very similar and match the one with the smaller feature dimension but same number
of good features. This leads us to conclude that the number of good rows is the only determining factor
for the distribution of τf (all other parameters being equal), and that linear and saturated rows are equally
ineffective in terms of the forecasting skill.

We briefly discuss the effect of the regularization parameter β on the forecasting skill. We show in
Figure 12 the mean forecast time E[τf ] and coefficient of variation σ[τf ]/E[τf ] as a function of pg for a range
of regularization parameters β ∈ [2−25, 2−13]. For fixed feature dimension Dr = 300, we see that β = 2−19

is optimal within this range in terms of the mean forecast time (left panel) and the coefficient of variation
(right panel) once sufficiently many good features are present with pg > 0.33. Note that we had previously
employed β = 4× 10−5 ≈ 2−14.6.

5.2. Effect of the quality of internal weights on the outer weights W. In this section we explore
how the nature of the internal weights affects the learned solutions of the ridge regression (11) which we
denote simply as W, dropping the star.

We begin by recording the Frobenius norm ∥W∥ of the learned outer weights as a function of the fraction of
good features pg (bad features are again roughly equally distributed between linear and saturated features).
Figure 13 shows the mean of ∥W∥ as a function of pg on a log-log scale for the simulations used in Figure 8.
It is seen that ∥W∥ is a decreasing function of the number of good features. The solution of the linear
regression problem W minimizes the loss function (10). Once there are sufficiently many good features, the
training data can be sufficiently well fit, decreasing the first term of the loss function. Increasing the number
of good features further then allows to decrease the second regularizing term of the loss function, leading
to a decrease of ∥W∥. Assuming that the true one-step map Ψ∆t in (2) lies in the domain of the random
feature map (3) with infinitely many features, the first term of the loss function should scale with the usual
Monte-Carlo estimate scaling of O(1/Dr), suggesting a scaling of the regularization term ∥W∥ ∼ 1/

√
Dr.

In the right panel of Figure 13 we show that the mean of ∥W∥ roughly scales as ∥W∥ ∼ 1/D0.54
r when all

the internal weights correspond to good features with pg = 1, suggesting that the true one-step map can be
well approximated by random features with a tanh-activation function. We remark that the Monte-Carlo
scaling is valid for Dr > 256 only, i.e. provided sufficiently many good features are present.
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Figure 8. The top row depicts the mean of the forecast time E[τf ] as a function of the
fraction of good features pg. The bottom row depicts the coefficient of variation σ[τf ]/E[τf ]
as a function of pg. Along the first column the feature dimension Dr = 300 is kept constant,
and along the second column the length of the training data set N = 20, 000 is kept constant.
Expectation are computed over 500 realizations of the internal parameters, the training data
and testing data. A regularization parameter of β = 4× 10−5 is employed.

We now investigate how the decrease in the outer weights W is distributed over the various features.
We will see that the outer weights are learned to suppress the bad features provided there are sufficiently
many good features allowing for a reduction of the loss function. Let us denote the i-th column of W by
Wi. The columns Wi are the weights attributed to the features produced by the i-th row of the internal
weights (wi, bi). We expect the outer weights corresponding to good rows to be significantly larger than
those corresponding to bad rows. We label columns of W that have only small entries with absolute value
smaller than a threshold δ = 1 by N 0.

To study the suppression of bad features by such small columns of the learned outer weights W, we design
two sets of numerical experiments: one in which bad features are entirely comprised of linear features and
one in which bad features are entirely comprised of saturated features.

In the first set we initialize a random feature map with Dr = 300 features consisting of only bad linear
features. We then successively replace one linear feature by a good feature, i.e. replacing one inner linear
weight row (win

i , bini ) by a good row. At each step we record the corresponding linear regression solution W.
Figure 14 shows the normalized supremum norm of columns of W after Ng = 10, Ng = 50 and Ng = 150
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Figure 9. Empirical histogram of τf for different values of Dr when pg = 1 for increasing
feature dimension Dr. The same 500 realizations are used as in Figure 8 with N = 20, 000.

z

Figure 10. Forecast time mean E[τf ] as a function of good features Ng = pgDr. The
vertical line demarcates Ng = 256. The range of Ng is restricted to Ng ≤ 512, corresponding
to pg = 1 for the smallest value of the feature dimensionDr = 512. The same 500 realizations
are used as in Figure 8 with N = 20, 000.

bad linear features have been replaced by good features. The red dots signify small columns which do not
contain any entry with absolute value larger than δ = 1. It is clearly seen that linear features are suppressed
by the columns of W. Note that not all linear features are entirely suppressed.
In the second experiment we follow the same procedure as before except we start with only saturated random
features. In Figure 15 it is seen that saturated features are suppressed even stronger by the outer weights
than linear features. In contrast to linear features, saturated features are effectively fully suppressed once
the number of good features exceeds Ng = 50.
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Figure 11. Empirical histogram of the forecast time τf for Dr = 1, 024 and Dr = 2, 048.
In each case the number of good rows is Ng = 1, 024. For Dr = 2, 048 we show results
for an equal number of linear and saturated features with pl = ps = 0.25 (left), for only
linear bad features with pl = 0.5, ps = 0 (middle) and for only saturated bad features with
ps = 0.5, pl = 0 (right) for Dr = 2, 048. We used 500 realizations differing in the random
draws of the internal parameters, the training data and the validation data. We employed
a regularization parameter of β = 4× 10−5 and used training data of length N = 20, 000.

Figure 12. Mean forecast time E[τf ] (left) and coefficient of variation σ[τf ]/E[τf ] (right)
as a function of pg for a range of regularization parameters β.A regularization parameter
of β = 2−19 is optimal among the values presented here for pg > 0.33 (demarcated by a
vertical line). Results are shown for fixed Dr = 300 and N = 20, 000.

6. Comparison with a single-layer feedforward network trained with gradient descent

A natural question is if a single-layer feedforward network of the architecture (6) for which the internal
weights (Win,bin) are learned together with the outer weights W performs better or worse than random
feature maps with fixed good internal weights. In particular, we consider the non-convex optimization
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Figure 13. Left: The mean of the Frobenius norm of the outer weights, ∥W∥, as a function
of pg on a log-log scale. Right: The mean of the Frobenius norm of the outer weights, ∥W∥,
as a function of the feature dimension Dr for pg = 1. Shown is also a line of best fit with
approximate slope −0.54. Expectations were taken over 500 realizations.

Figure 14. Normalized supremum norm of the columns of W for different numbers of
good features with Ng = 10, Ng = 50 and Ng = 150 and otherwise exclusively linear bad
features. The x-axis represents column indices. The good and linear columns are indicated
in blue and orange, respectively. The red dots signify columns with supremum norm less
than δ = 1. The overall feature dimension is Dr = 300 and the outer weights were obtained
from training data of length N = 20, 000.
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Figure 15. Normalized supremum norm of the columns of W for different numbers of
good features with Ng = 10, Ng = 50 and Ng = 150 and otherwise exclusively saturated
bad features. The x-axis represents column indices. The good and saturated columns are
indicated in blue and green, respectively. The red dots signify columns with supremum
norm less than δ = 1. The overall feature dimension is Dr = 300 and the outer weights were
obtained from training data of length N = 20, 000.

problem

Θ = argmin
Win,bin,W

L(U), (32)

with Θ = (Win,bin,W) and the loss function L defined in (10). To solve the optimization problem (32)
we employ gradient descent. In order to fairly compare with the results from the random feature model,
we fix the width of the internal layer to Dr = 300 and employ a regularization parameter of β = 4 × 10−5.
We use training data of length N = 20, 000. To initialize the network weights we use the standard Glorot
initialization [11]. We use an adaptive learning rate scheduler which is described in Appendix 8.1.

Figure 16 shows the evolution of the mean forecast time E[τf ] and the logarithm of the loss function L
during training. The expectation is computed over 500 different validation data sets. Optimization over
all weights clearly allows for a significantly smaller training loss L compared to random feature maps (cf.
Figure 17). The neural network achieves a final value of the loss function of L ≈ 0.09 which is a 95%
improvement when compared to a random feature map of the same size with only good internal parameters,
i.e. pg = 1, which has a loss of L ≈ 1.73 on average. However, the situation is very different for the
mean forecast time. The mean forecast time E[τf ] is a slowly growing function of the gradient descent steps
with the last 105 steps resulting in only about 0.32% improvement. The data are plotted every 104 steps
and therefore the typical fluctuations of gradient descent are not visible. Maybe surprisingly, optimizing
the internal weights via gradient descent does not lead to a better forecasting skill when compared to the
random feature map surrogate model. After 1.5 × 106 steps the neural network achieves a mean forecast
time of only E[τf ] ≈ 3.75. Random feature maps of the same size with pg = 1 generate a mean forecast time
of E[τf ] ≈ 4.46 (cf. Figure 8). Furthermore, the training took approximately 8.2 × 104 seconds on the T4
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GPU available through Google Colab cloud platform. In contrast, initializing and training a random feature
map of the same size took less than 1 second in total, i.e almost 100, 000 times faster.

Figure 16. Evolution of the mean forecast time E[τf ] and the logarithm of the loss function
(10) log(L) during training of a single-layer feedforward network with gradient descent. For
each step E[τf ] is computed using 500 test trajectories. The network with width Dr = 300
was trained with training data of length N = 20, 000 and a regularization parameter β =
4× 10−5. Results are shown every 104 gradient descent steps.

Figure 17. Mean loss L for random feature maps as a function of pg for different values
of the feature dimension Dr. The data shown here correspond to the experiments shown in
Figure 8 with N = 20, 000 and β = 4× 10−5.

The left panel of Figure 18 shows that the mean forecast time E[τf ] and the logarithm of the loss function
log(L) are linearly related. This is a direct manifestation of the exponential sensitivity in chaotic dynamical
systems: in each gradient descent step the loss experiences small changes leading to small changes in the
learned weights and hence in the resulting surrogate model. These small changes in the chaotic surrogate
model lead to an exponential divergence of nearby trajectories. This causes an exponential in time loss of
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predictability, characterized here by the mean of the forecast time (5). The same sensitive dependency on

Figure 18. Left and right panels show the relationship between E[τf ] and the logarithm
of the loss function L for a single-layer feedforward network and for a random feature map
with only good internal parameters, i.e. pg = 1, respectively. Each dot in the left panel
corresponds to a gradient descent step. Each dot in the right panel corresponds to one
realization of a random feature map. The expectation is computed over 500 validation
trajectories. Each descent step and each realization use the same training and testing data.
The black line in the left panel represents the best-fit line with slope −0.79. In the right
panel the red crosses denote the conditional mean E[τf | log(L)] and the black line represents
the best-fit line with slope −1.01. We use a feature dimension of Dr = 300, training data
length N = 20, 000 and regularization parameter β = 4× 10−5 .

small changes of the surrogate model, quantified by small changes of the loss function, is also present in
random feature maps. The right panel of Figure 18 shows the mean forecast time E[τf ] as a function of the
logarithm of the loss function for random feature maps. Each dot represents one realization of a random
feature map with feature dimension Dr = 300, trained on the same data as the single-layer feedforward
network. The mean forecast time E[τf ] is computed using the same 500 validation trajectories as the
network. Averaged over bins of the logarithm of the loss function, the mean forecast shows the same linear
relationship with respect to the logarithm of the loss function (red crosses in Figure 18). The slopes of the
best-fit lines in Figure 18 show that the forecasting skill of the random feature map improves slightly faster
with decreasing loss when compared to the network.

The discrepancy between the neural network having worse forecasting skill compared to random feature
maps despite achieving smaller loss can be explained as follows. Minimizing the loss function L aims at
learning the single-step surrogate map (6). High forecasting skill, however, requires multiple applications of
the single-step surrogate model which is not explicitly accounted for in the loss function (10). In Section 3.1
we established that the main controlling factor for achieving high forecasting skill is the number of good
features. In random feature maps we can control and maximize this number simply by sampling good
parameters according to our hit-and-run algorithms 1 and 2, respectively. On the other hand, the training
of the single-layer feedforward network is only designed to minimize the loss but not to unable to maximize
the number of good features to Ng = Dr = 300 in our case. Figure 19 shows the number of different types of
rows produced during the training instance of Figure 16. We see that only a single good row was produced
in (Win,bin) during the early steps of the optimization, and this good row was then quickly destroyed
during the training process. We checked that even when the network is initialized with only good internal
parameters, i.e. pg = 1, training eventually leads to a complete absence of good internal parameters with
pg = 0 for reasonable learning rates. To understand the absence of good rows in the trained network, note
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that for any random feature map Θ = (Win,bin,W) essentially lies on the graph of a continuous function
due to the intricate relationship between the internal and outer weights dictated by (11). So the set of all
possible Θ for random feature maps has zero Lebesgue measure in RDr×(2D+1). It is therefore highly unlikely
that gradient descent finds the lower-dimensional subset of the random feature map weights in its search
space which is the full RDr×(2D+1). It would be interesting to see if the network generates good features
if the loss function is augmented by a penalty term promoting good features. In any case, random feature
maps are significantly cheaper to train.

Figure 19. Evolution of the number (normalized by Dr) of learned good, linear and satu-
rated rows (win

i , bini ) in the internal parameters during a single training episode of a single-
layer feedforward network. The same neural network is used as in Figure 16. Results are
shown every 104 gradient descent steps.

7. Summary and future work

We established the notion of good features and good internal parameters for random feature maps with
a tanh-activation function. These good internal weights are characterised by affinely mapping the training
data into the nonlinear, non-saturated domain of the tanh-activation function. We established that the
number of good features Ng ≤ Dr is the controlling factor in determining the forecasting skill of a learned
surrogate map, rather than the feature dimension Dr. Interestingly, the forecasting skill was found to be
equally deteriorated by linear features as by non-saturated features. The non-convex set of good features
could be written as a union of two convex sets which are mutual reflections of each other. We developed
computationally cheap hit-and-run sampling algorithms to uniformly sample from the set of good internal
parameters. We demonstrated how ridge regression engages with a given number of good and bad features.
It was found that non-saturated features are eliminated almost entirely by the outer weights provided a
sufficient number of good features are present. Once there are sufficiently many good features present to
allow for a significant reduction of the data mismatch term of the loss function, regularization kicks in and
reduces the norm of the outer weights corresponding to good features.

We further showed that a single-layer feedforward network with the same width Dr trained with gradient
descent exhibits inferior forecasting skill compared to a random feature map surrogate map which used only
good internal parameters. The neural network achieves a significantly smaller value of the loss function.
Good forecasting skill, however, requires multiple applications of the surrogate map, and as we showed is
controlled by the number of good features. The lower forecasting skill is due to the optimization process not
finding solutions on the measure-zero set of good parameters. Even when initialized with good parameters,
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the gradient descent quickly reduces the number of good internal parameters.

The proposed optimization-free algorithm to choose internal non-trainable parameters can potentially
lead to new design and computationally cheap training schemes for more complex network architectures.
Our algorithms may be used to further improve the forecasting skill of reservoir computing [35, 10]. The
distinction into linear, saturated and good features readily translates to other sigmoidal activation functions.
It will be interesting to test if larger values of L0,1, which we showed in Section 4.3 to lead to a larger effective
range explored by features, may improve the forecast skill.

We considered here random feature maps as an alternative to single-layer feedforward networks. It will
be interesting to see if the ideas of selecting weights according to the domain of the tanh-activation function
can be employed to generate deep random feature networks where at each layer weights and biases are drawn
using our hit-and-run algorithm. This is planned for future research.
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8. Appendix

8.1. Adaptive learning rate for the single-layer neural network. We describe in Algorithm 3 the
adaptive learning rate algorithm we used when training the single-layer feedforward network in Section 6.
Essentially our scheduler computes the decay rate of the loss every I steps and modifies the learning rate by
increasing or decreasing it by a constant fraction ξ if necessary. We use an initial rate η0 = 10−3, update
interval I = 100, update fraction ξ = 0.1, update threshold γ = −10−4 and number of gradient descent steps
E = 1.5× 106 in our scheduler.

Algorithm 3 Adaptive learning rate scheduler

1: Input: Choose initial rate η0, update interval I, update fraction ξ, update threshold γ, number of gradient
descent steps E.

2: k ← 1 (gradient descent step).
3: L0 ← value of L at gradient descent step k.
4: η ← η0 (learning rate).
5: while k < E do
6: if k is divisible by I then
7: L1 ← value of L at gradient descent step k.
8: ∆← L1−L0

L0
.

9: if ∆ > γ then
10: if ∆ > 0 then
11: η ← η(1− ξ)
12: else
13: η ← η(1 + ξ)
14: end if
15: end if
16: L0 ← L1

17: end if
18: k ← k + 1
19: end while

We tried several other strategies such as finding an optimal learning rate every few steps using bisection,
random modifications of the learning rate based on the behavior of the loss function, aggressive constant
learning rates and conservative constant learning rates, piecewise linear learning rates etc. We found that
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the simple strategy presented in Algorithm 3 leads to the lowest final value of the loss function for the
same number of gradient descent steps. Figure 20 shows the adaptive learning rate used during the training
instance shown in Figure 16.

Figure 20. Adaptive learning rate η used during the training instance presented in Fig-
ure 16. The associated evolution of the loss function is shown in Figure 16.
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