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Abstract

We derive two-dimensional (2D) envelope equations for models based on linearly coupled Zakharov-Kuznetsov (ZK)
and Kadomtsev-Petviashvili (KP) equations which describe the interaction between long nonlinear waves in fluid flows.
The asymptotic equations coincide with those describing the second-harmonic generation (SHG) in a 2D optical waveguide,
that take into regard both the spatial diffraction and temporal dispersion. The system derived from the ZK and KP equations
turn out to be, respectively, fully elliptic and fully hyperbolic with respect to the spatial coordinates. The recently found
“light-bullet” solutions to the elliptic SHG equations in nonlinear optics suggest the possible existence of fully localized 2D
solitons in the corresponding ZK coupled system. Direct numerical simulations, for which the initial conditions are taken
as suggested by an analytical variational approximation (VA), completely corroborate the existence and stability of the 2D
solitons, with a shape fairly close to that predicted by VA. We also demonstrate that quasi-1D solitons are (numerically)
stable against 2D perturbations in both the ZK and KP systems. The results suggest that 2D parametric spatio-temporal
solitons, which are hard to generate experimentally in nonlinear optics, can be generated in certain fluid flows. © 1998
Elsevier Science B.V.

1. INTRODUCTION

Parametric solitons, supported by a competition between the second-harmonic generating (SHG) nonlineari-
ties and temporal dispersion or spatial diffraction, have recently attracted a great deal of attention in nonlinear
optics [1]. Experimentally, both one-dimensional (1D) and two-dimensional (2D) spatial solitons have been
observed, respectively, as self-supporting stripes and cylindrical beams in planar waveguides [2] and in bulk
media [3]. A new possibility is to generate fully localized 2D and 3D spatiotemporal solitons (the so-called
“light bullets”, LB) [4,5], whose existence and stability in media with quadratic nonlinearities was shown, in
a nonconstructive way, as early as 1981 [6]. In the same work [6], it was also shown that, unlike LB, spatial
solitons, both 1D and 2D, are unstable against modulations or bending (for more details, sece Ref. [7]). In real
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experiments, the spatial solitons are nevertheless observed because the samples are too short for development
of instability.

A great challenge for the experimentalists is to generate temporal parametric solitons, both 1D solitons in
fibers and the above-mentioned LBs. Although they are expected to be fully stable, this is a very hard problem
because of the lack of sufficiently long SHG fibers and sufficiently large bulk samples that would allow us to
observe the (spatio)temporal solitons.

In recent work [8], we have suggested that generation of temporal parametric solitons may be achievable in
certain stratified fluid flows, where the roles of the fundamental harmonic (FH) and second harmonic (SH) are
played by appropriately selected wave modes, and the SHG nonlinearity is naturally provided by the quadratic
terms in the corresponding coupled wave equations, which are typically of the Korteweg-de Vries (KdV) type.
Despite the absolutely different physical medium, the mechanism supporting the SHG solitons is essentially the
same as in optics. However, the analysis reported in Ref. [8] was confined to 1D solitons. A generalization to
the 2D case is both necessary for a realistic description of the corresponding fluid system, and very interesting
in itself, as it opens a way to really generate, in a different physical system, the 2D solitons that are currently
of great interest in nonlinear optics. This is the subject of the present work.

The paper is organized as follows. In Section 2, we analyze the underlying weakly nonlinear wave equations,
demonstrating that, with isotropic or anisotropic background flows, the generic systems are, respectively, two
linearly coupled Kadomtsev—Petviashvili (KP) or Zakharov-Kuznetsov (ZK) equations (for a derivation of the
KP equations for internal waves, see Ref. [9]). The linear dispersion relation for each system has two branches.
We demonstrate that, as well as in the case of two linearly coupled KdV equations considered in Ref. [8], the
necessary double resonance between FH and SH (simultaneous coincidence, in the lowest-order approximation,
of their phase and group velocities) is possible if the two harmonics belong to different dispersion branches.
In Section 3, we derive a system of asymptotic equations for slowly varying FH and SH amplitudes, which
turn out to have the same general form as the 2D spatiotemporal SHG equations in nonlinear optics [5].
The equations are hyperbolic with respect to the propagation and transverse coordinates if the underlying fluid
equations are the coupled KP ones; but in the case when we start from the ZK equations, the asymptotic system
turns out to be elliptic, rather than hyperbolic, with respect to the spatial coordinates. Following the line of
work in Ref. [5], we expect that only quasi-1D solitons are possible in the former case, and fully localized 2D
solitons should be possible in the latter case. Significant issues are the stability of the quasi-1D solitons, and
the existence and stability of the 2D ones. In Section 4, these issues are attacked by means of direct numerical
simulations of the underlying equations (KP or ZK). As in our previous work [8], the initial configuration is
taken as suggested by the variational approximation (VA) developed for the asymptotic SHG equations ( VA
was elaborated for the 1D case in Ref. [10], and for the 2D case in Ref. [5]). We conclude that, as long as the
numerical simulations can be run, the quasi-1D solitons are szable in both the (effectively) hyperbolic (KP)
and elliptic (ZK) models. This result is quite important for possible experiments in fluids. Another important
numerical result is that the 2D solitons in the elliptic system exist and are apparently stable and, moreover,
the initial configuration suggested by VA furnishes quite an accurate approximation for them, i.e., the initial
configuration undergoes very little change as a result of the evolution in time. The latter result is a considerable
contribution to verification of the relevance and accuracy of VA, which is an important issue far beyond the
framework of any particular fluid model.

2. Dispersion curves and the double resonance

We consider a model of two interacting weakly nonlinear long waves described by either the coupled ZK
equations,

Up + Uyyx + Uyyy — Ouuy — vy =0, (2.1)
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Ur + 0Uxxx + AUyyx + Uy — Opvy — kU, =0, (2.2)
or the coupled KP equations,

Ox (U 4 Uryyx — Outty —vx) + 1y =0, (2.3)
O (Uy + OUxxx + MUy — 6LV, — KUy) + Ay =0, (2.4)

which are written in the most general form. Here, x and y are the propagation and transverse coordinates,
n is a group-velocity shift between the coupled modes, 6 and A are the relative longitudinal and transverse
dispersion coefficients, and x and « are the relative nonlinear and coupling coefficients. In the absence of the
transverse variation (i.e., uy = vy = 0), each system reduces to the same set of coupled KdV equations which
are known to describe the interaction of the nonlinear long waves in certain fluid flows (see, for instance, Ref,
[9,12]). In each uncoupled KdV subsystem, the linear dispersion relation for waves with the frequency @ and
x-wavenumber k has the form

w = cok + BK°, (2.5)
where ¢ is the group velocity in the long-wave limit, and 8 is a dispersion coefficient. In an isotropic medium,
the two-dimensional counterpart of (2.5) is

w ~ ok + K, (2.6)
where k = v/k? + 2, and [ is the y-wavenumber. Then, in the nearly 1D case, I < &, (2.6) yields

12
wzcok+%z+,3k3, (2.7)

which leads to the coupled KP system (2.4). Alternatively, in an anisotropic medium, where the anisotropy
can, for instance, be provided by an underlying shear flow in the x-direction, or the so-called B-effect in the
atmosphere, the 2D counterpart of (2.5) is

w =~ cok + Bkr*, (2.8)

which leads to the coupled ZK system (2.2).
Two branches of the dispersion relation are, for the coupled ZK model,

20==(6+ DK — A+ DPk+nk+kvV/[(6 - DK+ (A= D2 —n]2 +4, (2.9)

and, for the coupled KP model,

20=—(8+ DK+ (A+ D (P/k) + k£ k /(6 — DK — (A= 1)(I/k)2—7]2 + 4. (2.10)

In this work, we examine the case when the SHG resonance condition, viz., coincidence of the FH and SH
phase velocities, can be met at [ = 0,

2w(k) = w(2k,), (2.11)

where &, is the resonant wavenumber. In order to guarantee a sufficiently strong interaction between the
harmonics, the group velocities must also coincide (in the first approximation), so that

o' (k) = ' (2k,) . (2.12)

The two resonance conditions (2.11) and (2.12) can be met if FH and SH belong, in each model (KP or ZK),
to the lower and upper branches, respectively. Hereafter, these branches will be denoted as w, (k) and wy(k),
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respectively. Thus, the resonance conditions for both models with / = O reduce to those for the coupled KdV
equations, considered earlier in Ref. [8], which determine the resonant x-wavenumber,

=502 +4)/89(8 - 1), (2.13)
and impose an additional condition on the system’s parameters, which is
7 =+/(16/98) (6 — 1)? — 4, (2.14)

implying 7 > 0 and & > 4. In particular, this means that the longitudinal dispersion coefficients in both coupled
equations have the same sign.

We will see below that the adopted restriction [ = 0 does not exclude y-dependence in the next-order
approximation, when we include a large-scale transverse modulation. For / # 0, an analytical expression for
the resonant wavenumber in the KP model is not available, while in the ZK model it can be obtained by simply
replacing the parameter 7 by 7 — (A — 1)

3. Derivation of the amplitude equations

To investigate the interaction of FH and SH with the wavenumbers &, and 2k,, we perform a multiscale
expansion for the resonant waves. Thus, introducing a small parameter € and defining X = ex,Y = €y, T} =
et, T, = €*t, we assume that each mode in the coupled systems (2.1). (2.2) or (2.3), (2.4) is a combination
of two harmonics (that will be FH and SH),

u=€AX,ET1, ) e + E€B(X, 4TI, T) e + €us + €'uy +cc.,
v=E6HAX YT, Th) e + 6B(X, YT, Th) €% + €lv3 + €*vy + coc. (3.1)

where £, are coefficients to be found later, and 62 = kj2x — w;2(k12)t, with the two carrier wavenumbers
k1> and the corresponding frequencies. Here, k) = k, + €Ak and k; = 2k, Ak accounting for a small deviation
from the exact resonance value (2.13). The following analysis stays close to the 1D case considered in Ref.
[8] as we will focus on the case of a small but finite y-wavenumber, / = O(Ak). The systems (2.1) and (2.2)
and (2.3) and (2.4) can then be written as

ﬁ<z>=/\f(u,v), (3.2)

where the linear operator matrix is

A

ﬁuu = 0 + dxxx + yyx ﬁuu =—0dx, Loy = —0x, ﬁuv =0; + M0y + O8xxx + /\ayyx s
for the ZK model, and

A

Aéuu =0 + Oxxx + ax—layy ’ Euu = —dy, [:vu = —0y, Aéu,p =4d,+ ’Ylax + aaxxx + /\&;lay_y
for the KP one. The vector on the right-hand side of (3.2) for both models has the components
Ni(u,v) = 6uu,, Np(u,v) =6y, .

At the lowest order, O(€?), (3.2) is trivially satlsﬁed by the linear dispersion relation for each mode, yielding
the values of the coefficients in (3.1), 12 = —k1 2w+ % 1,2). To derive the actual asymptotic equations, it is
necessary to continue the analysis at the orders 0(63) and O(e*). Omitting technical details, we will display
the final results.
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Instead of the rescaled coordinate X defined above, we introduce the traveling coordinate X’ = X — v6Th,
where vg = w](k = k,,! = 0) = w)(k = 2k,,1 =0) is the common group velocity of both harmonics, taken in
the lowest-order approximation.

In the sequel we will omit the prime on X’. The final equations for the amplitudes A and B can be derived
as compatibility conditions for the expansion at the order O(€*),

A7, + @1Axx + V1 Ay + 2i0 | AkAy + NJA*BeX =0,
iBr, + @,Bxx + 2By + 4i0,0kBy + N,A%e X = 0, (3.3)

where the phase mismatch is
X=6-20,= —(Ak)2[2w§’(k =2k, 1=0) — 0/ (k=k,,[=0)]1T,

and the other coefficients are

14? 192
¢1=§%(k=kr,l:0), ¢2=§7’.§¥(1¢:2k,,1=0), (3.4)
1% 13w
1=§—t-?17'(k=k,,1=0), %:5W2~(k=2kr,l=0), (3.5)
1+ pél, |+ pétéy
= 6k, — 2152 N, = 6k, — 2152 3.6

The phase mismatch can be eliminated by the transformation A = A’ e~ibkX—ionT: B _ p/ =2k X~inTy ity
200 — 0y = (40, — 24 ) (Ak)2. (3.7)
Finally, again omitting primes, we arrive at the renormalized equations

iATz + @1Axx + V1A + SIA+ NA*B =0,

iBr, +¢2Bxx+‘1’23yy+523+N2A2=0, (3.8)
where
S| = oy + @1(Ak)?, S2 = oy + 4D, (Ak)? =28, . (3.9)

We now see that we can set S; = S, = 0 by choosing o) = —®,(Ak)2, 05 = —4®y(Ak)?, which satisfies (3.7).
It is easy to see that, in terms of the new variables, the phases are 6, = %02 =k, — w(k,)t and are evaluated at
precisely the resonant wavenumber (2.13). However, it is useful to retain Sy and §; =28 in (3.8), which is
equivalent to adding the terms —S8;7> and —S,75 to the phases 6, and 6,, or replacing the resonant frequencies
w1(k;) and w2(2k,) = 2w(k,) by w (k) +€%S; and wa(2k,) + €28,. Thus, S, may be regarded as an
O(€?) frequency detuning from the exact double-resonance point. Note that (3.9) implies that we can either
exactly satisfy the first resonance condition (2.11), choosing Ak = 0, and introduce a frequency detuning via
the remaining free parameter oy, or exactly satisfy the second resonance condition (2.12), introducing the
detuning via the wavenumber mismatch Ak. We choose the former option, setting Ak = 0. It is important to
mention that stationary-wave solutions to (3.8) only exist in the presence of the detuning S| # 0.

For both the ZK and KP models, one can check that @, < 0 for all values of n = () (see (2.14))
and A, hence stationary solitary solutions to (3.8) may not exist unless 81,2 > 0, as one needs @;,8,, < 0 to
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provide for the existence of the exponentially decaying soliton’s tails far from its center. Then, using the fact
that NyN; > 0 according to (3.6), the transformations

A=S8\/D/2N\N2&1 A, B=-5/N\B,
X=V|®/SX, Y=+[¥|/SY, T,=-1ST,

cast the system (3.8) into the eventual form (where the primes are again dropped)

AT + Axx + 04Ay — A4 A*B =0,

1¢Br + Bxx + opyBy — (B + 1A’ =0, (3.10)
where

{ =20, /d, Y =(P1/Py) ¥/ W],

and o4 = —sgn(¥1),op = —sgn(¥7), i.e., the sign parameters o4 3 determine the ellipticity or hyperbolicity
of the dispersion operator in the model. Because @1, < 0, we have { > 0. After straightforward algebra, we
find that, in the physically meaningful case A > 0, the ZK model is fully elliptic (i.e., simultaneously elliptic
in FH and SH), having 04 = 03 = +1, whereas the KP one is fully hyperbolic, with o4 = op = —1.

The system (3.10) coincides with the model of light propagation in a 2D optical waveguide with a quadratic
(SHG) nonlinearity (5], if ¥ and 7, X are realized, respectively, as a so-called retarded time and a propagation,
a transverse coordinate (in the stationary case, 3/dT = 0, { plays the role of a phase mismatch, while ¥ is a
relative dispersion [5]). Note that, in the optical model, a mixed case, when the FH equation is elliptic while
the SH one is hyperbolic, may also take place (and is, in fact, quite feasible [5]).

Unlike the 1D case, where for { = 1 an exact analytical solution to the system (3.10) is known [11], no
exact solution is available in the 2D case. Nevertheless, the general stationary soliton solutions can be fairly
well approximated by means of the variational approximation (VA). In the case o4 = +1, the necessary VA
was elaborated in Ref. [5], based on the Gaussian ansatz

A=age X -l B pe—BX-BY (3.11)

where the parameters were found to be

2 = 2ay + By) (ax + ay + ) (Bx + U'B')’By + ()(zay + Bv)

2\/axa’yﬂxﬂy '
2 2 ,
b=(a+ay + 1)\/( Gt P ey ¥ By)
ayey
Bx =4a(ay —a,+1)7", y=4al(ax —a, +1)7". (3.12)

The remaining parameters ay,, have to be determined as real positive roots of the equations

2B:(Bx + O'B'Yﬂy +{) = Lay + Bx)(—Bx+ U'B'YBy +4),
ZB,\’(EX + O'B'Yﬁ_v +{) = (2ay + ;Bv)(Bx - O'B')’ﬂy +{). (3.13)

Formally, the solution exists for both signs of o, i.e., for both the fully elliptic and mixed elliptic-hyperbolic
systems (3.10). However, comparison with direct numerical simulations has demonstrated that, while VA
produces quite reasonable results for the elliptic system, as well as for the marginal case o = 0, the mixed
elliptic-hyperbolic system does not support soliton solutions. A cause for this may be because the Gaussian
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ansatz does not correctly reproduce the exponentially decaying tails of the soliton, which becomes a fatal defect
in the mixed case.

VA can also be formally applied to the other mixed hyperbolic-elliptic case, i.e., o4 = —1, o5 = +1, or the
fully hyperbolic case o4 = —1, o5 = —1, that were not considered in Ref. [5]. However, consideration of the
soliton’s tails governed by the linearized equations indicates that a genuine 2D soliton is not possible in this
case either. One should also bear in mind that, for any sign combination, (3.10) support the quasi-1D soliton
corresponding to ay = 8, =0 in (3.11).

Finally, we note that only time-independent real soliton solutions were considered above. A more general
class of the solutions includes complex walking solitons [13], which, instead of X and Y, are localized with
the respect to the “walking” variables X — v,T and Y — v,T. This generalization is left beyond the framework
of the present work.

4. Numerical results

In this section we will test the above approximate analytical results, directly simulating the underlying
coupled ZK and KP equations. The main objectives are to test stability of the quasi-1D solitons in both models,
and the existence and stability of the 2D soliton in the ZK model, that gives rise to the fully elliptic system
(3.10), in which case the 2D soliton has a chance to exist. In all the cases, the simulations will be performed,
using the approximate 1D [10] and 2D [5] soliton solutions generated by VA as initial conditions suitably
transformed back into the original variables, cf. Ref. [8]. Special care has to be taken when simulating the
coupled KP equations with periodic boundary conditions because of a spectral singularity at £ = 0. To overcome
this problem, we modify the initial conditions provided by VA, up and vy, subtracting from them their mean
values, so that the integrals of these functions over the whole x-domain vanish. These corrected initial field
configurations fields ucon and veor are

L.X

teor (X, ¥) = up(x,y) — L7 /uo(x,y) dx, (4.1)
4]

and similarly for v, L, being the size of the x-domain. For the integration in time we use a pseudo-spectral code,
where the linear terms are treated by means of a semi-implicit Crank-Nicholson scheme, and the nonlinear
terms are dealt with by means of an explicit leapfrog technique. For the numerical integration, the coupled
equations were transformed into a reference frame which moves at the common group velocity vg of the wave
packets.

There are three free parameters, u, A and 8, because 7 is eliminated by means of (2.14). Note that & = 0 is
also a possible case. It is pertinent to mention that when the parameters take values of order unity, the actual
length of the wave packet is large, while its amplitude is small to satisfy eAk < %,.

In Fig. 1, we display a typical example of the evolution of a quasi-1D soliton for the linearly coupled KP
equations (2.3), (2.4). Quite similar results were also obtained for the coupled ZK equations (2.1), (2.2).
Comparing the initial configuration and the one generated by sufficiently long evolution, we conclude that the
wave packet slightly readjusts itself to get closer to an exact solution. It has been checked independently that,
over the same evolution time, an arbitrary initial wave packet strongly disperses, so that the observed stability of
the wave packet predicted by VA is a nontrivial result. A number of simulations have been performed at other
values of the parameters, all revealing that the quasi-1D approximate soliton solutions to the system (3.10),
predicted by VA, are fairly close to an exact stationary soliton of the original coupled ZK or KP equations.
It is pertinent to mention that the evolution of this quasi-1D soliton is exactly the same as in the coupled
KdV equations studied in Ref. [8], provided that the initial configuration is strictly y-independent. However,
a new result is that, in all the cases simulated, it has been found that the quasi-1D solitons are stable against
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Fig. 1. A typical example of simulations of a quasi-one-dimensional soliton in the system of linearly coupled Kadomtsev-Petviashvili
equations (2.3), (2.4). The left and right panels display, respectively, the initial configuration as suggested by the variational approximation,
and the result of evolution at ¢ = 100. The upper and lower pictures refer to u(x) and v(x). The parameters are u =5 = 1, and & = 4.6.
The corresponding resonant wavenumber (2.13) is k. = 0.9. The shaded area of the solitary waves in the right panel stems from the
superposition of the two harmonics.

y-dependent perturbations, within the framework of both ZK and KP equations. The stability of the quasi-1D
soliton in the former case, when the corresponding asymptotic system (3.10) is purely elliptic, is an unexpected
result (because in this case a fully localized stable 2D soliton also exists, see below, and hence one could
expect that the quasi-1D soliton is apt to be unstable, “losing the competition” to the 2D one).

A typical example of simulations for the 2D soliton governed by the coupled ZK equations (2.1), (2.2) is
depicted in Fig. 2. In this case, all the simulations performed at different values of the parameters demonstrate
that VA successfully predicts a field configuration very close to a stable 2D soliton. Finally, in Fig. 3 we display
an example of the evolution of a 2D KP soliton, which, in full accord with the hyperbolicity of the underlying
SHG-equations, is unstable and breaks up.

5. Conclusion

In this work, we have derived asymptotic two-dimensional equations for linearly coupled Zakharov-Kuznetsov
and Kadomtsev—Petviashvili equations describing the interaction between weakly nonlinear long waves in certain
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Fig. 2. The cross sections along the x axis (at y = 0) of the two-dimensional soliton in the coupled Zakharov-Kuznetsov equations (2.2),
shown the same way as the one-dimensional soliton in Fig. 1. The stability of the two-dimensional soliton is clearly seen.

stratified fluid flows. The asymptotic equations coincide with the most general equations describing the second-
harmonic generation in a two-dimensional optical waveguide, that take into account both temporal dispersion
and spatial diffraction. The system corresponding to the Zakharov-Kuznetsov equations turns out to be fully
elliptic, while the one corresponding to the Kadomtsev—Petviashvili equations is fully hyperbolic with respect
to the spatial coordinates. The recently found “light-bullet” solutions to the elliptic second-harmonic-generation
equations in nonlinear optics suggest existence of fully localized two-dimensional solitons in the corresponding
Zakharov-Kuznetsov equations too.

Direct numerical simulations of both the coupled Zakharov-Kuznetsov and Kadomtsev—Petviashvili systems,
for which the initial conditions are taken as suggested by the analytical variational approximation, completely
corroborate the existence and stability of these solitons, as well as the fact that the variational approximation
provides for a fairly high accuracy in predicting their shape. We have also demonstrated that the quasi-one-
dimensional solitons are (numerically) stable against two-dimensional perturbations in both the Zakharov-
Kuznetsov and Kadomtsev-Petviashvili coupled systems. The results reported in this work suggest that the
two-dimensional spatio-temporal solitons, which are very hard to generate experimentally in nonlinear optics,
may be generated much easier in certain fluid flows.
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Fig. 3. The cross sections along the x axis (at y = 0) of the two-dimensional soliton in the coupled Kadomtsev—Petviashvili equations (2.3),
(2.4), shown the same way as the one-dimensional soliton in Fig. 1. The instability of the two-dimensional soliton in this case is obvious.
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