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Set-up and main result.
Eigenvalue problem:

u\ u u(0)\ _ (u(®)\ _ (O
(@) =2() ()= ()= @
where
0 L_ L+ :8xx+g(x)7 2
N = , ,h e C([0,4]; R).
(_L+ 0) {Laﬁhm g.he C(0,0:R)
Define
P := # positive eigenvalues of L.,
Q= # positive eigenvalues of L_,
ny(N) = positive real eigenvalues of N,
Then we have the lower bound:
ni(N) > |P—Q—¢ (2)

where ¢ € {—1,0,1} is the contribution to the Maslov index from the
“corner” of the Maslov box.




Motivating example for the Maslov index: Sturm-Liouville theory

Consider the eigenvalue problem

y'+aq(x)y =Xy,  y(0)=y(¢)=0. (3)

Sturm-Liouville theory:

> Eigenvalues )\, of (3) are real,
discrete, simple, and satisfy

AM>X>A3> .. > = —00

» Eigenfunction y, for nth eigenvalue
has n — 1 zeros on (0, ¢).

Second statement is actually a statement about oscillations in phase space
(vy'-plane).



Motivating example for the Maslov index: Sturm-Liouville theory

Example:
EVP: yY'+a(x)y=xy  y(0)=y()=0
Iy
Define the polar angle in the phase plane: tanO(x; \) = y(xiA)
y(x:A)
Initial condition: y(0)=0 = 0(0;\) = 3.
Observations: y'
Eigenvalue A = A" when y(¢) =0, i.e. Py
—1a
00 \*) = g tnm, nel.
Fix A = A*. Can show:
06 0
—(x; A" 0
Ox (X ) 0=%+nm <
Fix x = £. Can show:
89 h o= g
— (/- ~Ly
S A)‘OZ%W >0



Motivating example for the Maslov index: Sturm-Liouville theory

We interpret this oscillation in phase space with the following picture:
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“Box theorem”

z) values where

L
= ,MEZL
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the signatures of the points on this box sum to zero!

These ideas are generalisable to Hamiltonian systems via the Maslov index.




Motivating example for the Maslov index: Sturm-Liouville theory

Yet another interpretation is offered by the monotonicity of the eigenvalue
curves:

® (), z) values where
60—

ngmr,nEZ

— J(z2) =0
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Figure: Locus of points in A, s plane where y(x;\) =0
(where ¥(0; A) = 0)

Can show x’(\) > 0 using the I.F.T. and the original ODE

= # {crossings on left}= #{crossings on top}



The Maslov index: framework

A symplectic form on R?" is a nondegenerate, skew-symmetric bilinear form

w:R" xR — R, w(x,y) = (Ux, y)pen, J= (? _OI") .

The Lagrangian Grassmannian is the set of all Lagrangian subspaces of R>",

L(n)={ACR*”:dimA=n, w(x,y)=0 Vx,y €A}

The Maslov index can be thought of as a winding number for loops in £(n).

In practice we compute it by counting signed intersections of our path with a
codimension one submanifold of £(n):

T(No) ={AN e L(n): AN Ao # {0}}

(the train of a fixed Lagrangian plane Ag).



The Maslov index: framework
Consider a path A : [a, b] — £(n), and fix Ao € L(n).

> A crossing is a value t = ty s.t. A(to) € T(No)

Figure: Shematic of a path A(t) in the Lagrangian Grassmannian £(n)
intersecting the train 7 (Ag) at t = to.

» The Maslov index is a signed count of the crossings, with the signature
being determined by that of a certain quadratic form.



Application to eigenvalue problem at hand.

Restrict problem to [0, s4]:
Nu=Au, u(0)=u(sf)=0, xe€]l0,s.

General solutions: Ky s == {u € H?(0,s¢) : Nu= \u} (no BC’s)

Trace of u € H%(0, s¢):

Trsu == (u(0), v(0), u(st), v(st), —u'(0), v'(0), u’(sL), —v'(sZ))T €R®

A(N ) :IE‘Ts (Kxs)

(traces of general

T(D)
(Dirichlet BC’s)

solutions)




The Maslov box

Consider the following rectangle in the As-plane with image in £(4) under A:

S
A
s=1 4
r3 ¥
T, T4
'y
s=T
< A
A=0 Aco

Let I be the solid box, so that O =T U, U3 U 4.

Our Lagrangian path is the image in £(4) of 9I; i.e. A: 9l — L(4).



The Maslov box

Now mark the intersections of this path with the train 7(D).

S A
positive real eigenvalues of N /—\
s=1 ® ® @ crossings i.e.

Is A(A,s) € T(D)

L(4)

[ ]
conJ\_lgate 1'\2 F4 n(?
points ¢ crossings

Iy

no crossings )

W T(D)

Topological properties of Maslov index imply
Mas(A, D; 9T) = Mas(A, D; T1)+Mas(A, D; I'2)+Mas(A, D; T'3)+Mas(A, D; 1) = 0.
No crossings on I'1,I4 = Mas(A,D; 1) = Mas(A,D;T4) = 0. Thus

Mas(A, D; T2) + Mas(A, D; T'3) = 0.



The Maslov box

Now assign signature to each crossing and sum!

corner

» Mas(A,D;T5) = +Q — P, where

positive real eigenvalues of N'

2 ? Q = # positive eigenvalues of L_

conjugate
points

L & @ crossings i.e.

A\ s) € T(D)

P = +# positive eigenvalues of L,

» Along I§: signatures may offset
each other; therefore

n-(N) > | Mas(A, D; T5))

: A
A=0 Aco » Contribution from corner is
¢ := Mas(A, D; corner).
Therefore: Mas(A, D;T2) + Mas(A, D;T3) =0
— Mas(A, D;T3) + ¢ + Mas(A,D;T3) =0
. Mas(A, D;T3) = —Mas(A, D; T3) — ¢

= ni(N) > |Mas(A,D;T3)| = |P — Q — ¢ O



Computing ¢

The contribution c¢ is irregular, since the associated quadratic form is
degenerate.

This corresponds to our ‘box’ being tangential to the (flat) eigenvalue curve at
A=0,s=1:

— {(\,8): A(\, ) e T(D)}

i.e. locus of eigenvalues

A=0

We will use a homotopy argument to compute ¢, which hinges on knowing the
concavity of the eigenvalue curves...



Computing ¢

Theorem (Cox, Curran, Latushkin, Marangell)

Let s = s(\) be the eigenvalue curve through (A, s) = (0,1).
If 0 € Spec(L_)\ Spec(L+) with L_v =0, then
0

sign 5(0) = sign/ Gv dx,
0

where —L G = v. Note u = <8) € ker(N) and Gi = (8’) € ker(NV?)\ ker(N).
If 0 € Spec(L+)\ Spec(L—) with Lyu =0, then
¢
sign5(0) = — sign/ Vudx,
0

u

where L_V = u. Note u = <0> € ker(N) and u = (g) € ker(N?)\ ker(N).



Computing ¢

Homotoping the top left corner of the Maslov box:
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Figure: Blow-up of the crossing at (A, s) = (0,1), with the (blue) eigenvalue curve,
Maslov box (solid black) and homotoped path (dashed) passing through it. Images of
black and dashed paths in £(4) on the right.
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Computing ¢

Theorem (Cox, Curran, Latushkin, Marangell)
Let s = s(\) be the eigenvalue curve through (A, s) = (0, 1).

If 0 € Spec(L_)\ Spec(Ly) then

(e 0 signs(0)>0
Tl +1 signs(0) <o.

(o 0 signs(0) >0
-1 signs(0) <o.



Application: The Vakhitov-Kolokolov criterion

Nonlinear Schrédinger (NLS) equation on a compact interval,
e = Yo+ £ (JU7) ¥, $(x 1) 0,0 x [0,00) — C
Linearising (4) about a standing wave solution
b(xt) = e¥(x),  b(x)ER,  BER,
using a complex perturbation
W(x, t) = Y(x, t) + e(ulx, t) +iv(x, t))

leads to the linearised dynamics in u, v:

where

_ 2
N:( 0 L,)7 {L—axx+f(¢)+ﬁ,

Ly = O + 2f' (4% + F(6°) + B.

(4)



Application: The Vakhitov-Kolokolov criterion
Known result:
NLS equation on the real line,
P = o + f (|¢|2) ¥, P(x,t): R x[0,00) — C
Standing wave:

b(x,t) = e®'p(x), el (R;R), BeR

Theorem (VK criterion)
If P=1 and Q = 0 then:

8%/ #°(x; B)dx >0 = ny(N) =1
—> standing wave 12 spectrally unstable
85/ #°(x; B)dx < 0 = Spec(N) C iR

—> standing wave 12)\ spectrally stable



Application: The Vakhitov-Kolokolov criterion

Analogous result for NLS on compact interval:

Concavity of the eigenvalue curve through the top left corner provides an
(in)stability criterion!

Lemma
If P =0 or Q=0 then Spec(N) C RUIR and ny(N) =|P — Q —¢|.

Theorem (Cox, Curran, Latushkin, Marangell)
For standing waves where 0 € Spec(L_)\ Spec(Ly) and P=1,Q = 0:
sign 5(A)|(x,5)=0,1) > 0 = n (N) =1
= 1Z spectrally unstable
sign 5(A)|(x,9)=0,1) <0 = n (N) =0 = Spec(N) C iR

= 1Z spectrally stable

A similar statement holds when 0 € Spec(Ly)\ Spec(L_) and P =0,Q = 1.



The Vakhitov-Kolokolov criterion

If P4+ @ =1 then J exactly one conjugate point on the left side of the Maslov
box (excluding (X,s) = (0,1)). Thus,

sign 5(A)|(x,9)=(0,1) > 0 = ny(N) =1 = instability

sign 5(A\)|(x,9)=0,1) <0 = n (N) =0 = stability

Figure: Two scenarios when P + Q = 1. Left: ny(N) = 1. Right: ny(N)=0.



Thank you.




	Motivation, summary of results.

