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Elliptic Curve Cryptography

Consider an elliptic curve E over a finite field [,
(g = p", p a prime number).

The discrete logarithm problem: given points P and P
on E. find k such that P = kP.

1 E and g for which it is extremely difficult to find £.
“Curve25519”: y? = x3 + 486662x% + x, p =2%° - 19
requires more than 2'?® bit operations.

The equivalent RSA version needs a key size of 3072
bits.




Shor’s Algorithm

Shor’s algorithm is a quantum algorithm for
finding the prime factors of an integer.

1600 qubits would be enough to break
Curve25519.

6147 qubits are needed to break RSA-3072.
But Shor’s algorithm makes assumptions.
One assumption is that the group operation

stays fixed throughout the algorithm.



Changing Elliptic Curves

e Families of elliptic curves have symmetries,
which preserve the family but change
individual curves.

e These are well known for integrable

dynamical systems.







Integrable System
flz,y) =vy? — z* —dax’ — 4bx® + dkz — ¢

e When a =1, kis the Hamiltonian for an associated
dynamical system: the fourth Painlevé equation Pyy,
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Discrete Dynamics

Using
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Shared key

Exponentially hard to Diffie-Hellman, 1976
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Implications

e Shor’s algorithm assumes that the group generator g

1S constant.

e In our case, g is changing from curve to curve.

e A quantum-proof algorithm arises from dPI, but it

is O(n), which is not as efficient as ECC.

(Questions:
1. Can Shor’s algorithm be extended to such cases?
2. Can the complexity of the discrete logarithm

problem in initial-value space be reduced?



