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Brundan and Kleshchev recently introduced a new family of presentations
of the Yangian Y (gln) associated to the general linear Lie algebra gln, and thus
provided a fresh approach to its study. In this article, we would like to show how
some of their ideas can be fruitfully extended to consider the Yangian Y (glm|n)
associated to the Lie superalgebra glm|n. In particular, we give a new proof of the

result by Nazarov that the quantum Berezinian is central.1

1 Definition of Y (glm|n)

The Yangian Y (glm|n) is defined in [7] to be the Z2-graded associative algebra over

C with generators t
(r)
ij and certain relations described below. We define the formal

power series

tij(u) = δij + t
(1)
ij u

−1 + t
(2)
ij u

−2 + . . . ,

and a matrix

T (u) =

m+n
∑

i,j=1

tij(u) ⊗Eij (−1)j(i+1), (1)

where Eij is the standard elementary matrix and i is the parity of the index i. In
analogy with the usual Yangian Y (gln) (see for example [2], [5], [6]), the defining
relations are then expressed by the matrix product

R(u− v)T1(u)T2(v) = T2(v)T1(u)R(u− v)

where

R(u− v) = 1 −
1

(u− v)
P12
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and P12 is the permutation matrix:

P12 =

m+n
∑

i,j=1

Eij ⊗Eji(−1)j .

Then we have the following equivalent form of the defining relations:

[tij(u), tkl(v)] =
(−1)ij+ik+jk

(u− v)
(tkj(u)til(v) − tkj(v)til(u)).

Throughout this article we will observe the following notation for entries of the
inverse matrix of T (u):

T (u)−1 =:
(

t′ij(u)
)n

i,j=1
.

A straightforward calculation yields the following relation in Y (glm|n):

[tij(u), t′kl(v)] =
(−1)ij+ik+jk

(u − v)
· ( δkj

m+n∑

s=1

tis(u)t′sl(v) − δil

m+n∑

s=1

t
′
ks(v)tsj(u)). (2)

2 Gauss Decomposition of T (u)

In [1], the Drinfeld presentation is described in terms of the quasideterminants
of Gelfand and Retakh ([3], [4]). In this article we make use of the analogous
set of generators of the Yangian Y (glm|n). First we recall the definition of the
quasideterminants and some conventional notation.

Definition 2.1. Let X be a square matrix over a ring with identity such that its
inverse matrix X−1 exists, and such that its jith entry is an invertible element of
the ring. Then the ijth quasideterminant of X is defined by the formula

|X |ij =
(

(X−1)ji

)−1
.

Equivalently, we may define quasideterminants inductively as follows. If X =
(x11) is a 1 × 1-matrix then there is only one quasideterminant of X ; and this is
|X |11 = x11. For n > 1, we have

|X |ij = xij −
∑

k 6=i,l6=j

xik(|X ij |lk)−1xlj ,

where X ij is the matrix obtained from X by removing both the ith row and the
jth column. It is sometimes convenient to adopt the following alternative notation
for the quasideterminants:

|X |ij =:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x11 · · · x1j · · · x1n

· · · · · ·
xi1 · · · xij · · · xin

· · · · · ·
xn1 · · · xnj · · · xnn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.
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The matrix T (u) defined in (1) has the following Gauss decomposition in terms of
quasideterminants (by Theorem 4.96 in [3]; see §5 in [1]):

T (u) = F (u)D(u)E(u)

for unique matrices

D(u) =




d1(u) · · · 0

d2(u)
...

...
. . .

0 · · · dm+n(u)




,

E(u) =




1 e12(u) · · · e1,m+n(u)
. . . e2,m+n(u)

. . .
...

0 1




,

F (u) =




1 · · · 0

f21(u)
. . .

...
...

. . .

fm+n,1(u) fm+n,2(u) · · · 1




,

where

di(u) =

∣∣∣∣∣∣∣∣

t11(u) · · · t1,i−1(u) t1i(u)
...

. . .
...

ti1(u) · · · ti,i−1(u) tii(u)

∣∣∣∣∣∣∣∣
,

eij(u) = di(u)−1

∣∣∣∣∣∣∣∣∣∣

t11(u) · · · t1,i−1(u) t1j(u)
...

. . .
...

...
ti−1,i(u) · · · ti−1,i−1(u) ti−1,j(u)

ti1(u) · · · ti,i−1(u) tij(u)

∣∣∣∣∣∣∣∣∣∣

,

fji(u) =

∣∣∣∣∣∣∣∣∣∣

t11(u) · · · t1,i−1(u) t1i(u)
...

. . .
...

...
ti−1,1(u) · · · ti−1,i−1(u) ti−1,i(u)

tji(u) · · · tj,i−1(u) tji(u)

∣∣∣∣∣∣∣∣∣∣

di(u)−1
.

It is easy to recover each generating series tij(u) by multiplying together and taking
commutators of di(u); 1 ≤ i ≤ m+n, and ei(u) := ei,i+1(u), fi(u) = fi+1,i(u); 1 ≤
i < m+n (see §5 of [1]). Thus the Yangian Y (glm|n) is generated by the coefficients
of the latter.

2.1 Some Useful Maps

Here we define some automorphisms of the Yangian Y (glm|n) and homomorphisms
between Yangians, so that we may refer to them in the next section.
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Let ωm|n : Y (glm|n) → Y (glm|n) be the automorphism defined by

ω : T (u) 7→ T (−u)−1.

Let τ : Y (glm|n) → Y (glm|n) be the automorphism defined by

τ(tij(u)) = tji(−u) × (−1)i(j+1).

Let ρm|n : Y (glm|n) → Y (gln|m) be the isomorphism defined by

ρm|n(tij(u)) = tm+n+1−i,m+n+1−j(−u).

Let ϕm|n : Y (glm|n) ↪→ Y (glm+k|n) be the inclusion which sends each genera-

tor t
(r)
ij ∈ Y (glm|n) to the generator t

(r)
k+i,k+j in Y (glm+k|n).

Finally, let ψk : Y (glm|n) → Y (glm+k|n) be the injective homomorphism de-
fined by

ψk = ωm+k|n ◦ ϕm|n ◦ ωm|n. (3)

This last homomorphism is useful for studying quasideterminants so we discuss it
in some detail with the following remarks.

Remark 2.1. We can calculate ψk(tij(u)) explicitly for any 1 ≤ i, j ≤ m+ n (see
Lemma 4.2 of [1]) :

ψk(tij(u)) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

t11(u) · · · t1k(u) t1,k+j(u)
...

. . .
...

...
tk1(u) · · · tkk(u) tk,k+j(u)

tk+i,1(u) · · · tk+i,k(u) tk+i,k+j(u)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

In particular, this means that for k ≥ 1, we have ψk(d1(u)) = dk+1(u), ψk(e1(u)) =
ek+1(u), and ψk(f1(u)) = fk+1(u).

Furthermore, by (3), we have for any k, l ≥ 1 that ψk ◦ ψl = ψk+l, so we may
generalise this observation to give for instance ψk(dl(u)) = dk+l(u).

Remark 2.2. Notice that the map ψk sends t
′ (r)
ij ∈ Y (glm|n) to the element

t
′ (r)
k+i,k+j in Y (glm+k|n). Thus the subalgebra ψk(Y (glm|n)) is generated by the ele-

ments {t
′ (r)
k+s,k+t}

n
s,t=1. Then, by (2), all elements of this subalgebra commute with

those of the subalgebra generated by the elements {t
(r)
ij }k

i,j=1.

By Remark 2.1, this implies in particular that for any i, j ≥ 1, the quasideter-
minants di(u) and dj(v) commute.
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3 The Quantum Berezinian

The quantum Berezinian was defined by Nazarov [7] and plays a similar role in the
study of the Yangian Y (glm|n) as the quantum determinant does in the case of the
Yangian Y (gln) (see [5]).

Definition 3.1. The quantum Berezinian is the following power series with coef-
ficients in the Yangian Y (glm|n):

bm|n(u) :=
∑

ρ∈Sm

sgn(τ ) tτ(1)1(u)tτ(2)2(u − 1) · · · tτ(m)m(u − m + 1)

×

∑

σ∈Sn

sgn(σ) t
′
m+1,m+σ(1)(u − m + 1) · · · t′m+n,m+σ(n)(u − m + n)

The first part of this expression for bm|n(u) is quite special and so is given its
own notation:

Cm(u) :=
∑

τ∈Sm

sgn(τ)tτ(1)1(u)tτ(2)2(u− 1) · · · tτ(m)m(u−m+ 1).

It is clear that Cm(u) is an element of the subalgebra of Y (glm|n) generated by

the set {t
(r)
ij }1≤i,j≤m;r≥0. This subalgebra is isomorphic to the Yangian Y (glm)

associated to the Lie algebra glm by the inclusion Y (glm) → Y (glm|n) which send

each generator t
(r)
ij in Y (glm) to the generator of the same name in Y (glm|n).

Moreover, Cm(u) is in fact the image under this map of the quantum determinant
of the smaller Yangian Y (glm) (see [1], [5]). Then it is well known (see Theorem
2.32 in [6]) that we have the alternative expression:

Cm(u) = d1(u)d2(u− 1) · · · dm(u−m+ 1).

We can extend this observation as follows:

Theorem 1. We have the following alternative expression for the quantum Berezinian:

bm|n(u) = d1(u) d2(u− 1) · · · dm(u−m+ 1)

× dm+1(u−m+ 1)−1 · · · dm+n(u−m+ n)−1.

Proof. Notice that the second part of the expression for bm|n(u) in Definition 3.1
is the image under the isomorphism ρn|m ◦ ωn|m : Y (gln|m) → Y (glm|n) of

∑

σ∈Sn

sgn(σ) tn,σ(n)(u − m + 1) · · · t2,σ(2)(u − m + n − 1) t1,σ(1)(u + m − n) (4)

where in this expression (4) we are following the usual convention for denoting
generators in the Yangian Y (gln|m). We recognise (by comparing with (8.3) of [1]
for example) that the expression (4) is in fact Cn(u−m+n), the image of the quan-
tum determinant of Y (gln) under the natural inclusion Y (gln) ↪→ Y (gln|m). So in
order to verify the claim we must calculate the image of Cn(u−m+ n) under this
map explicitly in terms of our quasideterminants di(v). Applying Proposition 1.6
of [4], we find that the image of di(v) in Y (gln|m) is (dm+n+1−i(v))

−1 in Y (glm|n).
This gives the desired result.
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The following theorem is a result of Nazarov [7]. We give a new proof.

Theorem 2. The coefficients of the quantum Berezinian (3.1) are central in the
algebra Y (glm|n).

Proof. By Remark 2.2, we already know that the quantum Berezinian bm|n(u)
commutes with di(v) for 1 ≤ i ≤ m+n. In addition, if we know that the quantum
Berezinian commutes with ei(v), then by applying the automorphism τ , we find
that it also commutes with fi(−v). So our problem reduces to showing that bm|n(u)
commutes with ei(v) for each i between 1 and m+ n− 1. We proceed by breaking
this problem into three cases.

Case 1: 1 ≤ i ≤ m− 1. For 1 ≤ i ≤ m− 1, we have that ei(v) commutes with
Cm(u) = d1(u) · · · dm(u−m+1) by Theorem 7.2 in [1]. On the other hand, ei(v)

is an element of the subalgebra generated by {t
(r)
jk }1≤j,k≤m and thus by Remark

2.2 commutes with dm+s(u−m+ s)−1 = t′m+s,m+s(u−m+ s) for 1 ≤ s ≤ n.

Case 2: m + 1 ≤ i ≤ m + n − 1. Applying Propositions 1.6 and 1.4 of [4] in
turn to fi(v), we find an alternative expression:

fi(v) = −

∣∣∣∣∣∣∣∣

t
′
i+1,i+1(v) · · · t′i+1,m+n(v)

...
...

t′m+n,i+1(v) · · · t′m+n,m+n(v)

∣∣∣∣∣∣∣∣

−1

·

∣∣∣∣∣∣∣∣∣∣

t
′
i+1,i(v) t′i+1,i+2(v) · · · t′i+1,m+n(v)

t′i+2,i(v) t′i+2,i+2(v) · · ·

...
...

. . .
...

t′m+n,i(v) t′m+n,i+2(v) · · · t′m+n,m+n(v)

∣∣∣∣∣∣∣∣∣∣

.

Thus, we find that for m+ 1 ≤ i ≤ m+ n− 1,

ei(v) = ρn|m ◦ ωn|m(−fm+n−i(v)).

We apply this isomorphism to the results of Case 1 in the Yangian Y (gln|m).
This shows that ei(v) commutes with the quantum Berezinian in the case where
m+ 1 ≤ i ≤ m+ n− 1.

Case 3: i=m. We begin by considering the Yangian Y (gl1|1). For this algebra

we have b1|1(u) = d1(u)d2(u)
−1 and we would like to show that this commutes

with e1(v). So it will suffice to show

d1(u)e1(v)d2(u) = d2(u)e1(v)d1(u). (5)

We have
(

t11(u) t12(u)
t21(u) t22(u)

)
=

(
d1(u) d1(u) e1(u)
f1(u)d1(u) f1(u)d1(u)e1(u) + d2(u)

)
(6)

(
t′11(v) t′12(v)
t′21(v) t′22(v)

)
=

(
d1(v)−1+ e1(v)d2(v)−1f1(v) −e1(v) d2(v)−1

−d2(v)−1f1(v) d2(v)−1

)
. (7)
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An application of (2) gives

(u− v)[t11(u), t
′
12(v)] = t11(u)t

′
12(v) + t12(u)t

′
22(v).

Substituting in the expressions from (6) and (7) then cancelling d2(v), this gives

(u− v)[d1(u), e1(v)] = d1(u)(e1(v) − e1(u)).

Similarly, by considering the commutator [t12(u), t
′
22(v)], we derive the relation

(u− v)[d2(u), e1(v)] = d2(u)(e1(v) − e1(u)).

We rewrite these relations to find

(u− v)e1(v)d1(u) = (u− v − 1)d1(u)e1(v) + d1(u)e1(u),

(u− v)e1(v)d2(u) = (u− v − 1)d2(u)e1(v) + d2(u)e1(u),

and by considering these expressions we see that (5) holds.

Now we return our attention to the general Yangian Y (glm|n). By similar
appeals to Remark 2.2 as in the first case, we see that em(v) commutes with
d1(u) · · · dm−1(u−m+ 2) and with dm+2(u−m+ 2)−1 · · · dm+n(u− m + n)−1.
So we need only show that em(v) commutes with dm(u−m+1)dm+1(u−m+1)−1.
This follows immediately when we apply the homomorphism ψm−1 to the identity
(5) in Y (gl1|1).
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