BLOCKS OF AFFINE AND CYCLOTOMIC HECKE ALGEBRAS

SINEAD LYLE AND ANDREW MATHAS

ABSTRACT. This paper classifies the blocks of the affine Hecke algebras of typelAhe blocks of the
cyclotomic Hecke algebras of tyg&(r, 1, n) over an arbitrary algebraically closed field. Rather than work-
ing with the Hecke algebras directly we work instead with the cyclotomic Sdhgebeas. The advantage
of these algebras is that the cyclotomic Jantzen sum formula gives ye@abinatorial characterization
of the blocks of the cyclotomic Schur algebras. We obtain an explicit gi#iger of the blocks by analyzing
the combinatorics of ‘Jantzen equivalence’.

We remark that a proof of the classification of the blocks of the cyclotoneickie algebras was an-
nounced in 1999. Unfortunately, Cox has discovered that this prepimas is incomplete.

1. INTRODUCTION

The affine Hecke algebras arise naturally in representation theorgudtireep—adic groups as well as
having applications to the representation theory of semisimple algebraicsgroppsitive characteristic
and to quantum groups at roots of unity. These algebras can be dgioeuetrically using the{—
theory of the Steinberg variety. This leads to explicit formulae for the deositipn numbers in terms
of Kazhdan—-Lusztig polynomials whetis a complex root of unity; sed.p, Theorem 8.6.23].

This paper is concerned with the affine Hecke algebra of the generai fineup.22", which is also
known as the extended affine Hecke algebra of type;. LetF be a field. Then, using the Bernstein
presentation#2 can be written as a twisted tensor produ€l(S,,) @ F[XE, ..., X;F] of the Iwahori—
Hecke algebra; (&,,) of the symmetric group and the Laurent polynomial fifig::, . . ., X;F].

If Ais an algebra then two simplé—modulesD and D’ belong to samélock if there exist simple
A-modulesD = Dy, Ds, ..., D;, = D' such that eitheExt!, (D;, D; 1) # 0 or ExtY(D; 11, D;) # 0,
for 1 < i < k. More generally, twoA—modulesM and N belong to the same block if all of their
composition factors belong to the same block.

By a well-known theorem of Bernstei@Z, Prop. 3.11], the centre o#2" is the seff [ X, ..., X;5]®»
of symmetric Laurent polynomials i1, . .., X,,. It is not difficult to show that any#2"-module de-
composes as a’2f—_module into a direct sum of generalized eigenspaces for the centralctéras
of 3. As 2 is finite dimensional over its centre every irreduci#3™-module is finite dimen-
sional and, in particular, has a central character by Schur’s Lemiimdlolts that any twas22f—modules
which are in the same block have the same central character.

Theorem A. Suppose thdt is algebraically closed and that= 1. Let D and D’ be two. 2" —modules.
ThenD and D’ belong to the same block if and only if they have the same central character

The centre o222 is well understood, however, as far as we know, Theorem A is neverlk- 1 the
simple.Z2"-modules have been classified in terms of ‘content functions’ on aperindiisegments;
see fi, Theorem B] for a precise statement. As a consequence the valuescefitingl characters on the
simple%{"ﬁ—modules are easy to compute.

To prove Theorem A we do not work with the affine Hecke itself, but mathi¢h certain natural
quotients of 22 which are known as the Ariki—-Koike algebras, or the cyclotomic Hecke adgetf
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type G(r, 1,n). These algebras appear first in the work of Chereddjiknowever, their properties were
first systematically studied by Ariki and Koik8][and Browe and Malle ¥]. Apart from being interesting
in their own right, these algebras are central to the conjectures oeBMalle and Michel §] which
attempt to understand Bréis abelian defect group conjecture for the finite groups of Lie type.

If Q = (Q1,...,Qr) € (F*)" then the Ariki-Koike algebraZ. (¢, Q) is the quotient algebra
%ilaff/«Xl —@Q1)... (X1 —Qr)). Consequently, every irreducib; ,,(¢, Q)—-module can be consid-
ered as an irreduciblgz2™—module. Conversely, by quotienting out by the characteristic polynomial
of X1, every irreduciblesZ2T-module is an irreducible module for some Ariki—Koike algebra. Deep
results of Ariki [2] and Grojnowski 17] show that the module categories of the affine Hecke algebras
and the Ariki-Koike algebras are intimately intertwined.

The natural surjection??™ — 7, ,, shows that ifD and D’ are in the same block a#;. ,—modules
then they are in the same block.262"-modules. The second result of this paper shows that the blocks
of the Ariki—Koike algebras are determined by the affine Hecke algebra.

Theorem B. Suppose thafF is an algebraically closed field and that=# 1. Let D and D’ be irre-
ducible modules for the Ariki-Koike algebed? ,,(¢, Q). ThenD and D’ belong to the same block as

4. (g, Q)—modules if and only if they belong to the same block&¥—modules.

We also classify the blocks of the Ariki—Koike algebras wigea 1 and when some of the parameters
Q1,...,Q, are zero. Motivated by Theorem A we can give an explicit combinatoritdrion for two
7. (q, Q)—-modules to belong to the same block, and it is this statement that we actually Seee
Theorem 2.11 for the precise statement. With this in hand, we then deduce=iha from Theorem B.

Observe that the Theorem B is equivalent to the following property oflthekb ofjfj;"‘ff.

Corollary. Suppose thaj # 1 and letD and D’ be two simple’Z;. (¢, Q)-modules. The® and D’

belong to the same block a?ﬁ%aﬂ—modules if and only if there exist simpi€. ,,(¢, Q)—-modulesD =
D1, D>, ...,D; = D' such that either

EXt;fnaﬁ(Di, DZ‘+1) 7é 0 or EXt;ﬁﬁ(Di+1, Dz) 7é 0,
forl <i< k.

In 1999 Grojnowski 18] announced a proof of Theorem B. Using an ingenious argument, @at
jnowski actually proves is that

Extl (D, D') = Ext}, e D, D)

7,Q)

wheneverD # D’ are simples7,. ,,(¢, Q)—modules. Unfortunately, as Anton Cakl] has pointed out,
this is not enough to classify the blocks of the Ariki—Koike algebras. Fampte, it could happen that
there are noZ3-module extensions between differert ,, (¢, Q)-modules which belong to the same
block as#3"-modules. We note that Grojnowski’s result does not follow from Thade

Lusztig [22] introduced a graded, or degenerate, Hecke algebra for each Hifficke algebra. Brun-
dan B] has shown that the centre of the degenerate affine Hecke algebraomapthe centre of the
degenerate cyclotomic Hecke algebras. This gives a classification dbttiestof the degenerate cyclo-
tomic and affine Hecke algebras analogous to our Theorems A and B.dbskreuld be possible to use
the arguments from this paper to classify the blocks of the degeneratéarpiiidiecke algebras of type
G(r,1,n) and the associated degenerate cyclotomic Schur algebras. All of the @tarluis that we use
goes through without change, however, it is necessary to checkrthahants of 21] can be adapted to
prove a sum formula for the Jantzen filtrations of the degenerate cyclotatic Slgebras. This should
be routine (cf. , §6]), however, we have not checked the details.

The outline of this paper is as follows. In the next section we introduce theé-Koike algebras
and the cyclotomig—Schur algebras. Using the representation theory of these two algefrasduce
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the proof of Theorem B to a purely combinatorial problem of showing thatequivalence relations
on the set of multipartitions coincide (Theorem 2.11). The first of these&/aguce relations comes
from the cyclotomic Jantzen sum formull], and the second equivalence relation is the combinatorial
criterion which classified the central characters the affine Hecke ageBissuming Theorem 2.11 we
prove Theorem A and Theorem B at the end of section 2. In section 3ewalap the combinatorial
machinery needed to show that our two equivalence relations on thergettgfartitions coincide when

g # 1 and when the parametef, .. ., (), are non—-zero. Here we are greatly aided by recent work of
Fayers [L4,15] on the ‘core block’ of a multipartition. Finally, in section 4 we consider the kdoof

the Ariki—-Koike algebras with ‘exceptional’ parameters; that is, those agabithq = 1 or with some

of the parameter®, . . ., Q.- being zero. Quite surprisingly, the algebras with ‘exceptional parameters
have only a single block (unlegs= 1 andr = 1).

Acknowledgement
We are grateful to Susumu Ariki for asking us if we could describe thekislet the affine Hecke
algebras of type A.

2. CyCLOTOMIC HECKE ALGEBRAS AND SCHUR ALGEBRAS

This section begins by introducing the cyclotomic Hecke algebras and Stdebras. We then re-
duce the proof of Theorem B to a purely combinatorial statement which aséushowing that two
equivalence relations on the set of multipartitions coincide.

2.1 Ariki-Koike algebras. LetF be a field of characteristioc € {2,3,...} U {oo} and fix positive
integersn andr. Suppose that, )1, ... Q, are elements of such thaty is invertible and letQ =
(Q1,...,Qr). TheAriki-Koike algebra 7., = 7 ,(q, Q) is the unital associativE—algebra with
generatordy, 11, ..., 1,1 and relations

(To = Q1) ... (To — Qr) =0,
T, = 1,7, 0<i<j—1<n-2
LT T =T TiTi 44, 1<i<n-2,

ToT1ToTy = ThTo11T0.

Definee > 2 to be minimal such that + ¢+ ... + ¢! = 0 € F. Thene € {2,3,...} U {oo}. Note
thate = pifand only if ¢ = 1. If e # p andp is finite thenp does not divide.

Recall that a partition = (A1, Ao, ... ) of n is a weakly decreasing sequence of non—negative integers
which sum to|\| = n. An r—multipartition ofn, or more simply a multipartition, is an ordered
tuplex = (AW, ... A(M) of partitions with|A| = [AD] + .- + [A(D| = n. Let A, be the set of
multipartitions ofn. We regard a partition as a multipartition with one component, so any subgequen
definition concerning multipartitions specializes to a corresponding definiiopaftitions.

The set of multipartitions is naturally ordered dgminancewhereX > p if

s—1 7 s—1 7
IR ED T I
t=1 j=1 t=1 j=1

fors=1,2,...,rand alli > 1. We write A> p if A > pand # p.

The Ariki-Koike algebrasz;.,, is a cellular algebrall2, 16]. The cell modules of7. ,, are indexed by
the multipartitions of.. The cell module indexed by the multipartitionis theSpecht moduleS(\). By
the theory of cellular algebrad6,23], there is ans;. ,—invariant bilinear form(, ) on the Specht mod-
ule S(A), so the radicatad S(A) = {z € S(A) | (z,y)» =0forally € S(A) } is an.s#. ,—submodule
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of S(A). SetD(A) = S(A)/rad S(A). Then the non-zer® () give a complete set of pairwise non—
isomorphic simple’Z;. ,—modules.

The theory of cellular algebras gives us the following fact which is vitaltfds paper because it
allows us work with Specht modules rather than with the siniglg,—modules.

2.1.Lemma (Graham-Lehrerl6, 3.9.8], R3, Cor. 2.2]) Suppose thak is a multipartition. Then all of
the composition factors &f(A) belong to the same block.

Equivalently, if we decomposg?;.,, into a direct sum of indecomposable subalgebras then exactly
one of these subalgebras has a non—zero actigf(an. Thus we can talk of the block ofZ.,, which
contains the Specht modutg \).

2.2 Cyclotomic ¢—Schur algebras. Rather than working with Specht modules to classify the blocks
we want to work with Weyl modules. To this end feL]" ... L3 Ty, | 0 < a; < r andw € &,, } be the
standard basis of7, ,, [3, Prop. 3.4]. ThatisL; = Ty andL; 1 = ¢' T, L;T;, for 1 < i < n, and if

w € &, thenT,, = T;, ...T;, wheneverw = (i1, + 1) ... (i, i + 1) with £ minimal (so this is a
reduced expression af). For each multipartitior\ define

o A [ A

m)\zl_Il kl:Il (Lk_Qs>' Z T,

weSy

whereGy = 6,1 x -+ x &, is the parabolic subgroup @, associated t. The cyclotomic
g—Schur algebrais the endomorphism algebra

yr,n = T,n(Qv Q) = End%-,n ( @ m}\%m)'

AeAt,

We remark this variant of the cyclotomje-Schur algebra is Morita equivalent to the one of the algebras
introduced in LL2]. The representation theory of;. ,, is discussed ing4].

The cyclotomiag—Schur algebra;. ,, is a quasi—hereditary cellular algebra. The cell moduleg;of
are theWeyl modules A(M), for A € Af,. For eachh € Af,, there is a non-zero simple module

L(X) = A(XN)/rad A(N). Just as with Lemma 2.1, the theory of cellular algebras tells us the following.

2.2.Lemma (Graham-Lehrer]6, 3.9.8], 3, Cor. 2.2]) Suppose thak is a multipartition. Then all of
the composition factors @k () belong to the same block.

The next result shows that in order to classify the blocks#®yf, it is enough to consider the blocks
of .7, .. In fact, this is an easy consequence of double centralizer theory.

2.3.Proposition. Let A and p be multipartitions ofe. ThenS(A) and S(w) are in the same block as
4. ,—modules if and only i\ (X) and A(p) are in the same block a%’. ,,—modules.

Proof. By a standard Schur functor argumegtL[ Prop. 2.17], ifD(v) # 0 then [S(A):D(v)] =
[A(X):L(v)]. Therefore, ifS(A) andS () are in the same block thel(\) andA(u) are in the same
block. Note that this implies tha¥,.,, cannot have more blocks (that is, indecomposable subalgebras)
than.Jz. ,,.

To prove the converse léif = @AGAH mx“4,. , and suppose tha¥/;, = B; @ --- ® By, is the
unique decomposition of7, ,, into blocks (that is, indecomposable subalgebras). Then

M = M#,, = MBy + -+ MB,.
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In fact, this sum is direct because, by definitidd B; " M B; = 0 if i # j, andM B; # 0 since/z; , is
a submodule of\/. Therefore,

Srn = End z,

n

(M) =End

rn

(MB, & - & MBy,)

k
= @ Homu,,(MB:, MB)) = P Endy,,(MB),

1<4,j<k i=1

where the last equality follows becausg and B; have no common irreducible constituents i j.
Consequently,7;. ,, has at least as many blocks.#5 ,,.
Combining the last two paragraphs proves the proposition. O

Thus, to prove Theorem B it suffices to determine when two Weyl moduteis séine same block. The
advantage of working with Weyl modules is shown in Lemma 2.4 below. Befeream state this result
we need some notation.

If Ais an algebra lef{;(A) be the Grothendieck group of finite dimensioaatmodules and if\/
is a A—module let /] be its image iny(A). In particular, the Grothendieck grougy(.#;.,,) of .7,
is the freeZ—module with basig [L(A)] | A € A, }. The images [A(N)] | A € A}, } of the Weyl
modules give a second basisif (.7, ,,) since[A(A):L(A)] = 1 and[A(X):L(p)] > 0 only if A > g,
forall A\, p € A;fn (see [LG])). Hence, we have the following.

2.4.Lemma. Suppose thaty € Z. Then)_, ax[A(X)] = 0in Ko(.,,) if and only ifay = 0 for
all A e A,

Note that, in general, there exist non—zero integars Z such tha ~, ax[S(A)] = 0. This follows
becausei(./4.,) is a freeZ—module of rankl, = # { X € A}, | D(A) # 0} andL = #A}, if (and
only if) 2. ,, is semisimple.

2.3 The cyclotomic Jantzen sum formula. The next step is to recall (a special case of) the machinery
of the cyclotomic Jantzen sum formul21]. Let ¢ be an indeterminate ové and letO = F[t, ¢t~ 1],

be the localization of[t,+~!] at the prime ideak = (t — 1). Let.¥» = .Y»(qt, X) be the cyclotomic
Schur algebra ovap with parametergt andX = (X,..., X,) where

[ Qatm, if Q, # 0,
=1, i Qu=0.

Consider as anO—module by letting act onF as multiplication byl. Then.7,., = .“» ®o F, since
Yo is free as ar®O—-module by 12, Theorem 6.6]. The algebr&» @ F(t) is split semisimple by
Schur—Weyl duality 24, Theorem 5.3] and Ariki’s criterion for the semisimplicity féf7. ,, [1]. Thus we
are in the general setting consideredand, [54].

Let v, be ther—adic evaluation map af?*; thus,v;(f(t)) = kif k > 0is maximal such thatt —1)*
divides f(t) € F[t,¢t']. Let Ap(\) be the Weyl module of/» indexed by the multipartitiotx € A},
Recall thatAp () carries a bilinear form{ , ) by the general theory of cellular algebras. For each
integeri > 0 define

Do) = {7 € Do) | val(z,y)) > iforally € Ao(A)}.
Finally, let A(X); = (Ao(N)i + TAo(N)) /Ao (A). Then
A = AN D AN 2 AN 2 ...

is aJantzen filtration of the .7, ,—moduleA(X). ThenA(X), = 0 for £ > 0 sinceA(A) is finite
dimensional.
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To describe the Jantzen filtration &f A\) we need some combinatorics. Ttiegram of a multipar-
tition A is the sefA] = { (4,j,a) | 1 <j < AE“) andl < a <r}. Anodeis any ordered tripléi, j, a)
inN x N x {1,...,r}. For example, the elements [X] are nodes.

Each noder = (7, j,a) € [A] determines am hook

ra={(k,l,a) € N | k>i,0l>jand(k+ 1,1+ 1,a) ¢ [A]}.
We say that is ah—rim hook if i = |r|. Lets’ be maximal such thdt’, j, a) € [A]; so4’ is the length
of columnj of A(@)., Thenf} = (,j,a) € [A] is thefoot of 7> andr> hasleg length ¢/(r2) = i’ — i.
If z € [A] let A\r be the multipartition with diagrarfA\]\r>. We say that\\r? is the multipartition
obtained byunwrapping the rim hookr from X, and that\ is the multipartition obtained from\
by wrapping on the rim hook-?.
Define theO-residue of the node = (4, j, a) to beresp(z) = (qt)? 7' X, = ¢ 7' Q"%

2.5. Definition. Suppose thah = (A, ... A"y andp = (Y, ..., (")) are multipartitions ofy.
The Jantzen coefficientis the integer

Z Z (—1)62(@””(7"5)%(reso(f;\) - reso(f?j‘)), if Ao p,

— TE[A] yEu]
Iau []\rh =[]\

0, otherwise.

The Jantzen coefficienty,, depends on the choices Bf ¢ andQ); in fact, Jy,, depends only op, e
andQ. By definition.J,, is an integer which is determined by the combinatorics of multipartitions. The
definition of J,, is reasonably involved, however, it turns out that these integers anputable. In
sections 3 and 4 we determidg,, explicitly.

2.6. Theorem (James and Matha&7]], Theorem 4.3) Suppose thak is a multipartition ofn. Then
STIANT = Y TaulAw)]
>0 HGA;‘—,n

in K()(yr7n).

For multipartitionsA and p in Af, let dx, = [A(M):L(p)] be the number of composition factors
of A(A) which are isomorphic td.(u). Define

/ 2 :
JA/" == JAUdU/J;
IJEA;L’TL
A>v>p

By Theorem 2.6J3\“ is the composition multiplicity of the simple modulé ) in ,., A(X);. There-
fore, J},, > 0, forall A, p € AY,. As A(X)1 = rad A(X) we obtain the following.

2.7.Corollary. Suppose thak # p are multipartitions ofn. Thendy,, < Jg“ and, moreover]y,, # 0
if and only if.J3 , # 0.

We now use Theorem 2.6 to classify the blocks#f,,.

2.8.Definition. Suppose thax, u € Ajm. ThenX andu areJantzen equivalent and we writeh ~; u,
if there exists a sequence of multipartitiohg = A, A1, ..., Ax = p such that either

Jaixg 70 or Jxa #0,
forl <:<k.

Jantzen equivalence gives us our first combinatorial characterizttbe blocks ot~ ,,.
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2.9.Proposition. Suppose thah, u € A;fn. ThenA(X) and A(u) belong to the same block &g, ,,—
modules if and only ik ~; p.

Proof. We first show thatA(A) and A(v) belong to the same block whenevkr~; v. By defini-
tion A(X); is a submodule ofA() for all 4, so all of the composition factors 9f ;. A(X); belong
to the same block by Lemma 2.2. Consequently, all of the composition factore efrthal module
> Iau[A(p)] belong to the same block. Lat be the set of multipartitiona such thatA () is not in
the same block a&(A). Thenwe have_ ,\/ Jau[A(p)] = 0. Hence,J, = 0 whenevel € A" by
Lemma 2.4. It follows that\ (A) andA () belong to the same block whenever ; p.

To prove the converse it is sufficient to show that-; 1 wheneverdy,, # 0. Hence, by Corollary 2.7
we must show thak ~; p Whenevec]g” # 0. However, ifJg“ # 0 then we can find a multipartitiom;
such that/x,, # 0, dy,, # 0 @andA e vy > p. Consequently ~; vy. If vy # pthenJ,, , # 0 by
Corollary 2.7 sincel,,,,, # 0. Therefore, we can find a multipartitian, such that/,,, ., # 0, dp,, # 0

andvq > vs > u. Continuing in this way we can find multipartitiomg = A, v1,...,v, = p such that
Jviw; 7 0,dy, #0,for0 <i <k, andAvwvy>--->v, = p. Note that we must havey, = p for
somek sinceA;fn is finite. Therefore\ ~; vy ~jy --- ~; v = p as required. O

Remark. Without using the cyclotomig—Schur algebras it is not clear that Jantzen equivalence deter-
mines the blocks of77.,,. Applying the Schur functor to Theorem 2.6 gives an analogous déserip

of the Jantzen filtration of the Specht modul®s; . ,[S(A):] = >, Jau[S(p)]. The problem is thag
priori, the composition factors (@“ JxapS(p) could belong to different blocks because the analogue
of Lemma 2.4 fails for Specht modules.

Remark.The argument of Proposition 2.9 is completely generic. It shows that thksbtdany quasi—
hereditary algebra are determined by the Jantzen coefficients oncefarsomta for the Jantzen filtra-
tions of its standard modules is known.

2.4. A second combinatorial characterization of the blocks.Proposition 2.9 completely determines
the blocks ot ,, and hence the blocks o#; ,,. Unfortunately, it is not obvious when two multiparti-
tions are Jantzen equivalant.

Theresidueof the noder = (i, j, a) is

7" Qa, if ¢ # 1andQ, # 0,
res(z) =< (J —4,Qa), if ¢=1andQ, # Q,forbd # a,
Qas otherwise,

wherez = z (mod p) for z € Z (if p = oo we setz = z). Let
Res(Af) = {res(z) | = € [A] for someX € A, }
be the set of all possible residues. For any multipartifioa A\, andf € Res(A/",) define
Cr(N) = #{z € [N | res(x) = f}.
We can now define our second combinatorial equivalence relatidygn

2.10.Definition. Suppose thah andy are multipartitions. Thet\ andy areresidue equivalent and
we write A ~c i, if Cy(X) = Cp(u) forall f € Res(A}).

Itis easy to determine if two multipartitions are residue equivalent, so the emxt gives an effective
characterization of the blocks of the algebsés,, and.7,. .
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2.11.Theorem. Suppose thak and p are multipartitions ofn. Then the following are equivalent.
a) S(A) andS(p) belong to the same block &, (Q)—modules.
b) A(X) andA(p) belong to the same block &, ,,(Q)—-modules.
C) A~g .
d) A ~c¢c p.

By Proposition 2.3 and Propaosition 2.9, (a), (b) and (c) are equival&etefore, to prove the theorem
it is enough to prove thax ~; w if and only if A\ ~~ u. The proof of this fact is given in sections 3
and 4. It turns out that, combinatorially, these equivalence relationsxdegry much on whether or
notg = 1 and whether or not some of the parametgss. . . , Q- are zero. The following result allows
us to treat these cases separately.

2.12.Theorem (Dipper and Mathasl[3], Theorem 1.5 and Corollary 5.7)

Suppose tha®Q = Q1 [[Q2]] - ]I Qx is a partition of Q such thatz°Q, € Q. only if Q, € Qa,
force Z,1 <a <randl < a < k. Setrp = 0andr; = |Qq], forl < a < k. Then”, ,(Q) is
Morita equivalent to

ym,nl (Ql) X yrz,ng(Q2) XX yrn,nﬁ(in)-

Moreover, the Morita equivalence is induced by the Mgp\) — A(A;) X --- X A(X\,), whereX, =
()\(”a—lﬂ), e )\(Ta)), forl <a<kand\ e A;fn.

There is an analogous result for the Ariki-Koike algeb#a,,; see [L3, Theorem 1.1].

Theorem 2.12 says that the blocks .&f.,,(Q) and.#, ,(Q) depend only on the—orbits of the
parameters and, further, that it is enough to consider the case Whisreontained in a single—orbit.
Hence, by rescalin@; we can assume that the paramet@is. . ., ), are all powers of;. That is, we
can assume that there exist integers . ., ¢, such thatQ, = ¢, for 1 < a < r. Consequently, to
prove Theorem 2.11 we are reduced to considering the following fivescas

(2.13) Casel. ¢ #1andQ, = ¢%,forl <a <r.
Case2. r=1,¢=1and@, = 1.

Case3. r>1,g=1land@ =---=Q, = 1.
Cased. r>1,g=1land@; =---=Q, =0.
Caseb5. r>1,g#1and@Q =---=Q, =0.

The proof of Theorem 2.11 for case 1 is given in section 3. Cases r2-Bomsidered in section 4
using similar, but easier, arguments. Given a nede (i, j,a) note thatres(z) = ¢/ ~'Q,, in case 1,
res(z) = (j —i,1) in case 2 andes(x) = Q, in the other three cases.

We treat all of these cases separately because the underlying combsaalifferent. Fayers has
pointed out that the Ariki—Koike algebras in cases 3 and 4 are isomorphigevadgebra homomorphism
determined byl — (Tp — 1) and7; — T;, for 1 < i < n, so we do not really need to consider case 4
(we deal with Cases 3-5 simultaneously).

2.5. The blocks of the affine Hecke algebra.Assuming Theorem 2.11 we now prove Theorem A and
Theorem B from the introduction.

As the centreZ (22" of 2 is the set of symmetric Laurent polynomials ¥y, ..., X, the
central characters of22™ are indexed bys,,—orbits of (F*)™. More precisely, ity € (F*)"/&,, then
the central charactey, is given by evaluation af.

By Lemma 2.1, all of the composition factors of the Specht modiile) belong to the same block
as./#,. ,—modules. Therefore, all of the composition factorsS6A) belong to the same block a2 —
modules. We need to know the central characters of the Specht modules.
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2.14.Lemma. Suppose thay # 1 and thatD(X) # 0, for some multipartition € A;f,. Then

F(X) € Z(s2" acts onD(X) as multiplication byf(y), wherey = (res(z1),res(x2), . .., res(zy))
and[A] = {z1,...,z,} (in any order).

Proof. As all of the composition factors ¢f(\) belong to the same block d&3(), f(X) acts onS(A)
and onD(A) as multiplication by the same scalar. BYA[ Prop. 3.7] this scalar is given by evaluating
the polynomialf (X) at (res(z1), res(z2), . .., res(zy)). O

2.15.Theorem (Theorem A) Suppose thag # 1 and thatF is algebraically closed. Then two simple
%aﬁ—modulesD and D’ belong to the same block if and only if they have the same central character

Proof. Any two simple modules in the same block have the same central characteer§algysuppose
thatD andD’ are simples#2T-modules which have the same central character Xet- Q1) ... (X1 —
Qs)and(X1—Qs41) - .. (X1—Q;), respectively, be the minimal polynomials 85 acting onD andD’.
(Note thatQq, . .., Q, are non—zero sinc&y, ..., X, are invertible.) TherD’ and D’ are both simple
modules for the Ariki-Koike algebra;. ,, with parameterg);, ..., Q,. Therefore D = D(X) andD’ =
D(p) for some multipartitions\, o € A, By assumption) and D’ have the same central characters.
The central character d?(\) is uniquely determined by the multiset of residess(z) | x € [A] } by
Lemma 2.14. Similarly, the central charactet®fy) is determined by the multisétres(x) | x € [u] }.
Hence,Cr(A) = Cy(u), for all f € Res(A,,). Therefore A ~¢ p, soD = D(X) andD’ = D(p)
are in the same block a#; ,—modules by Theorem 2.11. Hende,and D’ are in the same block as
A _modules. O

Using Theorems 2.11 and 2.15 we obtain a more descriptive version oférhdh

2.16.Corollary (Theorem B) Suppose thdf is an algebraically closed field, # 1 and that the param-
etersQ, . .., Q, are non—zero. Lek and u be multipartitions inA;7,, with D(X) # 0 and D(u) # 0.
Then the following are equivalent:

a) D(X) andD(p) belong to the same block &7 ,,—modules.

b) D(A) and D () belong to the same block 2% ™_modules.
D(A\

¢) D(A) and D(p) have the same central character a&§>"—modules.
d) A ~c p.

3. COMBINATORICS

In this section, we prova ~; p if and only if A ~¢ u, for A, o € Aj.fn in the cases wheaq # 1
and all of the parametel@q, ..., Q, are powers of;. This is Case 1 of (2.13). The basic idea is that
we want to reduce the comparision of the Jantzen and residue equivadgaiions to the case where the
multipartitions\ andu are both ‘cores’. The complication is that, unlike for partitions (the easel),
we do not have a good notion of ‘core’ for multipartitions when- 1. We circumvent this difficulty
using ideas of Fayerd.§,, 15].

As we are assuming that the parametgss. . ., @, are all powers of, there exist integers, .. ., ¢,
such that), = ¢, for1 < a < r. The sequence = (cy,...,c,) is called thenulti-charge of Q.

Now thatQ is contained in a singlg—orbit, we redefine theesidue of a noder = (i, j, a) to be

res(z) = (j —i+¢,) (mod e).

Therefore{ res(x) | « € [A] for someX € A}, } C Z/eZ.
ForA € Af, andf € Z/eZ putCp(X) = #{x € [A] | res(z) = f }. Itis straightforward to check
that with these new conventions~c¢ p if and only if C¢(X) = Cy(p), for all f € Z/eZ.
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3.1 Abacuses.Abacuses first appeared in the work of Gordon Jam€sdnd have since been used
extensively in the modular representation theory of the symmetric groupsetatdd algebras. Aa-
abacusis an abacus witla vertical runners, which are infinite in both directions.clis finite then we
label the runners, 1, ..., e—1 from left to right and positiorr € Z on the abacus is the bead position in
row z on runneny, wherez = xe+yand0 < y < e. If e = co then we label the runners., —1,0,1, ...
and positiorz on the abacus is the bead position in r@an runnerz.

Let X € A, be a multipartition and recall that we have fixed a sequence of integer§:i, .. ., ¢;).
Fix a with 1 < a < r. The —numbers of the partition\(®) is the set of integer®, = {57, 55, ...},
where

B =AY —itc,
for i > 0. Thee—abacus displayof @) is the e—abacus with a bead at positigkt, for ¢ > 1. The
e—abacus display oX is the ordered—tuple of abacuses for the partitiok8), ..., A("),

It is easy to check that a multipartition is uniquely determined by its abacus digpthyconversely,
that every abacus display corresponds to a unique multipartition.

3.1.Example. Suppose that = 3,7 = 3andc = (0,1,2). LetA = ((4,1,1),(2),(3,2,1)). Then
By ={3,-1,-2,—4,-5,...}, By={2,-1,-2,...}, B3=1{4,2,0,-2,-3,...}
and the abacus display faris given by

Let \ be a partition and suppose that= {3, 32, ... } is the set ofs—numbers for\. Then thee—
abacus fon\ has beads at positioms, fori > 0. If 3;+h ¢ B thenmoving the bead at positiofi; to the
right h positions gives a new abacus display with beads at posiiensss, . .., Gi—1, Bi +h, Bit1, ... }.
Similarly, if 5; — h ¢ B thenmoving this beadh positions to thdeft creates a new abacus display with
beads at position§3,, 32, . . ., Bi—1, i — h, Bi+1, - . - }. The conditions?; + h ¢ B are needed to ensure
that the abacus display for does not already have a bead at the new position. Note that with these
conventions moving a bead on runrieone position to the left moves the bead to a position on runner
e—1inthe preceding row. Similarly, moving a bead on runfet to the right moves a bead to a position
on runner0 in the next row. We also talk of moving beads in the abacus displays of multipastitio

Recasting the above discussion in terms of the abacus we have the folloalirgvewn result which
goes back to Littlewood and James.

3.2.Lemma. Suppose thak is a partition. Then moving a bead to the righpositions from runneyf
to runner f’ corresponds to wrapping ah-rim hook with foot residug onto A. Similarly, moving a
beadh positions to the left, from runnefrto runner f/ corresponds to unwrapping a@n-rim hook from\
with foot residuef.

That increasing a beta number hycorresponds to wrapping on aa-rim hook is proved in23,
Lemma 5.26]. The remaining claim about residues follows easily from ouritiefis. As a consequence
we obtain the following.

3.3.Corollary. Suppose thak is a partition andf € Z/eZ, wheree < co. Then
a) Moving a bead down one row on a runner corresponds to wrapping-aim hook onto[\|. If
this bead is on runnef then the rim hook has foot residyfe
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b) Moving a bead up one row on a runner corresponds to unwrapping-aim hook from[\]. If
this bead is on runnef the rim hook has foot residug

¢) Moving the lowest bead on runngrdown one row corresponds to wrapping on @hook with
foot residuef. Consequently, we can add anhook with foot residug to any partition.

Suppose thak is a partition. Thee—core of \ is the partition\ whosee—abacus display is obtained
from thee—abacus display fok by moving all beads as high as possible on their runners, that is, succes-
sively removing alk—hooks from the diagram of. If e = oo then thee—core of) is ) itself. Define the
e—weightof the partition,w(\), to be the number af—=hooks that we remove in order to constryct

3.2 Jantzen equivalence.In order to prove Theorem 2.11 we first simplify the formula fqy,. Let A
be a multipartition and recall thatif € [A] thenr C [A] is the associated rim hook. To ease notation
we leth) = |r2| be thehook length of . Before we start the proof of Theorem 2.11 we simplify the
formula for .Jy .

Recall thafF is a field of characteristip. Definer, : N— N to be the map

k . . . .
p®, if pis finite,
vp(h) = {1 .
, if p=oc.
wherek > 0 is maximal such that* dividesh.

If 0 = (01,02,...)Is apartition let’ = (o1, 0%, ...) be its conjugate. Thes, = ¢ if ¢ is maximal
such that(c, i) € [o]. (Soo] is the length of columii of [¢].) For any integeh € Z let [h]; = tth_—*ll €
F[t,t71].
3.4.Lemma. Suppose thaf and p are multipartitions ofn and that[A\]\r} = [u]\7}, for some
nodesz = (i,j,a) € [A] andy = (k,1,b) € [u]. Thenv.(reso(f)) — reso(f§)) # 0 if only
if res(f) = res(f}"), in which case

l/ﬂ(reso(f;‘) — res@(f;)) = Vp(n(a —-b)+j— )\Ea) — 1+ ,ul(gb) )
Proof. Leti = )\Ea)l andk’ = u,(f’)/ so thatf} = (¢, 4,a) and f§* = (k',1,b). Then
reso(f2) —reso(f§) = ¢’ Qut" I — g TH Qi

= g F QyentHik (qj—i —l+k Qanltn(a—b)+j—i I+ 1).

Therefore, v, (reso(z) — reso(y)) # 0 if and only if ¢/~"~+*¥Q,Q, = 1, which is if and only
if rtes(f)) = ¢ "Qu = ¢ ¥ Qy = res(f*). Now suppose thates(f2) = res(f}) and leth =
n(a—b)+j—14 —1+k.Then
vr(reso(f2) — reso(f1)) = vg (" @OHT=ER 1) = 1 4 v ([R),).
If p = oo then(t — 1) does not dividgh];, so thatv,(resp(x) — resp(y)) = 1 = vp(h). If pis finite
then writeh = p*1/, wherep { h’. Then
k

(R)e = " 1o = [PMel] o = (¢ = 1P RE

Now, ¢ — 1 does not dividgh']; sincep 1 h'. Thereforey,([h]:) = v,(h) — 1 and the result follows. O
We can now prove that (6= (d) in Theorem 2.11.

3.5.Corollary. Suppose thak ~; u, whereA, u € A;fn. Then\ ~¢ .

Proof. By the Lemma and Definition 2.9, is non—zero only if there exist nodesc [A] andy € [u]
such thafA]\r2 = [p]\rf andres(f) = res(f4'). These two conditions imply that;(X) = C(u),
forall f € Z/eZ, SOA ~¢ p. O
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Establishing the reverse implication takes considerably more effort. Webgtaxplicitly describing
the Jantzen coefficients.

3.6.Proposition. LetA = (A1, ... Ay andp = (uV), ..., (") be multipartitions inA,f,,.
a) Suppose that there exist integers< b such that\() = 4(%), for ¢ # a,b. ThenJy, # 0 only
if there exist nodes = (i,7,a) € [A] andy = (k,1,b) € [u] such thatres(f7) = res(f}') and
[AJ\72 = []\r¥. In this case

Iap = (_1)€é(r§‘)+€€(r§)yp (n(a A )\Z(a)/ iy ,u,(fb)/)_

b) Suppose that is finite and for some integerwe have\(©) = u(9), for ¢ # a. ThenJy,, # 0 only
if there exist nodes = (i, j,a), (i,m,a) € [A] such thatm < j, e | b} and p is obtained

(i,m,a)

by wrapping a rim hook of length? onto A\ 72 with its highest node in colummn. In this case

J (—1)”(’"3””(’“5)Vp(h();m,a))7 if e 4 hé’j’a),
Ap — Y , .
(—1)tEr)+eirt) <yp(hé7m7a)) — Vp(h@,jva))), it e | B

where the nodg € [u] is determined byu]\r!* = [A]\7.

c) In all other cases,/x,, = 0.

Proof. Suppose thatly,, # 0. ThenX > u by Definition 2.5 andes(f) = res(f}") by Lemma 3.4.
Furthermore, there exist nodes= (i, 7,a) € [A] andy = (k,1,b) € [u] such thafA]\r} = [u]\rk.
ConsequentlyA(©) £ () for at most two values of. Therefore, we may assume that we have integers
1<a<b<rsuchthat(© = /L(C), for ¢ # a, b.

If @ # b then the nodes andy are uniquely determined becaus® = [A@]\[x(®] andr} =
[ ®]\[A®)]. Note thata < b since > u. Therefore, we are in the situation considered in part (a). The
formula for J,, now follows directly from Definition 2.5 and Lemma 3.4.

Now assume thai = b. If e = oo thenres(f}) = res(ff") if and only if z = y sinceh) = hl.
This forcesA = p, which is not possible sinck > . Hence,e must be finite. Letr = (4, j,a) and
y = (k,l,a) and observe thdt< j if and only if A > u, SO we may assume thak j. By Lemma 3.2
the abacus display for) is obtained from the abacus display fdf) by moving one bea#l> positions
to the leftfrom runnerres(f;)), and other bead? positions to the righto runnerres(f;).

Caselef héja): By Lemma 3.2 and the remarks above, the beads on the abacus disphdys of
and (¢ are being moved between different runners. Therefore, the nodes(i,,a) € [A] and
y = (k,1,a) € [u] are uniquely determined by the conditiars(f}) = res(f*) and[A]\r)} = [u]\rL".
Letm = /,L,(f). Then ham@) = G- A"y - - M;(f) ) is the ‘axial distance’ fromf to f, so

thate | A ) (In fact, A ) is the axial distance between the corresponding ‘hand nodes’, but this

(¢,m,a (i,m,a

distance is, of course, the same. Note also that, siagg}) = res(f}'), we have that | h(’;ma).)
Hence,Jx,, = (—1)X“02)+08)y, (R ) by Definition 2.5 and Lemma 3.4.

(i,m,a)

Case 2 ¢ | héja): Sinceh) = 0 (mod e) unwrappingr? from X and wrapping-}* back ontoA\r
corresponds to moving one bead on runret f;*) up 112 rows and another bead on runnes(f;)
down %hi} rows. If in the abacus display fox these beads were moved from rows> r, to rowsr}
andr, respectively, then the abacus display focan also be obtained from abacus display Xdoy
moving the bead in row; to row r, and moving the bead in row to row r}. That is, there exist

nodesz’ # z andy’ # y such that we can obtaja by unwrappingr;‘, from X\ and wrapping";‘, back
onto A\ri‘,. By Lemma 3.2 there are no other ways of obtainin@py unwrapping a rim hook from\
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and wrapping it back on again. Singe> p we can choose the nodes= (i,j,a) andy = (k,l,a)
above so that; > r| > 5, > ro. Thenz' = (i,m,a), wherem = u,(f), andy’ = (\}" /,l,a). Further,
o) + ey = A — i — kandee(rd) + et = A — i+ ™ — 2. But by
constructionf = A\ + 1 SOLL(r) + LL(rly) andee(r)) + M(r;‘,) have opposite parities. The axial
distance fromf} to f} is b\  (wheree | h} . sinceres(f)) = res(f{')) and the axial distance

(3,m,a (i,m,a)

from f2 to fiis h . Therefore,

(i’j’
7‘>\ T’“
Iap = (_1)M( e )+ y)(’/p(h()%,m,a)) - Vp(h();,j,a)))

~, o~
~

as required.
We have now exhausted all of the cases whgygis non-zero, so the Proposition is proved. [

3.3 Residue equivalence We are now ready to start proving that~; p wheneve\ ~¢ p.
We say that a rim hook oX is vertical if it is contained within a single column pX].

3.7.Proposition. Suppose thal, u € A,T,n and that there is an integer, with 1 < a < r, such that

A@ = (@) and \©) = 1), for ¢ # a. ThenX ~ p.

Proof. If e = oo then\(@ = (@) if and only if A(®) = 1(%) so there is nothing to prove. Assume that
is finite. Letw, = w(A(®). If w, = 0 thenA(@ = \(®) so that\ = p and there is nothing to prove. So
we can assume that, > 0. L

LetAqg(A) = {p € A, | p@ =A@ andpu(® = A whenc # a } and letp be the multipartition in
Aq(X) wherep(® is the partition obtained by wrapping, verticale—hooks onto the first column of the
e—core ofA(@). Thenu > p for all € A,(\). To prove the Lemma it is enough to show that-; p,
for all u € A,(X). By induction on dominance we may assume fhat ; p whenevem € A,(A) and
A . If Ty, # 0 for somep € Ay () thenX ~; . As A > u, we have thaje ~; p by induction, so
thatA ~; u ~j p.

It remains to consider the case when p and.Jy, = 0 forall p € A,(X). By Lemma 3.6 (b),

Vo(hlsmay) = V(I ja)s  forall (i,m,a), (i, j,a) € [A].

This is precisely the condition for the Weyl moduk(/\(“)) to be irreducible (in the case= 1). The
conjugates of these partitions are described explicit2() Theorem 4.19]. For us the most important
properties of these partitions is that allethooks which can be unwrapped frort) when constructing
its e—corep(®) are verticaly, is constant on the rows 6k(@], andp!® = p{*} — 1 (mod ) whenever
)\E“), £ p§“>'. Sincew, > 0 we can find a (unique) node, j,a) € [A] such thath@vj,a) =0 (mod e)
andhg, ;i ) # 0 (mod e), for all (', j',a) € [A] with (¢/,5") # (i,7), 7 <iandj’ > j. Letv be the
multipartition obtained by unwrapping}vjva) from [A] and wrapping it back on to the end of the first row

of [A]\raj o) Similarly, let ¢ be the multipartition obtained by unwrapping this same hook fdoand

wrapping it back on to the end of the first column[ﬁf\réja). Therefore,J, 5 # 0 and.J,, # 0, by

Lemma 3.6 (b), so thaX ~; v ~; u. Note that\ > p implies thatj > 1, so that\ > . Consequently,
A ~; p by induction. O

Recall that thee—cores of the partitions of completely determine the blocks when= 1. We have
the following imperfect generalization wher> 1.

3.8.Definition. Suppose thak = (A, ..., A(") is a multipartition. Then the-multicore of X is the
multipartition X = (X(l), .. ,X(T)). We abuse notation and say thais a multicore ifA = .
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By Corollary 3.3 (a), thee—multicore X of X is obtained from\ by sequentially unwrapping ad-
rim hooks from the diagram ak, in any order. Note that it = oo then every multipartition is an
e—multicore.

Mimicking the representation theory of the symmetric groups, defir{\) to be the number of—
hooks that have to be unwrapped frdnto constructx. If e is finite thenw, = 1(|A| — |A]), whereas
Woo(A) = 0. Now define

We(A) = max{we(p) |  ~c A}
Note that whileW¢ () is well defined, it is not immediately clear how to compute it.

3.9.Lemma. Suppose thak, u € A;fn and thatA = . Then ~ p.

Proof. Suppose first that\(?)| = |u(@|, for 1 < a < r. ThenX ~; p by successive applications of
Proposition 3.7. If this is not the case then by successively unwrappingoks from one component
of X and wrapping them back onto a different component without changirigfta residue we can
obtain another multipartitior such thatv(¥)| = [(®)|, for 1 < a < r. ThenX ~ v by Proposition 3.6
(and Lemma 3.2). By the first line of the praef~; u, SO\ ~; u as required. O

In order to consider two multipartitions which are residue equivalent lug tigferent multicores, we
make the following definitions.

3.10.Definition. a) Suppose thad is a multicore. Ife is finite, defines;?f()\) to be the multicore
whose abacus display is obtained by moving a bead from runterunner; on the abacus
for A(?) and moving a bead from runngrto runneri on the abacus fok®. If ¢ = co and the
abacus display fok(*) contains a bead in positiarbut not in position;j, while the abacus display
for A(Y) contains a bead in positignbut not in positiory, definesgf(k) to be the multicore whose

abacus display is obtained by moving a bead from positimnposition;j on the abacus fok(®)
and fromj to position: on the abacus fox(®).

b) Suppose that is finite and leth be a multipartition. Define?, (A) to be the multipartition whose
abacus display is obtained by moving the lowest bead on runsfehe abacus foA(® downw
rows.

3.11.Lemma. Suppose thak ~¢ p and thatz = .sg]b(X). Then\ ~; pu.

Proof. Letv = t;?We(A)(A) andp = t?%(“) (;). ThenX ~; vandp ~; p by Lemma 3.9. Furthermore,
the multipartitionsy and p satisfy the conditions of Proposition 3.6 (a), 50~; v ~; p ~; u as

required. g

We now need several results and definitions of Fayers from the pfp&rs5). In these papers
Fayers assumes the classification of the blocks of the Ariki-Koike algelhitasremarks beforelp,
Theorem 1.5] that the papetq] only ever uses the fact that if two Specht modules belong to the same
block then they are residue equivalent. We have already proved thisrgil@g 3.5. The paperl{]
requires more careful consideration. In this paper, Fayers desadtain sets of multipartitions, each
of which is of the form{u |  ~¢c A} for some multipartitior\. His construction does not rely on the
assumption thah ~¢ u implies that the corresponding Specht modules lie in the same block. We may
therefore use his descriptions.

3.12.Definition (Fayers 15, §2.1]). Suppose thah is a multipartition. Then the—weight of A is the
integer

W) =310, — 5 3 ()~ Cra (W)
j=1

fEL/eL
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Fayers 15] shows thatwt(X\) > 0 for all multipartitionsA, and that ifr = 1, it coincides with the
usual definitionw(\) of weight. Further, ifA ~c p thenwt(A) = wt(p), so the functionwt(-) is
constant on the residue classesxqg. The results of 15, Prop. 3.8] show how to use the abacus display
of A to calculatewt(A). Combining this method with Lemma 3.16 below gives a way of computing
We(A) using the abacus display af We leave the details to the reader.

Recall that a nodé;, j, a) € [A] is removableif [A]\{(7, j, a)} is the diagram of some multipartition
v E A;fn_l. Similarly, a node(z, j,a) ¢ [A] is aaddableif [A] U {(4,j,a)} is the diagram of some
multipartitionv € A, .. The noder = (i, j, a) is an f-node ifres(x) = f.

Let X be a multipartition. Foif € Z/eZ anda € {1,...,r}, define

8%(X) = #{ removablef—nodes ofA(”)] } — #{ addablef—nodes ofA(*)] }
and set

Sr(A) =D 6F(N).
=1

The sequenc®s () | f € Z/eZ) is thehub of A. The hub ofA can be read off the abacus display)of
using Lemma 3.2.

Observe that Corollary 3.3 implies thatifs finite then the hub is unchanged by wrapphig-hooks
onto[A], for h > 1. FurthermoreX andu have the same hub ji = s%b()\), for somea, b, 1, j.

3.13.Proposition (Fayers 15, Proposition 3.2 and Lemma 3.3]puppose thak is a multipartition ofn
and u is a multipartition ofm. Then
a) If e < oo and and . have the same hub them = n mod e and
r(n —m)

wi(A) = wh(p) = =,

b) If n = m thenX\ ~¢ p if and only if they have the same hub.
Consequently, if: is obtained from\ by wrapping on ar—hook, thenwvt(u) = wt(X\) + .

The next result will let us determine wh&¥,(A) = we(A).

3.14. Proposition (Fayers 14, Theorem 3.1]) Suppose thal ¢ Ajm is a multipartition. Then the
following are equivalent.

a) w is a multicore whenevear ~¢c A.

b) wt(u) > wt(A) whenevep and A have the same hub.

3.15. Definition. A multipartition A is areduced multicore if it satisfies the conditions of Proposi-
tion 3.14.

Not every multicore is reduced. X is a reduced multicore then the block which contal(\) is, in
general, not simple. In contrast, when= 1 every core is a reduced multicore and the block containing
a core is always simple. Ik is an reduced multicore then Fayefg]] calls the set of multipartitions
{wm|p~cA}a'‘coreblock'.

3.16.Lemma. Suppose thak € A} . ThenX is a reduced multicore if and only #.(X) = We(X).

Proof. Supposew(A) # We(A). By definition, there exists a multipartition such thaty ~¢ A
andwe(u) > we(X). Now  and X have the same hub, and by Proposition 3:&8(z) < wt(X),
contradicting Condition (b) of Proposition 3.14. Therefoxds not a reduced multicore.

Now suppose tha is not a reduced multicore. Then there exists a multipartitipnvhich is not
a multicore, such thatt ~c A. Letv = t(l)we()\)(p,). Thenv ~¢ A andwe(v) > we(\). Hence,
We(A) > we(A). O
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3.17.Lemma (Fayers [L4, Proof of Proposition 3.7 (1)])Suppose thaA is a multicore which is not
reduced. Then there exists a sequence of multichges A, A1, ..., Ay = psuch thatwt(p) < wt(X),
and A1 = s% (X)) andwt(A,,) < wt(A), for 0 < m < k.

TmJIm

3.18.Lemma (Fayers 14, Proof of Proposition 3.7 (2)])Suppose thak and i are reduced multicores
and that A ~c p. Then there exists a sequence of multicoxgs= A, Aq,..., Ay = w such that
Amil = s?;"ﬁ’:()\m) and A1 ~c A, foro < m < k.

We can now complete the proof of Theorem 2.11 wheg 1 and the parametei@, ..., Q, are
non-zero. Consequently, this completes the proofs of Theorem A agwtdiin B from the introduction.

3.19.Theorem. Suppose thag # 1 and that the parameterQ,, ..., (), are non-zero. LeA and i be
multipartitions inA,f’T. ThenA ~¢c pifand only if A ~; .

Proof. By Corollary 3.5 if A\ ~; uthenA ~c u. Therefore, to prove the theorem it is sufficient to
prove the following two statements.

a) Suppose thaw.(A) < We(X). Thenp ~; X andw,(p) > we(X), for somep € A,

b) Suppose thah ~¢ p and thatwe(A) = We(A) = we(pe). Thenp ~; A.

Suppose, as in (a), that,(A) < W.(X). Thene is finite and by Lemma 3.16) is not a reduced
multicore. By Lemma 3.17, there exists a sequence of multichges X, A(,..., A\, = p such that

wt(p) < Wt(A), Ama1 = s20m (X,) andwt(A,,) < wt(X), for 0 < m < k. Fixm with 0 < m < k.

tmJIm
Since),, and X have the same hub, Proposition 3.13 says thaf < |A| and|A| = |A.| (mod e),
and thafu| < |X|. Definew,, = we(X) + L(|A| — [An|) and sew,, = t§,, (Am). Thenv,, ~; v
by Lemma 3.11, so that ~; p. Moreoverw,(p) = we(X) + L(|A| — [u]) > we(X) as required.
Now consider (b), that is, suppose that-c p andwe(A) = We(A) = we(pe). By Lemma 3.16 A
andp are reduced multicores. Then, by Lemma 3.18, there exist multicgres A\, \,..., A\, = &
such thath,,+1 = {7 (A) @A 11 ~¢ Am. FOr0 < m < k, definev,, = tj . (An). Then by

tmJm

Lemma 3.11p,, ~j Va1 @and by Lemma 3.9\ ~; vg ~j vy ~j -+ ~j Vg ~ 5 pasrequired. O

4. THE BLOCKS FOR ALGEBRAS WITH EXCEPTIONAL PARAMETERS

In this section we classify the blocks of the Ariki—-Koike algebras for the reimg cases from (2.13).
That is, we assume that the parameters satisfy one of the following foes:cas

Case2. r=1,g=1and@; =1

Case3d. r>1l,gq=1land@Q;=---=Q, = 1.
Cased. r>1l,g=1and@Q; =---=Q, =0.
Caseb5.r>1,g#1and@Qy=---=Q, =0.

As in the previous section the basic strategy is to use the Jantzen sum forrank\tee the combina-
torics of the Jantzen coefficients.

We distinguish between cases 2 and 3 because the blocks differ dramatidalgse two cases. In
fact, the blocks in Case 2 behave like the blocks when1 and the paramete€g,, . . . , @, are non-zero.
Quite surprisingly, the algebra#?.,, and.~;.,, have only one block in Cases 3-5.

In all cases the blocks of the algebr#$ ,, and.~;. ,, are determined by Jantzen equivalence by Propo-
sition 2.9. This section gives an explicit description of when two multipartitioaslantzen equivalent
in cases 2-5 above.

4.1 The blocks whenr = 1 and ¢ = 1. Assume that we are in Case 2 above and#t= 7 ,, and
n = Z1 0. Inthis case the Specht modules and Weyl modules are indexed by paytiitmes than
multipartitions, so we write\ in place ofA, and so on. The nodes in the diagrams of partitions are all of
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the form(i, j,1), for i, 7 > 1, so we drop the trailing from this notation and consider a node to be an
ordered paifi, j), sothaf\] = { (4,7) |1 <7 < A\ }.
As ¢ = 1 we have that = p. Following section 3 define thesidue of a noder = (i, j) to be

res(z) = (j —i) (mod p).
Once again{res(z) | € [A] forsomeX € A}, } C Z/pZ. For a partition\ and f € Z/pZ put
Cr(X) = #{x €[N |res(xz) = f } and define\ ~¢ pif Cp(N) = Cy(p), forall f € Z/pZ. Then it
is well-known (and easy to prove using Corollary 3.3 (a)) thatc p if and only if A andu have the
samep—core.

We can now prove Theorem 2.11 when= 1 andr = 1. To prove this result we need to show that
the Jantzen and residue equivalence relations on the set of partitiosgleoiie follow the argument
of the previous section.

The analogue of Lemma 3.4 in Case 2 is as follows.

4.1.Lemma. Suppose thak and ;. are multipartitions ofn and that[\]\r} = [u]\r}, for some nodes
x = (i,j) € [\]andy = (k,l) € [u]. Then

l/ﬂ(reso(flf‘) - reso(f;)) =vp(j — N =1+ 1)-
Proof. Leti’ = X, andk’ = ), so thatf; = (7, j) andf}f = (k',1). Then
reso(fgﬁ‘) . reso(f?’j) _ gnatj—i _ ynatl—k' _ tnaJrlfk’(tjfi’flJrk’ —1).
Mimicking the proof of Lemma 3.4, l6i = j — i — [ + k’. Then

vr(teso(fy) — reso(f1)) = ve (TR 1) = 1+ up([R)).
Repeating the second half of the proof of Lemma 3.4 completes the proof. O

The only difference between Lemma 3.4 and Lemma 4.1 is thatidweso (f2) — reso(f})) is
non-zero whenevei]\r) = [u]\r}; thatis, we no longer require thats(f}\) = res(f}).

4.2.Proposition. Let X andy are partitions ofn. ThenJy, is non-zero only ip is finite and there exist
nodesr = (i, j), (1,m) € [A] such thatn < j, p | h@ m) and . is obtained by wrapping a rim hook of

lengthh) onto \\r) with its highest node in colummn. In this case

7‘A T 1
. (— 1))+ 5)Vp(h€\i,m))’ if pt h(ﬁ.vj),
A — N .
(= 1)) +eer) <Vp(h€\i,m)) _ Vp(h(Ai,j)))’ if p | h(Am’

where the nodg < [y] is determined byu]\r = [A]\r2.

Proof. Suppose thaf,,, # 0. Then\ > x by Definition 2.5 and there exist nodes= (i,j) € [A\] and
y = (k,1,b) € [u] such thaf\]\r = [u]\ry.

Case 1 res(f;) # res(fy): Unwrapping the rim hook: from A\ moves a bead on the abacus for
A from runnerres(f;) to runnerry, say, and wrapping the rim hoo¥ back onto)\r) moves a bead
from runnerry to runnerres(fi'). Sinceres(f;) # res(f}') we can also construct the partitigrfrom \

by moving a bead from runnees(f;\) to runnerr, and then moving a bead from runnerto runner
res(fy). Comparing the abacus displaysofind, there are no other ways of obtainipgrom A by
moving a single rim hook. As in the proof of Proposition 3.6, the sums of the hegghs for the two
different ways of changing into . by moving a rim hook have different parities, so their contributions
to J,, cancel out. Hence]y,, = 0 whenres(f;) # res(f}).

Case 2 res(f;) = res(f}): The proof of Proposition 3.6 in the case whers= b can now be repeated
without change to complete the proof of the Proposition. a
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4.3.Corollary. Suppose thak andy are partitions ofn. Then\ ~; p if and only if A ~¢ p.

Proof. By Proposition 4.2\ ~¢~ p whenever\ ~; . The reverse implication follows by the argument
of Proposition 3.7 since this proof only uses part (b) of Proposition h&ws the same as the statement
of Proposition 4.2. O

Remark.Corollary 4.3 completes the classification of the blocks ofg¢h8chur algebras and the Hecke
algebras of typed; that is whenr = 1. Unfortunately, the classification of the blocks of #reSchur
algebras given inJ0, Theorem 4.24] (and reproduced &3 Theorem 5.47]), contains a gap because
these two proofs only consider the case of reducible Weyl modules.rfabety, the classification of the
blocks of the Hecke algebras of typegiven in [20, Theorem 4.29] is correct — indeed, wheg- 1 our
proof is a streamlined version of this argument.

4.2 The blocks whenr > 1andq¢ =10r @; = --- = @, = 0. We now consider the blocks in the
remaining cases, that is, whern> 1 and eithery = 1 or @, = --- = @, = 0. In this case all simple
modules belong to the same block. We use the same strategy to prove ThebtdmtBese cases as in
the previous sections.

Note that, in Cases 3-B¢s(z) = (Q,) for any noder = (i,7,a). Therefore, in these cases;,
forms a single residue class. Hence, in order to prove Theorem 2.1lhe&deto show that any two
multipartitions inA:fn are Jantzen equivalent. Consequently, in Cases 3-5 Theorem 2ettk dsat
the algebras’’.,, and.#;.,, have only one block and, in particular, that they are both indecomposable
algebras.

We adopt the same strategy for the proof. To state the analogue of Lemn&t 3.4 s

1, fQi=---=Q,=0(cases4andb)
€ =
0, otherwise.
4.4.L.emma. Suppose thak and u are multipartitions ofn and that[A]\r = [u]\r4', for some nodes
x = (i,j,a) € [N andy = (k,1,b) € [p]. Then
uﬁ(reso(f;‘) — reso(fzj‘)) =1 (n(a —b)+j— )\Z(a)/ 14+ u}gb)/) +e
The proof of Lemma 4.4 is similar to proofs of Lemma 3.4 and Lemma 4.1, so we |leawdethils
to the reader. Note in particular, that(reso(f) — reso(f4')) is always non—zero when # b. This
crucial difference leads tdy,, being non-zero whenever there exist nodes- (i,j,a) € [A] and
y = (k,1,b) € [u] with a < band[A]\r} = [u]\r}. More explicitly, we have the following analogue of
Propositions 3.6 and 4.2. Again, we leave details to the reader.
4.5.Proposition. LetA = (AW, ... AM) andp = (u), ..., u() be multipartitions inA,.
a) Suppose that there exist integerst b such thatx(® = p(9), for ¢ # a,b. ThenJy,, # 0 only if
a < band there exist nodes= (i, j,a) € [A\] andy = (k,[,b) € [u] such thaf\]\r} = [u]\rs".
In this case

I = () DD (0 (0 — 1) + 5 = X — 1+ ) + ).

b) Suppose that is finite and for some integerwe havex(©) = pl9, for ¢ # a. ThenJy, # 0 only
if there exist nodes = (4, j, a), (i,m,a) € [A] such thatn < j, e | hjm a) and u is obtained by
wrapping a rim hook of length onto X\ with its highest node in colummn. In this case

(~L) D) (), ) + ), fefh

(4.4,a)’
(_1)ee(rj)+ee(r5;) (V (h" ) —v (h" )) if e | h
P\ "(i,m,a) p\"*(i,5,a)/ ) (i:5,0)°

wherey € [u] is determined byu]\rf’ = [A]\r.

Iap =
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c) Inall other cases,/y,, = 0.
We can now complete the proof of Theorem 2.11.

Proof of Theorem 2.11 for Cases 35t A = (A\(), ..., A\(")) be a multipartition of. and fix an integer

a # bwith \(%) = (0) and1 < a,b < r. Let u be any multipartition that can be obtained by unwrapping
a rim hook from[\(?)] and wrapping it back on to componértf \. ThenX ~; u by Proposition 4.5(a).

In particular, note thah ~; p if u is obtained from\ by moving a removable node froid® to A(®).
Consequently, by moving the nodes[X to the right, one by one, we see thais Janzten equivalent
to a multipartitiony, wherep = ((0), ..., (0), «("). Similarly, moving nodes in to the left, one by

one, now shows thak ~; p ~; ((n),(0),...,(0)). Hence, every multipartition im;},, is Jantzen

equivalent to((n), (0),...,(0)). This shows that there is only one block in Cases 3, 4 and 5, so the

Theorem follows. O
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