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Abstract

This paper provides an introduction to a software package called waved that works
within the statistical environment R making available all code necessary for reproducing
the figures in the recently published articles on the WaveD method for Wavelet Decon-
volution of noisy signals, Johnstone, Kerkyacharian, Picard and Raimondo (2004). The
forward WaveD transforms and their inverses can be computed using any wavelet from
the Meyer family. The WaveD coefficients can be depicted according to time and resolu-
tion in several ways for data analysis. The algorithm which implements the translation
invariant WaveD transform takes full advantage of the Fast Fourier Transform (FFT)
and runs in O(n(log n)2) steps only. The waved package includes functions to perform
thresholding and fine resolution tuning according to methods in the literature as well
as newly designed visual and statistical tools for assessing WaveD fits. We give a waved

tutorial session and review benchmark examples of noisy convolutions to illustrate the
non-linear adaptive properties of wavelet deconvolution.

1 Introduction

In this paper we present the WaveD transform in R and illustrate some statistical applica-
tions of the WaveD transform to the deconvolution of noisy signals. The aim of deconvolu-
tion is to recover an unknown function f from a noisy observation of g ∗ f ,

Y (t) = g ∗ f(t) + ε ξ(t), t ∈ T = [0, 1], (1)

where the convolution kernel g is observed with or without noise,

gǫ(t) = g(t) + ǫ ζ(t), t ∈ T = [0, 1], (2)

and ξ, ζ are independent white noises and 0 < ε, ǫ < 1 are noise levels. Both f and g are
supposed to be periodic on T and g ∗ f(t) denotes the circular convolution. In the finite
sample implementation of model (1) at points ti = i/n, i = 1, ..., n, we let

ε = σ/
√
n, (Aε),
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where σ is the noise standard deviation and n is the sample size. We denote y = (y1, ..., yn)
the n observed values yi = Y (ti), i = 1, . . . , n. An illustration of model (1) is given in
Figure 3 using the test functions of Figure 1. As for model (2) we consider the two cases:
(a) ǫ = 0 in which case gǫ(t) = g(t) (known kernel); (b) ǫ = ε = σ/

√
n (noisy kernel). We

denote g = (g1, ..., gn) the n observed values gi = gǫ(ti), i = 1, . . . , n. An illustration of
model (2) in the Fourier domain is given in Figure 8. The WaveD transform as discussed
in this paper requires only two input arguments: y = (y1, ..., yn) and g = (g1, ..., gn).

1.1 Some references on wavelet deconvolution

Over the last decade many wavelet methods have been developed to recover f from indirect
observations: see Donoho (1995); Abramovich and Silverman (1998); Pensky and Vidakovic
(1999); Walter and Shen (1999); Johnstone (1999); Cavalier and Koo (2002); Fan and
Koo (2002); Kalifa and Mallat (2003). See also Hall, Ruymgaart, van Gaans and van
Rooij (2001); Neelamani, Choi and Baraniuk (2004). The WaveD method of Johnstone,
Kerkyacharian, Picard and Raimondo (2004) ([JKPR] in the sequel) specifically addresses
the deconvolution problem in the periodic setting (1). The fast implementation of the
translation invariant WaveD transform is described in Donoho and Raimondo (2004). The
noisy convolution kernel setting (2) and data-driven resolution level tuning of the WaveD
method is discussed in Cavalier and Raimondo (2006). Boxcar deconvolution using the
WaveD method is discussed in Kerkyacharian, Picard and Raimondo (2006) and Johnstone
and Raimondo (2004). Applications of deconvolution models may be found in O’Sullivan
(1986) and Bertero and Boccacci (1998).

1.2 What’s new?

Earlier versions of the WaveD method have been implemented through various small Matlab
packages, corresponding to various existing WaveD transforms. For example one package
uses the algorithm of Kolaczyk (1994) to compute the ordinary Meyer wavelet transform.
Another uses the algorithm of Donoho and Raimondo (2004) to compute the translation
invariant Meyer transform. These small WaveD packages are not self-contained and are
intented for use with WaveLab802 (http://www-stat.stanford.edu/wavelab/).

This paper describes a unified setting where all the WaveD transforms are implemented
in the software environment R (R Development Core Team (2006)) via a contributed pack-
age named waved. The aims of the waved package in R are:

1. To make available, in one self-contained package all code necessary to compute the
various WaveD transforms with optimal data-driven tuning for wavelet deconvolution.

2. To take full advantage of the object-oriented R environment: the (top) function, called
WaveD, produces objects of class wvd. The wvd class of objects are R lists containing
the various WaveD transforms as well as all the WaveD estimate characteristics such
as threshold, fine resolution level, degree of Meyer wavelet and so on.

3. To introduce visual and statistical tools to assess the validity and the quality of a
WaveD fit. Special features of the waved package include a summary and a plot

function specifically designed for objects of class wvd.

4. To allow a user to reproduce illustrative figures and analyses from the literature.
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Finally, we discuss how the waved package differs from existing R packages for wavelet
analysis. Existing wavelet R packages include: the wavethresh package of Nason et al.
(2006): a software to perform wavelet statistics and transforms; the waveslim package of
Whitcher (2005): basic wavelet routines for one, two and three dimensional signal analysis;
the wavelets package: a package of functions for computing wavelet filters. These pack-
ages offer a wide range of compactly supported wavelet transforms, typically Daubechies
wavelets, for direct data analysis. On the other hand the waved package is designed for
indirect data analysis (such as noisy-convolution) and uses band-limited wavelets, typically
Meyer wavelets.

1.3 Paper organisation

In section 2 we give a brief introduction to the WaveD transform using the Fourier trans-
form. Section 3 is concerned with setting-up the waved software and its demo. We also
present the WaveD function in R and introduce objects of class wvd. In Section 4, we
discuss some more advanced features of the WaveD function in R, this includes statistical
applications, fine tuning of the parameters, WaveD fit assessment. Section 5 contains a list
of waved main functions.

2 The WaveD Transform

2.1 Fourier Transforms

Convolution products are naturally represented in the Fourier domain. In the periodic
setting, we can write the model (1) in terms of Fourier coefficients,

yℓ = gℓfℓ + εξℓ, ℓ ∈ Z, (3)

where, with eℓ(t) = e2πiℓt and 〈f, g〉 =
∫

T f ḡ, fℓ = 〈f, eℓ〉, gℓ = 〈g, eℓ〉 and ξℓ = 〈ξ, eℓ〉 are
i.i.d. standard (complex-valued) normal random variables. As for the model (2) we have

xℓ = gℓ + ǫzℓ, ℓ ∈ Z, (4)

where zℓ are i.i.d. standard (complex-valued) Gaussian r.v.’s independent of ξℓ, and noise
level 0 < ǫ < 1. This model includes cases where the eigen-values (gℓ) are not fully known
but are also observed with noise as illustrated on Figure 8.

In this paper ψ (and its periodised version Ψ(x) =
∑

k∈Z ψ(x + k)) denotes a Meyer

wavelet. Typically ψ is a band limited function whose Fourier transform F (ψ) := ψ̂ is
smooth, see the formula for the construction of ψ̂ page 247 of Mallat (1998). In practice,
we use a polynomial function to define the so-called Meyer window, see Mallat (1998) page
248. Throughout this paper we use ψ̂ and φ̂ corresponding to a polynomial of degree 3.
Let Ψκ(x) = 2j/2Ψ(2jx− k) where κ = (j, k). The Fourier coefficients satisfy

Ψj,0
ℓ = 〈Ψj,0, eℓ〉 = 2−j/2ψ̂(ℓ/(2j × 2π)) (5)

and
Ψκ

ℓ = 〈Ψκ, eℓ〉 = exp(2πiℓk/2j)Ψj,0
ℓ (6)
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2.2 The WaveD paradigm

The WaveD paradigm of Johnstone, Kerkyacharian, Picard and Raimondo (2004) [JKPR]
stipulates that one can perform deconvolution and wavelet transforms simultaneously. To
see this we write wavelet coefficients in terms of Fourier coefficients using Plancherel’s
formula. This is illustrated in the next diagram using the noise-free input function h(t) =
(f ∗g)(t). In this diagram (and in the sequel)→F ,←F−1

denotes the Fourier transform and
its inverse whereas→FWaveD,←IWaveD denotes the Forward WaveD transform and its inverse.

FWaveD(h, g) = (βκ)κ, IWaveD(βκ) =
∑

κ

βκΨκ, (7)

where βκ =
∫

fΨκ, κ = (k, j), k = 0, ..., 2j − 1, j = −1, 0, 1, ... with Ψ−1,0 = Φ, are the
wavelet coefficients of f . Details of the FWaveD and IWaveD transforms in Time, Fourier
and Wavelet domain:

Time domain Fourier domain Wavelet domain
h(t) = (f ∗ g)(t) →F hℓ = fℓ × gℓ

Ψκ(t) (Ψκ
ℓ ) −→FWaveD

∫

hΨ̄κ

∑

ℓ(hℓ)Ψ̄
κ
ℓ

hℓ ÷ gℓ (elementwise division)
∑

ℓ fℓΨ̄
κ
ℓ

∫

fΨ̄κ := βκ

f(t) ←−IWaveD

2.3 Adaptive denoising via non-linear WaveD Transform

A key feature of the WaveD Transform is its ability to deal with noisy data (1), (2). Note
that

FWaveD(y, g) =
(

∑

ℓ

(
yℓ

gℓ
)Ψκ

ℓ

)

κ
:= (β̃κ)κ, (8)

provides an unbiased estimator of (βκ)κ. The waved software uses statistical techniques
to perform wavelet regression and smoothing. The main idea is to remove small wavelet
coefficients (noise) and keep large wavelet coefficients (signal). Optimal and data driven
choices of WaveD tuning parameters are further discussed in section 4; here we shall only
present the WaveD method in broad terms using a generic threshold function

η(β̃κ) := β̃κ × I(|β̃κ| ≥ λ) (9)

where λ is a threshold parameter. The WaveD estimator [JKPR] (which with a slight abuse
of terminology we also call the WaveD transform) is defined as

WaveD(y, g) :=
∑

κ

η(β̃κ)Ψκ(t) := f̂(t), (10)

and is illustrated in the diagram below:

Time domain Fourier domain Wavelet domain

Y (t) →F yℓ = fℓ gℓ + εξℓ −→FWaveD

(

∑

ℓ(
yℓ

gℓ
)Ψκ

ℓ

)

κ



y
thresholding

f̂(t) ←−IWaveD (η(β̃κ))κ
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2.4 The Translation Invariant WaveD Transform

Numerical (and computational) properties of the WaveD transform are improved using
cycle spinning Donoho and Raimondo (2004). For any h > 0, we let Thf(x) = f(x + h)
denote the shift operator. For an arbitrary time shift h we define one cycle-spin of WaveD
as

Time domain Wavelet domain
Y (t)

shift


y

ThY (t) −→FWaveD (βh
κ)



y

η
thresholding

f̃h(t) ←−IWaveD η(βh
κ)

unshift


y

T−h(fh)(t)

Let Hn = {1/n, 2/n, ..., 1−1/n, 1} be the set of all possible circulant shifts. The Translation
Invariant WaveD estimator is defined by

f̃TI = Aveh∈Hn
T−h(f̂h) =

1

|Hn|
∑

h∈Hn

T−h(f̂h) . (11)

2.5 What can WaveD offer?

WaveD is a truly non-linear adaptive algorithm which has near optimal asymptotic prop-
erties over a wide range of function classes for a variety of Lp-loss functions, [JKPR]. The
translation invariant version of WaveD improves the numerical performances of ordinary
WaveD by cycle spinning over all circulant shifts. The fast algorithm which implements the
translation invariant version of WaveD takes full advantages of the Fast Fourier Transform
and is computed in O(n(log n)2) steps only. This makes WaveD an attractive non-iterative
deconvolution technique. From the statistical viewpoint WaveD enjoys the benefits of using
wavelet expansion such as: being capable of representing function with discontinuities or
with non-homogeneous time and frequency behaviour.

3 The WaveD Transform in R

3.1 Software access

The waved software is provided as an R package obtainable from the Comprehensive R
Archive Network (CRAN) at http://cran.r-project.org/
Installation instructions are provided there also.

3.2 Getting help

Once the waved package has been installed detailed help pages for basic functions may be
obtained within R using the help() function. For example help(WaveD) gives the help
page of the main waved function. Note that waved refers to the R package whereas WaveD
is the main function which performs wavelet deconvolution. See section 5 for a list of basic
waved functions.
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Figure 1: Two signals t→ f(t), ti = i/n, i = 1, ..., n = 2048. Left: LIDAR; right: Doppler.
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Figure 2: Signals of Figure 1 after smooth blurring with DIP=0.5

3.3 The WaveD demo

From now on we assume that the waved package has been attached. Typing demo(waved)

provides a series of examples which illustrates various applications of the WaveD transform.
To simulate data according to (1) and (Aε) one needs to specify: (a) a target function f ;
(b) a convolution kernel g; (c) a sample size n; (d) a standard deviation σ. The simplest
way to get started is to use the waved package demo. Just type demo(waved) and answer
Y (yes) to get the default setting which produces the following output and ask if you would
like to see the Figures of the paper.

-------------------------------------------------------

Initializing noisy-blurred signals model:

sample size n = 2048

noise sd = 0.05

Convolution kernel g:

gamma-distribution with shape paremeter= 0.5

and scale parameter= 0.25

(effective) Degree of Ill-Posedness (DIP)= 0.5

The seed number has been set to 11

Blurred Signals to Noise Ratios:

Lidar BSNR(dB) = 15.3

Doppler BSNR(dB) = 13.8

-------------------------------------------------------

The simulated data are depicted on Figure 1 (Target signals), Figure 2 (blurred signals)
and Figure 3 (noisy blurred signals). The noise level default setting (as shown in Figure 3)
is sigma.med = 0.05 with sample size n = 2048 so that the Blurred-Signal-to-Noise-Ratios
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(BSNR), in dB, for signals of Figure 3 is approximately 15dB where

BSNRdB = 10 log10

( ||f ∗ g||2
σ2

)

. (12)
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Figure 3: Blurred signals of Figure 2 plus noise with s.d σ = 0.05, in each case the BSNR defined
at (12) is approximately 15 dB.

In the default setting the convolution kernel g is defined using the density of a Gamma
distribution with shape and scale parameters set to 0.5 and 0.25 respectively. In this setting,
the eigen-values gℓ satisfy |gℓ| ∼ |l|−ν with ν = 0.5. The parameter ν which drives the decay
of the eigen-values for high frequencies is often referred as the Degree of Ill-Posedness (DIP)
of the convolution problem [JKPR].

3.4 Setting up your examples

Once you become more familiar with the waved package you may want to generate your
own data by modifying the default parameters of the demo. The function waved.example()

can be used to generate simulated examples and Figures with different model parameters:
sample size, noise level, Degree of Ill-Posedness, seed and so on...This is done by typing
my.own.simulation=waved.example(F) and answering questions at the prompt. The list
my.own.simulation contains the newly simulated data sets: e.g.
lidar.noisy=my.own.simulation$lidar.noisy
is a new blurred noisy lidar data set. The list my.own.simulation has the following com-
ponents:

> names(my.own.simulation)

[1] "lidar.noisy" "lidar.blur" "doppler.noisy" "doppler.blur"

[5] "t" "n" "g" "lidar"

[9] "doppler" "seed" "sigma" "g.noisy"

[13] "dip" "k.scale"

To return to the default setting as used for the figures in this paper type demo(waved)

and answer Y (yes) to get back to the default setting.

3.5 The WaveD function and wvd objects

The function WaveD creates R objects of class wvd. The wvd class objects are lists which
contain the various WaveD transforms as well as all the WaveD estimate characteristics such
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as threshold, resolution level, degree of the Meyer wavelet and so on. You can check what
y.wvd contains by typing names(y.wvd). Statistical properties of objects of class wvd are
discussed in Section 4. The summary and plot functions for objects of class wvd are discussed
in Section 4.5. In its simplest version the WaveD function requires two input arguments:
the blurred data y = (y1, ..., yn) as in Figure 2 (or as in Figure 3) and the blurring kernel
g = (g1, ..., gn). Optional arguments to WaveD include: F the finest resolution level j used
in the expansion (10) as well as the threshold value λ at (9). The parameter F may take any
value within the range L, ..., (log2(n)− 1) where L is a low resolution level (default L=3).

In our examples n = 2048 so that F may take any value within the range 3,...,10. For
illustration purposes, we set:

>lidar.wvd=WaveD(lidar.blur,g,F=6,thr=0)

this computes various WaveD transforms of the blurred lidar data of Figure 2 using j =
F = 6 as the finest resolution level and threshold λ = thr = 0 (no thresholding). Similarly,

>lidar.noisy.wvd=WaveD(lidar.noisy,g,F=6,thr=0)

computes various WaveD transforms of the noisy-blurred lidar data of Figure 3 using
j = F = 6 as the finest resolution level and threshold λ = thr = 0 (no thresholding).

The Forward WaveD transform and its inverse are depicted on Figure 4 using the
lidar.wvd and lidar.noisy.wvd objects.
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Figure 4: Top plots: Forward WaveD transform, LIDAR wavelet coefficients ac-
cording to time and resolution (left: multires(lidar.wvd$w,lo=3,hi=6); right:
multires(lidar.noisy.wvd$w,lo=3,hi=6)). Bottom plots: corresponding Inverse WaveD
transforms.

The Forward WaveD transform is obtained from a wvd object by typing
lidar.w = lidar.wvd$FWaveD or simply lidar.w = lidar.wvd$w. There is also an R func-
tion called FWaveD() which returns the Forward WaveD transform for example
FWaveD(lidar.blur,g,F=6) returns the same output as lidar.wvd$w.
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The vector lidar.w as defined above is a vector of wavelet coefficients stored from the
lowest resolution level to the highest resolution level. The function dyad(j) may be used
to get the wavelet coefficients at resolution level j:

lidar.wavelet.coef.at.level.5=lidar.w(dyad(5))

A useful property of wavelet coefficients is that they are large (in absolute value) near
discontinuities, see e.g. the top RHS plot Figure 4. Another feature of wavelet coefficients
is that they become more and more sensitive to noise as the resolution level increases. See
e.g. the top LHS plot Figure 4

In Figure 4 (top plots), The function multires() is used to depict wavelet coefficients
according to time and frequency. More details about the multires function and the data
structure of the FWaveD transform are given in Section 5.

The inverse WaveD transform is obtained from a wvd object by typing lidar.wvd$IWaveD
or simply lidar.wvd$iw. The vector lidar.wvd$iw returns the inverse WaveD transform
(7) computed from lidar.w without any thresholding. There is also an R function called
IWaveD which returns the Inverse WaveD transform computed from a vector of wavelet co-
efficients. For example IWaveD(lidar.wvd$w) returns the same output as lidar.wvd$iw.
Two illustrations of the inverse WaveD transform are depicted on the bottom plots of 4
(with corresponding Forward WaveD transforms depicted on the top plots).

The ordinary WaveD transform is a combination of the FwaveD and IWaveD transforms
together with some thresholding options. The ordinary transform (10) is obtained from a
wvd object by typing lidar.wvd$ordinary or simply lidar.wvd$ord which, here, returns
approximations to the LIDAR function (as depicted on the RHS bottom plot of Figure
4). If no thresholding is performed (thr=0) the ordinary WaveD transform returns the
same output as the inverse WaveD transform. If a non-zero threshold is used the ordinary
WaveD transform returns the inverse WaveD transform after thresholding whereas the
inverse WaveD transform returns the inverse WaveD transform after no thresholding

For noisy data it is desirable to improve WaveD approximations such as depicted on
the RHS bottom plot of Figure 4 by using a non-zero threshold in combination with the
Translation-Invariant WaveD transform, as described in Section 2.4. This is detailed next.

4 Statistical applications of the WaveD Transform

In this section we discuss some more advanced features of the WaveD transform when
dealing with noisy data. We use the simulated data of Figure 3 to illustrate how WaveD
choose the fine tuning parameters F and thr in a data-driven fashion in agreement with the
optimal choices prescribed in the literature [JKPR], Cavalier and Raimondo (2006). In its
simplest form the WaveD function has two input arguments: the blurred data y = (y1, ..., yn)
as in Figure 2 or in Figure 3 and the blurring kernel g = (g1, ..., gn). All other arguments
are optional, see section 5 for a complete list. For example,

>lidar.maxi.wvd=WaveD(lidar.noisy,g)

creates a wvd object from the noisy LIDAR data of Figure 3. The fine tuning parameters F
and thr are computed automatically from the data to ensure the best possible performances
of the ordinary waved estimate (depicted on the bottom RHS of Figure 6) and of the
translation invariant waved estimate (depicted on the RHS of Figure 9).
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4.1 Choosing a threshold

The threshold value λ (see (9) or (10)) may be thought of as a smoothing parameter since
it dictates the amount of smoothing in the estimate, large λ yields smoother estimates and
vice-versa. A single threshold value λ may be entered directly in the WaveD function as
shown in Figure 5
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Figure 5: Left, ordinary WaveD with λ = 0.2 and F = 6:
plot(t, WaveD(lidar.noisy,g, F= 6, thr = 0.2)$ord). Right, ordinary WaveD with λ = 0.02
and F = 6: plot(t, WaveD(lidar.noisy, g,F= 6, thr = 0.02)$ord)

Alternatively a set of level dependent thresholds may be entered as a vector, for exam-
ple: WaveD(lidar.noisy,g,C=3,F=6,thr=c(0.01,0.02,0.03,0.04) will use λ = 0.01 at
resolution level j = 3, λ = 0.02 at resolution level j = 4 and so on...

Maxiset threshold: if no threshold parameter is specified the WaveD function will com-
pute and use the so-called “Maxiset threshold”. This threshold is derived from the Maxisets
Theory [JKPR]. The numerical values of thr may be obtained from a wvd object by typing
lidar.maxi.wvd$thr which here returns the following values:

>0.014 0.021 0.031 0.048 0.075

corresponding to a vector (λ3, ..., λ7) of level dependent thresholds computed as

λj = σ̂γ σj cn (13)

• σ̂: estimate of the noise standard deviation, σ. If yJ,k = 〈Y,ΨJ,k〉, denote the finest
scale wavelet coefficients of the observed data, then σ̂ = m.a.d.{yJ,k}/.6745, where
m.a.d. is median absolute deviation. In R (WaveD) type scale(data) to get σ̂.

• γ: constant which depends on the tail of the noise distribution. For Gaussian noise,
the range

√
2 ≤ γ ≤

√
6 gives good results in practice. The default setting for WaveD

is γ =
√

6.

• σj: level-dependent scaling factor which depends on the convolution kernel.

σj := τj(xℓ) =
(

|Cj |−1
∑

l∈Cj

|xℓ|−2
)1/2

(14)

• cn: sample size-dependent scaling factor reminiscent of the Universal threshold:

cn =
( log n

n

)1/2
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Figure 6: Top left: Forward WaveD transform (un-thresholded),
multires(lidar.maxi.wvd$w,lowest= 3, highest = 6). Top right: Forward WaveD trans-
form after maxisets-thresholding, multires(lidar.maxi.wvd$w.thr,lo= 3, hi = 6). Bottom left:
Ordinary WaveD transforms with no thresholding. Bottom right: Ordinary WaveD transforms
with maxisets-thresholding.

The effect of the Maxiset threshold is illustrated on Figure 6 for the LIDAR data. As
seen in the RHS plots of Figure 6, the WaveD estimate with the Maxiset threshold automat-
ically select significant coefficients to be kept for the reconstruction. This process removes
noise (small coefficients) and smooths the estimate. The thresholded Forward WaveD trans-
form may be obtained from a wvd object: for the LIDAR example lidar.maxi.wvd$w.thr

returns the Forward WaveD transform after maxiset thresholding as depicted Figure 6.

4.2 Choosing the finest resolution level

The fine resolution level F is related to the highest (Fourier) frequency M allowed in the
WaveD estimator 2F ≈M . The tuning parameter F stipulates the range of resolution levels
where the approximations (10) or (11) are used:

Λn = {(j, k), L ≤ j ≤ F, 0 ≤ k ≤ 2j}.

A numerical value for F within the range L ≤ F ≤ log2(n) − 1 may be entered directly
in the WaveD function as shown in Figure 5 or as in the example of section 3.5. Here L is a
low resolution parameter (default is L=3). Unlike direct estimation problems e.g. Donoho
et al. (1995) where it is customary to keep all resolution levels setting F = log2(n)− 1, the
asymptotic theory for deconvolution [JKPR] shows that one should stop at a fine resolution
level F = j1 where j1 depends on the degree of ill-posedness of the convolution kernel (the
faster the eigen values go to zero the sooner the wavelet expansion should stop). In other
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words the Maxiset threshold will prevent noise in the estimate up until a high resolution
level j1 which depends on the degree of difficulty of the convolution as well as the noise
level. In practical terms this means that, even after Maxiset thresholding, the WaveD
estimate based on all resolution levels may, sometimes, contain high noise perturbations,
in our LIDAR example

> lidar.Fmax.wvd=WaveD(lidar.noisy,g,F=10)
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Figure 7: Left: multires(lidar.wvd.Fmax$w.thr). Right: plot(t, lidar.wvd.Fmax$ord).

computes the WaveD approximation with maxiset threshold and largest possible reso-
lution level F = 10 (here n = 2048). As seen on Figure 7 there are large noise residuals in
the WaveD estimate due to large (unthresholded) coefficients at resolution level 10.
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Figure 8: Illustration of the fine level selection in the Fourier domain (15). Left: ℓ −→ log |gℓ|,
where gℓ are noise-free eigen-values (ǫ = 0). Here M = 191, ĵ1 = 6. Right: ℓ −→ log |xℓ| where
xℓ = gℓ + ǫξℓ with ǫ = ε = 0.05/

√
2048. Here M = 74, ĵ1 = 5.

Data driven fine level selection. To prevent noise perturbation at high resolution
level, WaveD is fitted with a function find.j1 which implement the data-driven method
of Cavalier and Raimondo (2006) to find the optimal fine resolution level j1 for noisy
deconvolution based on the maxisets threshold. The idea is to keep all (Fourier) frequencies
until (the moduli of) the eigen values fall below an appropriate noise level. This is illustrated
on Figure 8. Let

M = min
{

ℓ, ℓ ≥ 0 : |xℓ| ≤ ℓ1/2 ε (log 1/ε2)
}

, (15)

denote the maximum Fourier frequency allowed in the WaveD formula (7). Then we define
the maximum wavelet resolution level as

ĵ1 = ⌊log2(M)⌋ − 1, (16)
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where ⌊x⌋ is the largest integer below x. This process is illustrated on Figure 8. To get the
numerical value of j1 or M from a lidar.wvd object type lidar.wvd$j1 or lidar.wvd$M.

4.3 Improving the fit using the TI-WaveD transform

While thresholding wavelet coefficients reduces the noise and smooths the WaveD estimate it
also introduces Gibbs phenomenon near discontinuities see e.g. RHS bottom plots of Figure
6. Such Gibbs effects can be reduced by cycle spining Donoho and Raimondo (2004).

The translation invariant WaveD transform (11) (which performs a full-cycle spin) is
obtained from a wvd object by typing lidar.maxi.wvd$ti or lidar.maxi.wvd$waved.

In any case where some thresholding is performed we recommend using the TI-WaveD

transform as it reduces visual artifacts in WaveD estimate. This is illustrated on Figure 9.
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Figure 9: Left, ordinary WaveD: plot(t, lidar.maxi.wvd$ord). Right, TI-WaveD:
plot(t, lidar.maxi.wvd$waved)

The MC-option. The algorithm which implement the TI-WaveD transform takes full
advantage of the Fast Fourier Transform and requires only O(n(log n)2) steps. This is
faster than the algorithm which implement the ordinary WaveD transform. For convenience
we provide an MC (Monte Carlo) option in the WaveD function. The default setting is
MC=FALSE so that a wvd object like WaveD(lidar.noisy,g) contains both the ordinary and
the translation invariant WaveD transforms. For faster computations in heavy simulations
and Monte-Carlo approximations, it is possible to set MC=TRUE, in this case the WaveD
function will only return the translation invariant WaveD estimate.

4.4 Thresholding policy

There are many ways to threshold wavelet coefficients and different strategies may be used
Donoho et al. (1995). The two main thresholding policies studied in the literature are the
Hard thresholding policy as in (9) or the Soft thresholding policy:

ηS(β̃κ) := sign(β̃κ)(|β̃κ| − λ)× I(|β̃κ| ≥ λ) (17)

where λ is a threshold parameter. The statistical theory for WaveD estimation [JKPR],
Kerkyacharian et al. (2006), Cavalier and Raimondo (2006) is established for the Hard

threshold policy (9) which is the default setting in WaveD. However, for data analysis
purposes and experimental study we provide a Soft thresholding option (17) in the WaveD
function, this is illustrated on Figure 10. As seen on Figure 10 Soft thresholding tends to
further smooth the WaveD estimator but the general appearance does not appear as sharp
as the TI-WaveD estimate of Figure 9.
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Figure 10: Left, ordinary WaveD with Hard thresholding:plot(t, lidar.wvd$ord). Right, ordinary
WaveD with soft thresholding : plot(t,WaveD(lidar.noisy,g,SOFT=TRUE)) .

4.5 The summary and plot functions for wvd objects

For convenience we provide a summary and plot function specifically for objects of class
wvd. We illustrate these functions using the noisy Doppler example of Figure 3. First we
create a wvd object for the doppler.noisy data: doppler.wvd=WaveD(doppler.noisy,g),
then summary(doppler.wvd) gives

Call:

WaveD(yobs = doppler.noisy, g = g)

Degree of Meyer wavelet = 3 , Coarse resolution level= 3

Sample size = 2048 , Maximum resolution level= 10 .

WaveD optimal Fourier freq= 196 ; WaveD optimal fine resolution level j1= 6

The choice of the threshold is: Maxiset threshold

Thresholding policy= Hard . Threshold constant gamma= 2.449

Max|w| Threshold % of thresholding

level 3 0.301 0.009 0.125

level 3 0.222 0.013 0.000

level 4 0.167 0.020 0.625

level 5 0.128 0.030 0.906

level 6 0.078 0.046 0.969

Noise-proxy statistics:

Estimated standard deviation= 0.049

Shapiro test for normality, P= 0.88634

In addition to providing the tuning parameters F, thr,M, γ and thresholding policy, the
summary function gives some additional statistics such as the percentage of thresholding at a
given resolution level as well as the maximum (in absolute value) of the wavelet coefficients
at a given resolution level. It also gives the result of a test for normality based on the
estimated noise in the data. This can be used to assess the WaveD fit as discussed next.

4.6 Assessing the WaveD fit

Estimating noise contribution. In statistical application of wavelet methods it is customary
to estimate noise feature such as variance or tail index using the wavelet coefficients of the
raw data at the largest resolution level, see e.g. Donoho et al. (1995) or Raimondo and
Tajvidi (2004). Here we call the vector of wavelet coefficients at the largest resolution level:
noise.proxy. This vector may be obtained from a wvd object by typing lidar.wvd$noise.
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Figure 11: A typical plot of an object of class wvd, plot(doppler.wvd)
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Figure 12: Assessing the WaveD, plot(doppler.wvd) (2nd plot).

The summary and plot function use the noise.proxy vector to perform some elementary
data analysis see Figure 12.

WaveD-fit assessment. The asymptotic theory of [JKPR] and Cavalier and Raimondo
(2006) is based on the white noise model (1) in which the error terms follow a normal
distribution. A close inspection to the proof of [JKPR] shows that the constant γ used
in the Maxiset threshold depends on the tail of the noise. For Gaussian noise the value
γ =
√

6 gives good result in simulation. However, in other scenarios a larger value may be
needed as this would be the case for heavy tailed noise. To assess the appropriateness of
the WaveD fit and of the Maxiset threshold, the summary function gives the result of a
(Shapiro) test for normality based on the estimated noise in the data.

4.7 WaveD estimation with noisy eigen values

We finish this section by illustrating further adaptive properties of WaveD estimates. De-
picted on Figure 13 is the WaveD LIDAR estimate constructed from noisy-blurred data
as in Figure 3 and noisy eigen-values as in the RHS plot of Figure 8. By comparing with
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Figure 9 we see that the quality of the WaveD approximation is not much affected if one use
noisy eigen values instead of the true eigen values. This is consistent with the asymptotic
theory of Cavalier and Raimondo (2006).
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Figure 13: Lidar WaveD estimate when eigen-values are noisy.

5 R commands for WaveD transform

5.1 The WaveD command

WaveD < −function(yobs, g){...}

# Performs wavelet deconvolution using Meyer wavelet.

# If g is not specified WaveD performs a wavelet transform.

Inputs (REQUIRED)

yobs: Sample of f*g+Noise

Inputs (OPTIONAL)

g: Sample of g or g+Noise (default is direct mass at 0)--same length as yobs

L: Lowest resolution level (default=3)

F: Finest resolution level (default=data driven choice of j1)

deg: deg of the Meyer Wavelet deg=1,2, or 3 (default=3)

eta: smoothing parameter (default=conservative sqrt(6))

MC: if Monte Carlo (MC=TRUE) WaveD returns only the TI-WaveD (default=FALSE)

--note if MC=TRUE WaveD output is a simple vector not a list--

SOFT: if SOFT=TRUE WaveD uses the soft-thresholding policy else hard (Default=FALSE)

thr: threshold (default is Maxiset Threshold)--length=1 or length=F-L+2

Outputs: object of class wvd, list with following components

j1: estimate of optimal resolution level (for Maxiset Threshold)

F: Fine resolution level used (may be different than j1)

M: estimate of optimal Fourier frequency (for Maxiset Threshold)

16



thr: threshold (default is Maxiset Threshold)

w or FWaveD: Forward WaveD Transform (before thresholding)

w.thr: Forward WaveD Transform (after thresholding)

iw or IWaveD: Inverse WaveD Transform (based on w)

ordinary: ordinary WaveD transform

waved or ti: translation invariant WaveD transform

percent: percent of thresholding per resolution level

s: estimate of noise sd

noise: noise proxy

ps: P-value of Shapiro normality test for noise proxy

residuals: wavelet coefficients that have been removed before fine level F

Example: y.wvd=WaveD(lidar.noisy,g)

References Johnstone, Kerkyacharian, Picard and Raimondo (2004); Donoho and Raimondo
(2005); Kerkyacharian, Picard and Raimondo (2006); Cavalier and Raimondo (2006)

5.2 Other useful command

FWaveD has the same inputs as WaveD. The command lidar.w=FWaveD(lidar.blur,g)

returns the same output as WaveD(lidar.blur, g)$w i.e. a vector of wavelet coefficients
for the LIDAR function. This vector has length n, the last n/2 entries are wavelet co-
efficients at resolution level (J −1) where J = log2(n); the n/4 entries before that are
wavelet coefficients at resolution level (J − 2), and so on until level L. In addition,
the first 2L entries are scaling coefficients at coarse resolution level C = L. See dyad

below for how to access wavelet coefficient at a given resolution level.

dyad(j) returns integers 2j+1, ..., 2j+1 , hence the command the command lidar.w[dyad(7)]

returns the LIDAR wavelet coefficients at resolution level 7.

multires(lidar.w,lo=3,hi=7) depicts wavelet coefficients according to time and
resolution level 3,4,..7. See Figure 4

maxithresh(lidar.noisy,g,L=3,F=7) returns the maxiset thresholds.

scale(lidar.noisy) returns an estimate of the noise standard deviation.

find.j1(g,scale(lidar.noisy)) returns the optimal Fourier frequency and optimal
resolution level for using the maxiset threshold with the lidar.noisy data. See
Figure 8.

IWaveD(lidar.w) returns the inverse WaveD transform based on the vector of wavelet
coefficients lidar.w. The IWaveD function can be used to construct/plot wavelets
Ψj,k. One just need to create a zero vector and put a one in the appropriate index
(ind = 2j + k + 1), as given by the function dyadjk(j,k)). For example

>wL=rep(0,2048); wR=rep(0,2048); wL[dyadjk(4,3)]=1; wR[dyadjk(6,40)]=1;

>plot(t,IWaveD(wL,3),type=’l’); plot(t,IWaveD(wR,3),type=’l’)

plot of the Ψ4,3,Ψ6,40 Meyer wavelets, n = 2048.
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