OKAMOTO’S SPACE FOR THE FIRST PAINLEVE EQUATION
IN BOUTROUX COORDINATES
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ABSTRACT. We study the completeness and connectedness of asymptotic behaviours of solutions of the first
Painlevé equation d2 y/ dz? = 6y? + z, in the limit £ — oo, = € C. This problem arises in various physical
contexts including the critical behaviour near gradient catastrophe for the focusing nonlinear Schrédinger
equation. We prove that the complex limit set of solutions is non-empty, compact and invariant under the
flow of the limiting autonomous Hamiltonian system, that the infinity set of the vector field is a repellor for
the dynamics and obtain new proofs for solutions near the equilibrium points of the autonomous flow. The
results rely on a realization of Okamoto’s space, i.e., the space of initial values compactified and regularized
by embedding in CP2 through an explicit construction of nine blow-ups.

1. INTRODUCTION

In this paper, we consider the completeness and connectedness of the asymptotic behaviours of

the first Painlevé equation

d? Y 2

i 6y” + z, (1.1)
in the limit x — oo, x € C. The first Painlevé equation arises in many physical contexts, as a
reduction of the Korteweg-de Vries equation, in the double scaling limit of random matrix models
and in the critical behaviour near the point of “gradient catastrophe” of the solution to the Cauchy
problem for the focusing nonlinear Schrédinger equation [9].

The asymptotic limit z — oo of Equation (1.1) was first studied in 1913 by Boutroux [2], who
provided a transformation of variables that makes the asymptotic behaviours explicit. It is known
that all solutions of (1.1) are meromorphic in C with double movable poles, i.e., with locations
that change with initial conditions. Boutroux found that locally, in each patch near infinity, the
general solutions are given to leading-order by elliptic functions. More detailed results about how
the local asymptotic behaviours of solutions change slowly as x moves near infinity were provided
by Joshi and Kruskal [15, 16], who constructed a complex multiple-scales method to carry out
asymptotic analysis along a large circle in the complex plane for the first and second Painlevé
equations. Such local behaviours were used in the Riemann-Hilbert method, which was applied to
deduce connections between behaviours valid along special directions approaching infinity (see the
review by Kitaev [18]).

In addition to the two-parameter solutions asymptotic to elliptic-function behaviours, Boutroux
identified five one-parameter family of solutions asymptotic to algebraic power expansions in certain
sectors of angle 47/5 in C. He called them tronquée or truncated solutions. In each family of
tronquée solutions, there is a unique solution whose algebraic expansion is valid in a sector of angle
87 /5. Boutroux called these tritronquée or triply truncated solutions. In the literature, this term
has come to be associated with the unique tritronquée solution that is real on the real line; each of
the other four such solutions can be obtained from this one by a discrete symmetry of Equation (1.1)
corresponding to rotating variables in C. This real tritronquée solution appears as a distinguished
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solution in various physical problems (see, e.g., Dubrovin et al. [9]). In the form Y;; = 6Y2 — ¢
(for y(z) = Y (—t)), Joshi and Kitaev [14] constructed a sequence of solutions that converge to the
tritronquée solution on the whole positive real axis and proved that the tritronquée solution has no
poles whatsoever on the positive real axis. O. and R. Costin [7] applied Borel-summation methods
to deduce many complex properties of the tronquée solutions.

However, while it is known that the solution space of Equation (1.1) is connected, through
Okamoto’s [21] compactification and regularization of the space of initial-values, there has been no
investigation (to our knowledge) of the completeness or connectedness of the known asymptotic
behaviours of the solutions of this equation (or of any of the six Painlevé equations). We tackle this
problem by undertaking asymptotic analysis in Okamoto’s space. Our approach relies on explicit
resolution of singularities in an asymptotic version of this space. We note that although we focus
on the first Painlevé equation in this paper, our approach can be extended to the other Painlevé
equations.

The paper is organized as follows. In §2, we recast Equation (1.1) as a Hamiltonian system,
provide a rescaling of it under Boutroux’s transformation of variables, and summarize known prop-
erties of solutions. The resolution of singularities of this Boutroux-Painlevé system is provided
explicitly in Appendix A where we carry out the sequence of changes of variables necessary first to
compactify and then blow up the nine base points of the system in CP2. The last space Sg con-
structed by this sequence of steps is Okamoto’s “space of initial values.” The construction shows
that the vector field is infinite on the union I := U?zOLj of nine complex projective lines.

We show in §3 that the Boutroux-Painlevé vector field is regular and transverse to the last
complex projective line, Lg, in Sg. It is shown here that the Taylor expansion of the flow around a
point on this line provides us with the Laurent expansion of the solutions y(x) near a pole. In §4, we
consider the vector field near the infinity set I and show that this is a repellor for the flow. We also
construct the limit set for each solution and show that it is a non-empty, compact and connected
subset of Sy, which remains invariant under the autonomous flow. As a corollary, we prove that
every solution of Equation (1.1) must have an infinite number of poles in the complex plane. Finally,
in §5, we consider the Boutroux-Painlevé system near the equilibria of the autonomous limit system
and prove several results about tronguée solutions, ending with a determination of their sequence
of poles near the boundaries of pole-free sectors, by using classical methods.

2. BOUTROUX SCALING

Equation (1.1) can be viewed, upon the substitutions y = y;, dy/dz = y2, as a Hamiltonian
system dy;/d z = OH /0y, dys/ dz = —0H/Jy; with an z-dependent Hamiltonian function

H=H(x, y1, y2) == 12%/2 = 2y1° — z 1. (2.1)

The function H is a weighted homogeneous polynomial in the sense that if we substitute z = A\ ¢,

y1 = A2 uy, and yo = M ug, then H = A% (up?/2 —2u1® — & up). We have € = 1 if and only if z = \?,

when A = 24,y = 22wy, uy = 272y, yo = 23/ ug, and ug = a3 yy. If 2 = x(z) and a

dot means differentiation with respect to z, then @, = i (—(1/2)z ' uy + z'/*uy). If we choose

(4/5) 2°/* = z then # x'/* = 1, and the Painlevé system takes the form
i = ug—2(52) " u,

Uy = 6u2+1-3(52)"tus. (2:2)

This is an order z~! perturbation of the Hamiltonian system with Hamiltonian function equal to
the z-independent energy function
E = u?/2—2u® —uy,
where (2.3)
E = (52)7'Qui+12u® —3u?) = —(52)"L (6 E +4uy).
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It implies Boutroux’s second order differential equation
iy =6u®4+1—2" 0 + 4(52) 2w (2.4)

for u;. These transformations have been used by Boutroux [2] in order to investigate the asymptotic
behavior of the solutions of the Painlevé equation when x — oo.

Because f:)o 271 dz = 00, we cannot straightforwardly conclude that solutions of the Boutroux
system (2.2) converge to solutions of the autonomous Hamiltonian system when z — oo. Actually
they don’t: we will see that each solution of (2.2) converges to different solutions of the autonomous
limit system, depending on the path along which z runs to infinity.

Remark 2.1. If a and b are nonzero complex constant complex numbers, then the substitutions
y(z) = an(§), € = bx turn (1.1) into the differential equation d?7n/d¢? = an? + B¢, where
a=6a/b? and B =1/ab?, or equivalently b = (6/a 8)'/° and a = a b*/6.

Boutroux [2, p. 311] took the first Painlevé equation with the constants & = 6 and = —6,
or equivalently b = (—1/ 6)1/ > and a = b?, as his point of departure, and applied the substitutions
X = (4/5)€%/% and n = €'/2Y in order to arrive at the differential equation d?Y/dX? = 6Y% —
6 —(1/X)dY/dX + (4/(5X)?) Y. Therefore the translation from Boutroux’s notation to ours is
X = (=1/6)"42, Y = (=1/6)"Y2u = (=1/6)"Y2uy, and Y’ = (=1/6)"3/* 4 = (=1/6)"3/* (ug —

2(52) ! uy). An expression which plays a central role in Boutroux [2, §7-11] is
(YN —4Y3+12Y = (—=1/6)7%2 (0% — 4u® — 2u).

Joshi and Kruskal [15], [16] took the first Painlevé equation with the constants o = 3/2 and
B = —3/2, or equivalently b = (—8/3)'/5 and a = b?/4, as their point of departure, and applied
the substitutions Z = (4/5)¢%* and n = Y2 U, where they actually wrote z and u instead of
7 and U, respectively. Therefore the translation from their z and u to ours is Z = (—8/3)Y/4 2,
U=14(-8/3)""2u= +i+6uy, and dU/dZ = 4(—8/3) 3/ *u = 4(—8/3)~4/3 (ug — 2 (52) T uy).
A central role is played in [15], [16] by the function

E:=((dU/dZ)? —U?+3U)/2 = 27 Y2 (=3)%2 (4?2 — 2u° — u).
The functions (Y’)? —4Y3 +12Y and & are closely related to the energy function E in (2.3), as
/2 =20 —u=FE 252 uius +2(52) 2 u,”. (2.5)

Remark 2.2. The Boutroux substitutions z = ((5/4) z)4/5 with inverse z = (4/5) z%/4, and y(z) =
2% u(z) = xl/Qu((4/5) 335/4) = ((5/4) 2)2/5 u(z) with inverse u(z) = x~Y/2y(x) are singular at
x = 0 and correspondingly z = 0. These substitutions introduce multi-valuedness of the solutions
u(z) of the Boutroux-Painlevé equation (2.4) when z runs around the origin in the complex plane,
where the solutions y(x) of the Painlevé equation (1.1) are single-valued.

More precisely, every local solution y(z) of (1.1) extends to a single-valued meromorphic function
on the whole complex z-plane, where the poles are of order two and have leading coefficient equal
to 1. This is the Painlevé property in its strongest form; see [10, Remark 1.1] for some remarks on
its proofs in the literature.

The equation u(z) = ((5/4) z)~2/° y(((5/4) z)4/5), in combination with the single-valuedness of
y(z), implies that the analytic continuation of u(z) along the path z e'?, avoiding the poles of u(z),
returns to its opposite if # € R runs from 0 to 5/4 times 27r. This may be expressed by the formula

ui (2”2 = —ui(2),  ua(ze® %) =iug(2), (2.6)
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where the second equation follows from the first, in view of the first equation in (2.2). This
observation has been used in Joshi and Kruskal [15, Sec. 5] as a consistency check for their
asymptotic results for u(z) for large |z|.

Remark 2.3. Each solution y(z) of the Painlevé equation (1.1) has a convergent Laurent expansion

y(x) = Z Yn z"
for 0 < |z| << 1, when u(z) = ((5/4) 2) " y(x) = ((5/4) 2)2/> y(((5/4) 2)*/5) implies the conver-

gent power series
o0

u(z) = Y g ((5/4)2)

n=ng
for 0 < |z| << 1. We have the following cases.
i) »(0) is finite, when ng = 0. The Painlevé equation y” = 6y +x is equivalent to the recursive

equations
n—2
nn—1y, = 6 Z Yn—2-m Ym for n>2 n#3, (2.7)
m=0
ys = 2yoy1+1/6 (2.8)

for the coefficients y,,. The mapping which assigns to the solution y(z) the complex numbers

yo = y(0) and y; = ¢/(0) is bijective from the set of all regular solutions y(z) near x = 0

onto C2. Subcases:

ia) yo = y1 = 0, when (2.7) for n = 2 yields that yo = 0, whereas (2.8) implies that y3 = 1/6.
An induction on n yields that 3, = 0 unlessn € 3+ 57, asn—2—m =3+ 5k and
m =3+ 5[ imply that n =3+ 5(k+ 1+ 1). Because —24+4(3+55) =10(25 + 1),
it follows that u(z) = >272, ya+5; ((5/4) 2)2(23+1) In particular this solution u(z) is
single-valued.

ib) 5o = 0 and y; # 0, when u(2) =y ((5/4) 2)%/® + O(22) as z — 0.

ic) yo # 0, when u(z) = yo ((5/4) 2)"2/°> 4 O(2*/%) as z — 0.

ii) y(x) has a pole at x =0, when ng = =2, y_o=1,y_1 =yo=y1 =y2 =0, and y3 = —1/6.
The mapping which assigns to the solution y(x) the coefficient y4 is bijective from the set
of solutions with a pole at x = 0 onto C, see for instance [10, the text following (11.3)]. For
n > 5 the Painlevé equation y” = 6y? + = implies the recursive equations

n—2
(n(n=1)=12)yn =6 > Yn-2-m Ym- (2.9)
m=3
Subcases:
iia) y4 = 0. Asin ia) it follows from (2.9) by induction on n that y, = 0 unless n € 3+ 57,
and it follows that u(z) = 22 | ya15; ((5/4) 2)2(23+D  In particular this solution
u(z) is single-valued.
iib) w4 # 0, when u(z) = ((5/4) 2) 72— (1/6) ((5/4) 2)® +y4 ((5/4) 2)*/°+O(2'8/%) as z — 0.
It follows that the solution u(z) of the Boutroux-Painlevé equation (2.4) is not single-valued, unless
we are in the cases ia) or iia). That is, the solution y(z) of (1.1) is either equal to the unique
regular solution near x = 0 for which y(0) = y’(0) = 0, or y(z) is the unique solution of (1.1) with
a pole at x = 0 such that y4 = 0.
If () is a solution of (1.1), and a € C is a fifth root of unity, that is, a® = 1, then z — a~! y(a® x)

is also a solution of (1.1). The solutions y(z) in ia) and iia), corresponding to the single-valued
1
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solutions u(z) of (2.4), are exactly the solutions which are invariant under this five-fold symmetry,
that is, which satisfy y(z) = a~!y(a? ) for every fifth root of unity a, as this means that in the
Laurent expansion of y(z) only the powers 27 appear such that 2j —1€5Z < 2j—-1€5(2Z+1)

& j € 57 + 3. The solutions y(z) in ia) and iia) appear in Boutroux [2, p. 336, 337].

Remark 2.4. If y(x) is a solution of the Painlevé equation (1.1), and a € C is a fifth root of unity,
that is, a® = 1, then x — a~!y(a? z) is also a solution of (1.1).

The solutions y(z) in ia) and iia) of Remark 2.3, corresponding to the single-valued solutions
u(z) of the Boutroux-Painlevé equation (2.4), are exactly the solutions which are invariant under
this five-fold symmetry, that is which satisfy y(z) = a~!y(a®z) for every fifth root of unity a, as
this means that in the Laurent expansion of y(x) only the powers 27 appear such that 2j —1 € 57
< 2j—-1€5(2Z+1) < j €57+ 3. This explains why Boutroux [2, p. 336, 337] called the

solutions y(z) in ia) and iia) of Remark 2.3 the symmetric solutions.

3. THE POLES

In this section, we consider the Boutroux-Painlevé vector field in Okamoto’s space Sg constructed
explicitly in Appendix A. This construction shows that the vector field has no base points in Sg,
is infinite along the configuration I := U?:O ng_z) of nine complex projective lines, and regular in
So \ I. For this reason the set I is called the infinity set of the vector field.

The set of points in Sy \ I which project to Lo, the set where (u1, uz) is infinite, is equal to

Lo\ I. Because Lo N1 = LgN Lg) consists of one point, Lg \ [ is isomorphic to the affine complex
plane. The regular vector field in Sy \ I is nonzero at and transversal to Lg \ I. A solution crosses

the complex line Lg \ Lél) at the time z = ¢, if and only if u(z) = u;(z) becomes infinite as z — (.
The whole set Lg \ I is visible in the coordinate chart (ug11, ug12), where it is the line ugj2 = 0,
parametrized by ug11 € C. Because

u(z) = 1@12(2’)72 (4 + 32 UQ12(2)4 -+ U911(Z) UQ12(Z)6 — 256 (5 2)71 U912(Z)5)717 (31)

is a rational expression in z, ugii(z), and wugga(z), and the solution z — (ug11(2), ug12(2)) of the
regular non-autonomous system is a complex analytic function in a neighborhood of z = { with
ug12(¢) = 0 and a = ug11(¢) € C, it follows that the solution z — u(z) of the Boutroux-Painlevé
equation is a meromorphic function in a neighborhood of z = {, with a pole of order two. For this
reason the line Lg \ [ is called the pole line.

It follows from the equation for 1912 that the coefficients of (z — ¢)? in the Taylor expansion at
z = ( of ug12(z) do not depend on a for 1 < i < 6, when (3.1) shows that the coefficients of (z — ()
in the Laurent expansion at z = ¢ of u(z) do not depend on a for —2 < j < 3. Substitution of the
Taylor expansion at z = ¢ of order i of ug12(z) in the formula for 912 yields the Taylor expansion
at z = ¢ of order i of 4912(2) of order i, hence the Taylor expansion at z = ¢ of order i+1 of ug12(z),
as long as ¢ < 5. Then substitution of ug11({) = a in the formula for g2 yields the coefficient of
(z — ¢)% in the Taylor expansion at z = ¢ of tg12(2), hence of (z — ¢)7 in the Taylor expansion at
z = ( of ug12(2), when (3.1) yields the coefficients of (z — ()7 in the Laurent expansion at z = ¢ of
u(z) for —2 < j < 4. This yields

’U,gu(z) = a—i—O(z—(),

1 1 3 3.7
ugi2(2) = =5 (2 =€)~ 5 5.C(Z—C)2+W(Z—C)3—m(z—f)4

3.7-19 1 s (3719
(23 55 (4 2-5) S <2 565 22.3. 52
3.19- 41 3
(2 57 . C6_2'3‘53'C2+29fl7> (Z_O7 O((z — )8)7
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_ 1 3 31
’LL(Z) = (Z_C)Q_ﬁ 22'5'C2_2'53'C3(Z_C)

19-283 1 , (311727 11 ,
+(24-55-g4_2-5> (z=¢) _<24-56-<5 +2.4-52-¢> (z=9)

197 - 443 29
(26 .56 . (6 + 23.3.52.(2 B 28a, 7) (2 — C)4 —+ O((z - C)5) (3-2)

(2= '+

The anticanonical pencil has a base point at the point (1)b§“ determined by the equations ugo; =
256 (52) 7!, ugea = 0 which is the lift to Sy of the point bg!! of the anticanonical pencil in Ss.
The blowing up of Sg in the point bg, which is not the base point of the anticanonical pencil,
causes F wgy to be infinite along Lg \ Lél), the line determined by the equation ugs; = 0. In turn
this forces the energy function E(z) to have a pole at the point z = ¢ where the solution u(z)
of the Boutroux-Painlevé equation has a pole. The equations for wgi, E we1, and Fwe; imply in
combination with the Taylor expansion for ugi1(2) and ugi2(z) in (3.2) that E = —22(5¢)~! (2 —
O ' 4+27a-22(5¢)240(z—¢) and E= —22(5¢0)" 1 (2 —¢)"2(1+ O((z — ¢)?)). Combination
of these asymptotic expansions for E and F leads to

E(z)= 22507 (== ¢) 7 +277a—22(50)7* + O((z — ¢)/0), (3.3)

where the remainder term is uniform for bounded ¢(~! and a. It follows that the energy E(z),
although it has a pole of order one at z = (, is close to 27" a if |z — (| is large compared to 1/[(],
and F(z) =27 7a+O((!) if 2 — ¢ and (2 — ¢)~! are bounded. That is, for large ||, F(2) is well
approximated by 277 a as soon as z leaves the disc centered at z = ¢ with radius of small order
1/|¢], where the approximation improves when |z — (| increases to order one.

4. THE SOLUTIONS NEAR THE SET WHERE THE VECTOR FIELD IS INFINITE

In this section, we consider the vector field near the infinity set I and show that it is repelling for
the flow. We also construct the limit set for each solution and show that it is a non-empty, compact
and connected subset of Sy that remains invariant under the autonomous flow. As a corollary, we
prove that every solution of Equation (1.1) must have an infinite number of poles in the complex
plane.

Let S denote the fiber bundle of the surfaces Sg = Sg(z), z € C\{0}, in which the time-dependent
Painlevé vector field v, in the Boutroux scaling, defines a regular (= holomorphic) one-dimensional

vector subbundle P of S. For each z € C\ {0}, let I(2) := %, ng_z)(z) be the infinity set, the
set of all points in Sg(z) where v, is infinite. That is, where P is “vertical” = tangent to the fiber.
If 7 denotes the union in S of all I(z), z € C\ {0}, then S\ Z is Okamoto’s “space of initial
conditions”, fibered by the surfaces So(z) \ I(z), the open subset of S of all points in S where P
is transversal to the fibers, and therefore defines a regular infinitesimal connection in the bundle of
the Sy(z) \ I(z), z € C\ {0}. Instead of using the coordinate-invariant description of a bundle of
surfaces with a connection, we will analyse the asymptotic behavior, for |z| — oo, of the solutions
of the Painlevé equation in the Boutroux scaling, by studying the z-dependent vector field in the
coordinate systems introduced in Section 2. The solution curve in § will we denoted by v = v(z),
whereas the corresponding solution of the Boutroux-Painlevé differential equation is denoted by
u(z). Note that u(z) is equal to the first coordinate uq(z) of y(z) in the (ui, ug) coordinate system,
the 01-coordinate system.

In this section we begin with an asymptotic description of the solutions near the locus Z where
the vector field is infinite. In the notation we often drop the dependence on z of the surfaces
So(z). All order estimates will be uniform in z for z bounded away from zero. Near the part
I\ Lgl) =Us, Ll(.g_z) U (Lg) \ Lél)) of I we will use the function 1/FE, where E is the energy, as
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an indicator for the distance to I, whereas near the remaining part Lél) of I we switch to wgy in
the 92-coordinate system. See the first statement in Lemma 4.2. The function 1/E is no longer

useful as an indicator function near Lél) because Lgl) contains the lift (bge“)(l) to Sg of the base

point b§" of the anticanonical pencil, and E takes all finite values near (bs")"). One of the points

of the proof is that wgs is approximately constant when the solution runs closely along Lél).

Lemma 4.1. Let .
1= L.
i=0

For every € > 0 there exists a neighborhood U of I° in Sy such that |(E/E)/(—=6/52) —1| < e in U

and for all z € C\ {0}. For every compact subset K of L(72) \Lg) there exists a neighborhood V' of
K in Sy and a constant C' > 0 such that |(E/E)z| < C in'V and for all z € C\ {0}.

Proof. Because I% is compact, it suffices to prove that every point of it has a neighborhood in Sg
in which the estimate holds. The quantity r := (52 (E/E) +6)/8 = —2wu;/E is equal to

= w212/ (4 + 2up21? — uo21 uo22”),

702

ros = Uos1” uos2/(—uos1 + 2 uoz® uosz + 4ugs2®),

rin = win®une®/(—uinn + 4une® + 2uin une?),

riz = w2’ ui2a/(—1+ 2ui21 ui2n + dugo? uin?®),

ro1 = o112 Uzi2S/(—ug11 + dugie 4+ 2ugi® ugie®),

ros = u221” u220®/(—1 + dunor us® + 2unar® uae?),

rs1 = uziiZugiat/(4 — uzin + 2uzii® uzin?),

= ugor’ uge® /(=1 4 dugs + 2uzon® uge®),

T4 = ug12° (44 ugr1 ugr2)?/(—ugrn + 2u419> (4 4 wgr1 ug10)?),

rag = gz’ (44 wa21)? waza”/(—1 4+ 2uaon® (4 + waz1)® wan®),

rs1 = usi2” (44 usi usia®)?/(—usin + 2usia® (44 usii usi2®)?),

o = usor” usze” (4 usan usae)?/ (=1 4 2uso® use® (4 4+ uson® usee)®),
ro1 = ueiz (4 + ugi1 ue12”)?/ (—uer1 + 2ueiz (4 + upi1 ue12”)?),

rer = 2 Ugze” (4 + uea’ ue2®)?/(—1 + 2uer2 ugze” (4 + ue2® ue2”)”),
rn = (44 umune')?/(—umn + 2 (4 + uri une')?),

rry = gz (44 urent uree®)? /(=1 4 2urs (4 4 uzn t uz®)?)

in the coordinate charts which cover I°. The part L(()g) \Lgﬁ) of I% is equal to the line uge; = 0 on
which rgo = 0. The part Lgs) \ Lg) of I% is equal to the line uj9; = 0 on which 72 = 0. The part
Lg) \Lgﬁ) of I% is equal to the line ug9; = 0 on which r99 = 0. The part Léﬁ) \ (Lf) U Lél)) of I% is
equal to the part ugi; # 4 on the line ug;2 = 0 on which r3; = 0. The part Léﬁ) \ (Lf) U L(()g)) of I6
is equal to the part ugaa # 1/4 on the line usa; = 0 on which 733 = 0. The part Lff’) \ng of I8 is
equal to the line u491 = 0 on which r49 = 0. The part Lgl) \ Lé?’) of I% is equal to the line use; = 0
on which r5o = 0. The part L((33) \Lg) of I% is equal to the line uga1 = 0 on which rgz = 0. The

part Lé?’) \ Lé4) of I% is equal to the line u79o = 0 on which r79 = 0. This covers all of I%, and the
proof of the first statement in the lemma is complete.
For the second statement we observe that L(72) \ (Lé3) U Lél)) is the line u712 = 0, w711 # 32 on
which rm = 16/(U711 — 32)2, whereas U721 = 0, U722 75 1/32, on which 79 = 16 U722/(32 ur22 — 1)2,
7



is an open neighborhood of Lg) N Lég) in ng). Note that r becomes infinite when approaching
Lg) N Lég) on Lg), which is why Lg) cannot be included in the first statement of the lemma. [

The function |d| in the following lemma will be used as a measure for the distance to the infinity
set I of the vector field.

Lemma 4.2. Suppose z is bounded away from zero. Let q := 2FE. There exists a continuous
complex valued function d on a neighborhood of I in Sy such that d = g~ in a neighborhood in Sy
of I\ Lél), d = wgy in a nez’ghborhood in Sg of the remaining part Lg) \ L(72) of I, and qd — 1,
d/wgs — 1 when approaching L \L

If the solution at the complex time z is sufficiently close to a point of Lg) \ L(72) (parametrized
by coordinate ug21 ), then there exists a unique ¢ € C such that |z — (| = O(|d(2)]| |ug21(2)|), where
d(z) is small and |ug21(2)| is bounded, and ug21(() = 0, that is, the solution of the Boutrouz-
-Painlevé equation has a pole at z = (. In the sequel we write § := d(¢) = wo2(¢) = 25 ug2a((),
and consider 6 — 0. We have d(z)/d ~ 1. For large finite Rg € R~q, the connected component
of ¢ in C of the set of all z € C such that |uga1(z)| < Rg is an approximate disc Dg with center
at ¢ and radius ~ 27°|§| Rg, and z — ug21(2) is a complex analytic diffeomorphism from Dg onto
{u e C|ul < Rsg}.

For i decreasing from 7 to 4 we use the coordinate u(;y1y21 in order to parametrize ng_z) \

L(lo_i)7 where u(ir1)21 = 0 corresponds to the intersection point of L§9—1) with LEHl). The point

on L(8 \L =D with coordinate U(i+2)21 TUNS to the same intersection point when |ug gy9| — oo.
For large finite R; € Ry, the connected component of C m C of the set of all z € C such that
the solution at the complex time z is close to L( \L ), with |uiy1y21(2)] < Ri, but not
close to LEH ), s the complement of D;y1 in an approzimate disc D; with center at ¢ and radius
~ (257718 R)Y O where we note that |§|1/O=9) /|6|1/O=(+D) = |§|=1/O-DE=) >~ 1. More
precisely, z — ui11y21 defines a (9 — i)-fold covering from the annular domain D; \ D;+1 onto the
complement in {u € C | |u| < R;} of an approzimate disc with center at the origin and small radius
~ (2756] Ri1* )Y B where u(ii1y01(2) ~ =203 6 (2 — ()01
For all z € Dy, the largest approxzimate disc, we have |z — (| << |(| and d(z)/6 ~ 1.

Proof. Recall that L \L is determined by the equation wuges = 0 and is parametrized by
ug21 € C. Moreover, Lg minus one point not on Lgl) corresponds to ugs; = 0 and is parametrized

by wgoe. For the study of the solutions near the part Lél) \Lg) of I, we use the coordinates
(ug21, ug22). Asymptotically for ugaa — 0 and bounded uga1, 2~1 we have

go1 ~ —2 Tugos T, (4.1)
wyy ~ 2%ugoy, (4.2)

g /wee = 6(52) 7" 4+ O(ugaz?) = 6 (52) 7" + O(wga?), (4.3)
quwgs ~ 1-— 28 (5 z)*l ugay . (4.4)

It follows from (4.3) that, as long as the solution is close to a given large compact subset of
Lél) \L(72), woz(2) = (2/¢)%° wea(¢) (1 + 0(1)), where z/¢ ~ 1 if and only if |z — ¢| << [¢]. In view
of (4.2), in this situation, uges is approximately equal to a small constant, when (4.1) yields that
ug21(2) ~ 1921 (¢) —2 L ugae =t (2—(), and it follows that ugo1(2), the affine coordinate on Lél) \Lg)

fills an approximate disc centered at ugo1(¢) with radius ~ R if z runs over an approximate disc
centered at ¢ with radius ~ 2 |ugge| R. Therefore, if |ug22(¢)| << 1/|(|, the solution at complex times

z in a D centered at ¢ with radius ~ 2 |uga2| R has the properties that along it ugaa(z)/ug22(¢) ~ 1
8



and that z — wug21(2) is a complex analytic diffeomorphism from D onto an approximate disc
centered at wugg () with radius ~ R. If R is sufficiently large, we have 0 € wug2;(D), that is,
the solution of the Boutroux-Painlevé equation has a pole at a unique point in D. After having
established this fact, we can arrange that ug1(¢) = 0, that is, the center ¢ of D is equal to the
pole point. As long as |z — (| << |¢|, we have d(2)/d(¢) ~ 1, i.e., 25 uga2(2)/6 ~ wga(2)/d ~ 1 and
ug21(2) ~ =27 ugaa ™ (2 — ) ~ =255 (2 — (), where for a large finite Rg € R-( the equation
|uga1(2)| = Rg corresponds to |z — ¢| ~ 27°|§| Rg, which is still small compared to [¢| if |d] is
sufficently small. It follows that the connected component Dg of ¢ of the set of all z € C such
that |ugo1(2)| < Rg is an approximate disc with center at ¢ and small radius ~ 27° |§| Rg. More
precisely, z — ug21(z) is a complex analytic diffeomorphism from Dg onto {u € C | |u| < Rg}, and
d(z)/d ~ 1 for all z € Dg. The function ¢(z) has a simple pole at z = (, but it follows from (4.4)
that q(z) wez(2) ~ 1 as soon as 1 >> |2 uga1 (2) 7| ~ (71 2ug22(C) (2= ¢) 7t =272 |0]/I¢ (2 = )],
that is, when |z — (| >> 27°6]/|¢|. As the approximate radius of Dg is 277 |§] Rg >> 27°4]/[¢|
because Rg >> 1/|(|, we have q(z) wga(z) ~ 1 for z € Dg \ Dg, where Dy is a disc centered at (
with small radius compared to the radius of Ds.

The set ng) \ L((;’) is visible in the coordinate system (uga1, ug22), where it corresponds to the
equation ugse = 0 and is parametrized by ugs; € C. The set Lg) minus one point corresponds to
ug21 = 0 and is parametrized by ugas € C. It follows from the equations which express (ugi1, usi2)
and (u821, u822) in terms of (U711, U712) that ug2o — 1/u811. AISO, Ugl1 = U921 — 28 (5 Z)_l which
implies that wgo; — oo if and only if uges — 0. That is, the point near Lél) approaches the
intersection point with L(72), when (4.4) implies that qwgy — 1. Therefore the functions ¢—! and
wgo can be glued together by means of a continuous interpolation to a continuous function d as
asserted in the lemma.

Asymptotically for ugss — 0 and bounded ugs; and 2z~ 1, we have

. -1
Ugol ~ —U2
. -1 -1
Ugoa ~ 27 " wugol
o6 2
wg2 ~ ug21 U822,
qugy ~ 1,

i/g=E/E ~ —6(52)7" =27 (52) ugn .

~~ o~~~
= s
© 00 J O Ot
~— — ~— ~— ~—

It follows from (4.9) and (4.6) that ¢/q ~ —6 (52)~1 — 28 (5 2) ! tiga2, hence

log(q(z1)/q(z0)) ~ log((21/20) %)
_(28/5) (21_1 ug2(21) — 291 ug22(20) + / 272 ug22(z) dz).

20

Therefore q(z1)/q(z0) ~ 1, if for all z on the segment from zy to z; we have |z — zp| << |20| and
lugaz ()| << |20/ We choose zg on the boundary of Dg, when d(z0) ™6 ~ q(20) § ~ q(20) woa(20) ~
1, and |uga1(20)| = Rg implies that |ugsa(20)| ~ Rs~' << 1. Furthermore, (4.7) and (4.8) imply
that |usa1(20)| ~ 276 |wsa(20)| |usez(20)| 72 ~ 279|6| Rg~2, which is small when |§| is sufficiently
small. Because Dg is an approximate disc with center at ¢ and small radius ~ 27°|§| Rg, and
Rg >> |¢|7, we have that |uga1(2)] > Rs >> 1 hence |ugae(2)] << 1if 2 =+ 7 (20— (), 7 > 1,
and |z —2o|/|z0| = (r—1)|1—={/z0| << 1if r—1 is small compared to the large number 1/|1—(/z|.

Then equations (4.8), (4.7), and ¢ ~ 6~ yield uggo~! ~ (67126 ugo1)'/2, which in combination
with (4.5) leads to 2 d(uga1'/?)/dz = —23 5=/, hence ugo1 (2)"/? ~ ugo1(20)/% — 22612 (2 — »),
and therefore ugo1(2) ~ 24071 (2 — 20)% if |z — 20| >> |ugo1(20)]'/2. For large finite Ry € R the
equation |ugs1(2)| = Ry corresponds to |z — zo| ~ (274 |8| R7)'/2, which is still small compared to
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|z0] ~ ||, and therefore |z — (| < |z — 20| + |20 — (| << |{]. This proves the statements about the
behavor of the solution near Lg) \ Lé?’).
The statements for 4 < i < 6 about the behavior of the solutions near the part ngﬂ) \Lgl_olﬂ) of

I will be proved by induction over decreasing . The set ng_i) \Ll(iol_i) is visible in the coordinate
system (u(i+1)21, U(i+1)22), where it corresponds to the equation u(;y1)22 = 0 and is parametrized

by u(;y1y21 € C. The set ng_?) minus one point corresponds to u(;41)21 = 0 and is parametrized by

u(i+1)22 € C. It follows from the equations which express (w(;+1y11, U(@i+1)12) and (U(ip1) 21, Ugit1)22)
in terms of (uj11, wi12) that ugy1y2 = 1/u@q1)11, U1 = usa1 + 32, ue11 = ura1, and usi1 = ue21.

This shows that w921 — 00 if and only if u(;41)22 — 0, that is, the point near Lgi_li) approaches

the intersection point with ng_i) )

Asymptotically for u(;y1)22 — 0 and bounded w(;y1)2; and 271, we have

Uirnyar ~ —(9—9)2  uginyn (4.10)
wisny2 ~ 2wy gy (4.11)
quiyn2 ~ 1 (4.12)
i/g=E/E ~ —6(52)".. (4.13)

Assume that |u(ii0)91(20)] = Riz1 >> 1, where the induction hypothesis yields that |z —
¢l << [¢] and 1/(q(20)0) ~ d(20)/0 ~ 1. It follows from (4.11), (4.12), and [u(i41)22(20)| ~
1/|u(iz2)21(20)], that

g1y 21 (20)* 7" ~ 270 q(20)| 7! Jugigay 22l ™ ~ 27 [8] Ripa ¥,
which is small if |0| is sufficiently small.

It follows from (4.13) that ¢(z)/d ~ q(z)/q(z9) ~ 1 along a solution near ng_i) \Lgiol_i), as long
as |z — 20| << |z0|- Then (4.12) and (4.11) yield

Uryze e (071 20wy ® )Y O
which in combination with (4.10) leads to

(9—1) d(ugrnyn/O)/ dz = —(9 — i) 27 1HO/O70 51O,

9

hence

O 4y 1y 91 (20) VO — 263/O0) §51/00) (; _ ).

9—1

U(z’+1)21(2)
and therefore u(;1y21(2) ~ 272671 (2 — 20)° 7" if |2 — 2| >> |u(i+1)21(z0)]1/(9*i). For large finite
R; € Ry the equation |u(;41)21(2)| = R; corresponds to |z — 2o ~ (2377 |6| Ry)Y/ O~ which is still

small compared to |z9| ~ |¢|, and therefore |z — (| < |z — 20| + |20 — ¢| << |]. O

The following corollary implies that the infinity set I of the vector field is repelling. This in turn
implies that every solution which starts in Okamoto’s space Sg \ I remains there for all complex
nonzero times.

Corollary 4.3. For every e; >0, 0 < €3 < 6/5, and 0 < e3 < 1, there exists a 6 € R such that
for every solution we have that if |zo| > €1 and |d(z0)| < d, we have the following conclusions. Let
p denote the supremum of all v > |z9| such that |d(z)| < § whenever |zp| < |z| <r. Then
i) p is bounded above by the inequality § > |d(z0)| (p/|20])%/°~ (1 — €3).
i) If |20] < |2| < p, then d(z) = d(20) (2/20)%/°%2() (1 + e3(2)), where |e2(2)| < e and
le3(2)] < €s.
iii) If |z| > p then |d(2)| > § (1 — e3).
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Proof. It follows from Lemma 4.2 that for every solution close to I the set of all not too small
complex times z such that the solution is not near I% is a union of approximate discs of radius of
order |d|'/? where the distance between the discs is at least of order |d|'/3, where |d|*/3/|d|}/? >> 1.
Therefore, if the solution is near I° at the complex times zy and 21, and is near I for all complex
times z such that |z| is between |zg| and |z1|, there is a path 7 from 2y to z; such that for all z on ~
we have that the solution at time z is near 16, and v is C* close to the path [0, 1] 3 ¢ — elott(h—lo),
where I; = logz. Then Lemma 4.1 implies that q(z1) = ¢(20) (21/20)~%/5t°(M) (1 + o(1)), hence
d(z) = d(z0) (2/20)%°F°M) (1 + o(1)). Because Lemma 4.2 implies that the ratio between the
values of d remains close to 1 if the solution stays close to Lg) U Lgl), it follows that d(z1) =
d(20) (21/20)%/5+°M) (1 4 o(1)) if the solution is close to I at all complex times z such that |z| is
between |zg| and |z1|. The corollary follows from these estimates. O

Remark 4.4. The substitutions

ui(z) = ((5/4)2) P yi(((5/4) 2)"),

us(z) = ((5/4)2) 7 y2(((5/4) 2)*°)
in the beginning of Section 2 lead in combination with (2.3) to

E(z) = 27'((5/4)2) % 5a(((5/4) 2)*/°)?
—2((5/4) )" y1(((5/4) 2)*/7)* = ((5/4) 2) 7>y (((5/4) 2)*/°).
Because the solution (y1(z), y2(x)) of the Painlevé system is single valued, we have the analytic
continuation formula
E(z "™1/?) = —E(2), (4.14)

analogous to (2.6). Because also (z €®71/2)=6/5 — _,=6/5 the asymptotic formula E(z)/E(zy) ~

(2/20)~%/° along solutions close to the part I\ (Lél) U L(72)) of the inifinity set I is consistent with
(4.14).

Because the substitutions of coordinates in Section 2 depend in a polynomial way on z~', the
bundle of the complex projective algebraic surfaces Sg(z), z € C\ {0} extends to a complex analytic
family Sg = Sg(2), z € P\ {0}, where the complex projective line P! is identified with the Riemann
sphere CU{oo}. The surface Sg(00) over the point co € P! is obtained by blowing up P? nine times
as in the definition of Sg(z), where in the formulas for the base point bg(z) and the coordinate
systems (ug11, ugi2) and (ug21, ugaz) the coefficient 1/z is replaced by zero. Because bg(co) = bg!,
the base point of the anticanonical pencil defined by w and E w, the limit surface Sg(o0) is equal
to the rational elliptic surface obtained by blowing up the base points of the anticanonical pencil.
The Boutroux-Painlevé vector field converges for z — 0o to the vector field of the autonomous
Hamiltonian system i, = uo, s = 6 w1241 with Hamiltonian function equal to the energy function
E in (2.3). The function u1(z) satisfies the Weierstrass equation (111)? —4u1% —2u; = 2 E, which is
why in the sequel we will use the function ¢ := 2 F instead of the energy function E. The function
q defines the elliptic fibration ¢ : Sg(00) — P!, where the fiber I(00) = ¢! ({o0}) = lim, 00 1(2)
over ¢ = oo is a singular fiber of Kodaira type IT*. The vector field of the autonomous Hamiltonian
system is regular in the limit fiber Sg(oo) \ I(c0) of Okamoto’s space of initial conditions, and
infinite on I(co). The function ¢ is constant on its solution curves, and each non-singular fiber is
an elliptic curve where the time parameter of the solution leads to an identification of the fiber
with C/P(q), where P(q) denotes the period lattice of the flow at the level g. The —1 curve Lg(co)
which appears at the last, the ninth blowup is a global holomorphic section for the elliptic fibration.
Starting at the complex time z = 0 on the unique intersection point of the level curve with Lg(c0),
the period lattice P(q) is equal to the set of all z € C such that the solution of the autonomous
Hamiltonian system hits Lg(co). In view of the Weierstrass equation (u1)? — 4 u;® —2u; = ¢, and
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the fact that u;(z) has a pole at z = ¢ if and only if ¢ € P(q), the uj-coordinate of this solution is
equal to the Weierstrass g function of the lattice P(q), and we recover the fact that hitting Lg(co)
corresponds to w1 having a pole. The equilibrium points of the autonomous Hamiltonian system are
the points in the affine (u1, ug)-charts determined by the equations us = 0 and 6u1? +1 = 0. The
corresponding singular values are ¢ = —4uy (—1/6) — 2u; = —(4/3)u; = +1i 4/8/27. For each
of these two finite singular values of ¢ we have a singular fiber of Kodaira type I;. Therefore the
configuration of the singular fibers of the rational elliptic surface Sg(o0) is II+1; 411, the second
item in Persson’s list [23, pp. 7-14] of configurations of singular fibers of rational elliptic surfaces.
It also occurs on p. 121 in the classification of Schmickler-Hirzebruch [24] of all elliptic fibrations
over P! with at most three singular fibers.

The following definition is a complex version of the concept of limit sets in dynamical systems.

Definition 4.5. For every solution C\ {0} 3 z — U(z) € So(2) \ I(2), let Qr denote the set of all
s € Sg(o0) \ I(00) such that there exists a sequence z; € C with the property that z; — oo and
U(zj) = s as j = 0o. The subset Qy of Sg(c0) \ I(00) is called the limit set of the solution U.

Corollary 4.6 below is analogous to Coddington and Levinson [4, Th. 1.1 and 1.2 in Ch.16].

Corollary 4.6. There exists a compact subset K of Sg(c0) \ I(c0) such that for every solution
U the limit set Qu is contained in K. The limit set Qy is a non-empty, compact and connected
subset of K, invariant under the flow of the autonomous Hamiltonian system on Sg(oco) \ I(c0).
For every neighborhood A of Qu in Sy there exists an r > 0 such that U(z) € A for every z € C
such that |z| > r. If z; is any sequence in C\ {0} such that z; — oo as j — oo, then there is a
subsequence j = j(k) — 00 as k — oo and an s € Qu such that U(zjy)) — s as k — oo. Finally,
for every solution U the limit set Qy is invariant under the transformation T of Sg(oo) which in
the coordinate system (uy, uz) is given by (u1, uz) — (—u1, iug), when ¢ — —q and E — —F.

Proof. For any 6, 7 € R, let K5, denote the set of all s € Sg(z) such that |z| > 7 and |d(s)| > 9.
Because Sy is a complex analytic family over P\ {0} of compact surfaces So(z), z € P\ {0}, Ks , is
a compact subset Sg. Furthermore Kj , is disjoint from union of the infinity sets I(z), z € P'\ {0},
and therefore K , is a compact subset of Okamoto’s space Sg \ Sy, o0, Where the latter is viewed as
a complex analytic family of non-compact surfaces over P!\ {0}. When 7 1 oo, the sets Kj , shrink
to the set K o of all s € Sg(oco) such that |d(s)| > ¢, which is a compact subset of Sg(oc0) \ I(c0).

It follows from Corollary 4.3 that there exists § € R~ such that for every solution U there exists
ro € Ry with the property that U(z) € Ks ,, for every z € C such that |z| > r¢. In the sequel,
let 7 > 7o, when it follows from the definition of Kj , that U(z) € K, whenever |z| > r. Let
Zy, :={2 € C| |z| > r} and let Qp,, denote the closure of U(Z,) in Sg. Because Z, is connected
and U is continuous, U(Z,) is connected, hence its closure €y, is connected. Because U(Z,) is
contained in the compact subset Kj ., its closure €}y, is contained in Kj ,, and therefore 1, is
a non-empty compact and connected subset of Sg \ Sg . Because the intersection of a decreasing
sequence of non-empty compact and connected sets is non-empty, compact, and connected, and
the sets Q , decrease to €y as r 1 oo, it follows that €}y is a non-empty, compact and connected
subset of Sg. Because {1y, C K; , for all r > 7o, and the sets K5 , shrink to the compact subset
K5, 0 of Sg(o0) \ I(00) as r 1 oo, it follows that Qp C Kj o. This proves the first statement in
the corollary with K = K; . Because Qs is the intersection of the decreasing family of compact
sets Q ., there exists for every neighborhood A of {2y in &g an r > 0 such that Qp . C A, hence
U(z) € Afor every z € C such that |z| > r. If z; is any sequence in C\ {0} such that |z;| — oo, then
the compactness of Kj ,, in combination with U(Z,) C Kj ,, implies that there is a subsequence
Jj=7j(k) = o0 as k — oo and an s € Kj , such that U(z;)) — s as k — oo, when it follows from
the definition of Qg that s € Q.
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We next prove that Qp is invariant under the flow ®! of the autonomous system Hamiltonian
system. Let s € 7, when there is a sequence z; € C\ {0} such that z; — co and U(z;) — s as
j — 00. Because the z-dependent vector field of the Boutroux-Painlevé system converges in C! to
the vector field of the autonomous Hamiltonian system as z — oo, it follows from the continuous
dependence on initial data and parameters for first order ordinary differential equations, see for
instance Coddington and Levinson [4, Th. 7.4 in Ch. 1], that the distance between U(z; +t) and
®'(U(z;)) converges to zero as j — oo. Because ®'(U(z;)) — ®'(s) and z; — oo as j — oo, it
follows that U(z; + t) = ®*(s) and z; + ¢ — 0o as j — oo, hence ®'(s) € Q.

The invariance of Q under the transformation 7" follows from (2.6) and (2.3). O

Corollary 4.7. Every solution of the first Painlevé equation has infinitely many poles.

Proof. Let u(z) be a solution of the Boutroux-Painlevé equation with only finitely many poles,
U(z) the corresponding solution of the system in Sy \ Sy o, and Q the limit set of U. According
to Corollary 4.6, Qp is a compact subset of Sg \ Sg . If Qp intersects the pole line Lg in a point
p, then there exist z with |z| arbitrarily large such that U(z) is arbitrarily close to p, when the
transversality of the vector field to the pole line implies that U(¢) € Lg for a unique ¢ near z,
which means that u(z) has a pole at z = (. As this would imply that u(z) has infinitely many
poles, it follows that Qp is a compact subset of Sy \ (Sg.0c U Lg). However, Sg o U Lg is equal to
the set of all points in Sg which lie over the line L at infinity in the complex projective plane, and
therefore Sy \ (59,00 U Lg) is the affine (u1,us) coordinate chart, of which {0y is a compact subset,
which implies that u1(z) = u(z) and uz(z) remain bounded for large |z|. In view of the theorem on
removable singularities it follows that u1(z) and us(z) are equal to holomorphic functions of 1/z in a
neighborhood of 1/z = 0, which in turn implies that there are complex numbers 11 (00), ug(00) such
that ui(z) — uq(o0) and ug(z) — ug(00) as |z| = oo. In other words, Qu = {(u1(00), uz(c0))}.
Because the limit set €y is invariant under the autonomous Hamiltonian system and contains only
one point, this point is an equilibrium point of the autonomous Hamiltonian system. That is,
ua(00) = 0 and u1(00) is equal to one of the two zeros ¢ of u + 6u? + 1. According to the last
statement in Corollary 4.6, (—c, 0) € Qp if (¢, 0) € Qu, where (—¢, 0) # (¢, 0) because ¢ # 0. This
contradiction with Qy = {(¢, 0)} completes the proof. O

In Lemma 5.18 more information will be given about the asymptotic distribution for large |¢| of
the poles £ of the solutions y(x) of the first Painlevé equation. In the remainder of this section we
discuss, for the solutions U(z) close to the infinity set I, the asymptotic behavior of the set of z

such that U(z) is close to ng_z) for 0 <1 < 3, extending the description for 4 < i < 8 in Lemma
4.2.

As in Lemma 4.2, one finds concentric approximate discs D1, Do, and approximate discs Dy of
small radii such that the connected component of the set of all z € C such that the solution in Sy is
close to Lg8) \Lg), Lg) \ (ng) U L:(f)), and L(()g) \L§6) is equal to D1, D>\ D1, and Dy, respectively.

More precisely, LgS) \ Lg) is visible in (w121, u122) chart, where it is defined by uj2; = 0 and
parametrized by uj2. We have 192 ~ ujo1 ! = wia /2 ~ ¢/2 = d~Y2, where q/q = E/E ~
—6(52)71, hence d is approximately constant. Therefore each connected component of the set of all
z € C such that |uj22(z)| < R; is an approximate disc D; of radius ~ ]d|1/2 Ry, and z — uj2(2) is a
complex analytic diffecomorphism from D; onto {u € C | |u| < R;}. Furthermore, Lg)\Léﬁ) is visible
in (w221, ug2) chart, where it is defined by ug21 = 0 and parametrized by g9, whereas the part of
ng) in this chart is defined by u999 = 0 and parametrized by wuso1 = u111 = uo31 up32 L = w1007t
hence |u192| > Ry corresponds to |ugg| < R1~!. We have tigop ~ 29911 = 2wap "/ * ug9"/?, where
wyp ~ ¢ ' =dand /¢ = FE/E ~ —6(52)"" yields that (u2'/?)® ~ d~'/* with approximately
constant d, hence uga(z) ~ (ugz(20)"/? +d=4 (2 — 29))%. Let Ry be a large finite positive real
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number. As |ugo1| < Ry~ corresponds to |ugas| ~ |d|"/? Jugar| =2 > |d|/? Ry?, and |d|*/*/|d]'/? >>
1, the mapping z — wug22(z) is a twofold covering from the complement of D; in an approximate
disc Dy of radius ~ |d|"/* Ry'/? onto {u € C | |d|'/? R1? < |u| < Ry}. Finally L(()g) \ L§6) is visible
in the (ug21, uo22) chart, where it is defined by ug2; = 0 and parametrized by uga2. We have
Ug2a ~ 6upar L = —6wee /3, where wge ~ 4¢~ ! = 4d, and q/q = E/E ~ —6(52)~! yields that d
is approximately constant, with g ~ —2'/33d~1/3. Let Ry be a large finite positive real constant.
Then each connected component of the set of all z € C such that |uj22(2)| < Rp is an approximate
disc Dy of radius ~ 2713371 |d|'/3 Ry, and z — u122(2) is a complex analytic diffeomorphism from
Dg onto {u € C| |u| < Rp}.

In order to understand the location of the concentric discs Dg C D7y C Dg C Ds C Dy, the
concentric discs D1 C Do and the discs Dy in the complex z-plane, we first describe the situation
for the solutions of the autonomous Hamiltonian system, which have a similar behavior near the
infinity set I, but in addition has the function ¢ = 2 E as a constant of motion. Recall that for
each ¢ € C\ {£1i,/8/27} the level set in Sy(o0) of the function ¢ is an elliptic curve C, such
that z — ®*(o(q)) defines an isomorphism from C/P(q) onto C,. Here ®* denotes the flow of
the autonomous Hamiltonian system defined by the function E' = ¢/2, o(q) is the unique point in
Cy N Lg(00), and P(q) is the period lattice of the flow at the level ¢. In the (uj, ug) coordinate
system, the first coordinate u(z) = u1(®*(c(q))) of ®*(o(q)) is the solution of the autonomous
differential equation d®u/dz? = 6u? + 1 such that 4> — 4u® — 2u = ¢ and u(z) has a pole at
z € P(q), and no other poles. Therefore u(z) = P (z), the Weierstrass p function defined by the
lattice P(q).

Locally the period lattice has a Z-basis p1(q), p2(q) depending in a complex analytic fashion
on g. The period functions p(q) = p;(q) satisfy the homogeneous linear second order differential
equation

d?p 54q dp 15

—+ ——F—5p=0 4.15
d "8+ 21 dg A r2rd)l (4.15)

as an application of Bruns [3, p. 237, 238] to ¢g2(q) = —2 and g3(q) = —q.

Lemma 4.8. For large |q| the period lattice P(q) has a Z-basis of the form

pile) = a V%a(l/q)+q%b(1/q), (4.16)

pa(a) = q V00 a(1/q) + g% &m0 b(1/q), ‘
where a and b are complex analytic functions on an open neighborhood of the origin in the complex
plane such that a(0) = —i2 7~ 1T(1/3)% and b(0) = 1 2*373/2721(1/3)~3. Here I' denotes

Euler’s Gamma function. The differential equation (4.15) in combination with the explicit values
of a(0) and b(0) leads to a successive determination of the coefficients in the Taylor expansions at
the origin of the functions a and b.

For 0 < i < 8 and i # 3 the point ®*(o(q)) is near LEQiZ) if and only if z belongs to the
aforementioned approzimate discs D; with 6 = g~ 1. The centers of the concentric discs Dy C D7 C
D¢ C D5 C Dy are at the points of the period lattice P(q) that are the pole points of the solution
u(z) = p,,(2) of the autonomous differential equation i = 6u? + 1. The centers of the concentric
discs D1 C Dj are at the zeros of u(z) = g, (2). The zeros of u(z) are close of order smaller
than |q|='/% to the points (p1(q) +p2(q))/3 and 2 (p1(q) +p2(q))/3 modulo P(q). The centers of the
discs Dy are at the zeros of the derivative i(z) = dme(z)/dz, and close of order smaller than

g~/ to the points p1(q)/2, p2(q)/2, and (p1(q) + p2(q))/2 modulo P(q).
Proof. Any period along a closed path v, on the curve W2 =4ud 4+ 2u+ g is equal to
p= 7{ (A4 +2u+q) V2 du =413 ¢1/3 4712 / (V3 + 24713728y 4 1)712 qo.

v
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Asymptotically for ¢ — oo we have
(U3+2,4*1/3 q*2/3v_’_1)*1/2 — (2}3_{_1)71/2 (1+2471/3 q72/3v/(v3+1))71/2
(1)3 + 1)—1/2 _4-1/3 q—2/3 (v3 + 1)—3/2 v+ O(q_4/3).

Furthermore d(v® +1)~Y/2/dv = — (3 + 1)73/2392, and therefore an integration by parts yields
7{(@3 132y du = —(2/3) 7{((@3 )2yt dy = —(2/3) 7{(@3 F1)2 72 4y,
Therefore p(q) = ¢~ /a4 ¢5/5 3 + O(¢~3/?), where

a=2"23 %(US +1)72dv and B=2"1/3371 f(vg +1)72072 do,

where the integration is over a closed path on the elliptic curve 92 = v2 + 1 homotopic to Yq-
Here the elliptic curve is the compact one obtained by adding one point at infinity to the curve

9?2 = v3 4 1 in the affine (v, ©) plane. In the next computations we use the well-known formulas

I(p) = /00 et Pl de, (4.17)
0
I'(p+1) = pL(p), (4.18)
F(%) = 72 (4.19)
B(p1, p2) = /1 (1 — )Pt de
0
_ [T P11 (g P2 g ['(p1) '(p2)
N /0 e+1) ¢ T(p1 +p2)’ (4.20)
P@2p) = 2271 V2D(p)T(p + %), and (4.21)
L(p)T(1-p) = % (4.22)

for Euler’s Gamma function, where (4.20), (4.21), and (4.22) are Euler’s Beta function, Legendre’s
duplication formula, and the reflection formula for the Gamma function, respectively. The second
identity in (4.20) follows from the substitution of variables t = s/(s + 1)

As our first loop we take the closed path which doubly covers the real v-interval from —oo to
—1. The substitution of variables v = —(s 4 1)/ then yields in view of (4.20) and the other
identities for the Gamma function that o = 4i 23371 B(1/2, 1/6) = +i2 7~ 'I'(1/3)? and
B= Fi2%3372B(1/2,5/6) = Fi 23732721 (1/3).

As our second loop we take the closed path in ¥? = v + 1 which doubly covers the real v-interval
from —1 to 0 followed by the straight line in the v-plane from 0 to e"271/6 where the substitution
of variables w = e2"1/3 y shows that the integral of (w® 4 1)~/2 dw over the the second interval is
equal to minus the integral of (v3 + 1)_1/ 2 dv over the first interval. The first and the second loop
in 92 = v3 + 1 intersect each otehr once, at the point (v, ¥) = (-1, 0), where the intrersection is
transversal, and therefore the intersection number of the first loop with the second loop is equal to
41, where the sign depends on the choices of the orientations of the loops. as the elliptic curve is
a real two-dimensional torus, its first homology group is isomorphic to Z?, when the fact that the
intersection number of the two loops is +1 implies that the homology classes of the two loops form a
Z-basis of the first homology group of the elliptic curve. This implies in turn that the correponding
periods, asymptotically equal to the integrals of 471/3 ¢=1/6 5=1 qu over these loops, form a Z-basis

of the period lattice P(q).
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The substitution of variables v = —s/3 yields that the integral of (v + 1)~'/2 dv over the real
v-interval from —1 to 0 is equal to 371 fol (1—s)"1/2572/3 ds = 371 B(1/2, 1/3), and therefore the
integral over the second loop leads to o = (1 — €27 1/3)21/33-1 B(1/2, 1/3). As

B(1/2,1/3) T'(1/2)I'(1/3)T'(2/3)  sin(w/6) _ 312

B(1/2,1/6) T(1/2)T(1/6)T(5/6)  sin(r/3)

and (1 —e?71/3)371/2 = 1 >71/6 we arrive at the conclusion that, if in the above & we choose
the minus sign, the second period is asymptotically equal to €271/¢ times the first period.

Because the differential equation (4.15) for the periods has ¢ = oo as a regular singular point,
and the two solutions A = —1/6 and A = —5/6 of its indicial equation A (A—1)+2X+5/36 = 0 do
not differ by an integer, each solution of (4.15) is of the form ¢~'/%a(1/q) + ¢=5/%b(1/q), where a
and b are complex analytic functions on a neighborhood of the origin, and the solution is uniquely
determined by a(0) and b(0). See for instance Coddington and Levinson [4, Ch. 4, Sec. 4]. It
follows that our first period fits the description for p;(g). The analytic continuation of p;(q), when
the small 1/¢ runs around the origin once, is equal to pa2(q). Because p2(q) asymptotically agrees
with our second period, it is equal to it. Therefore the periods p;(q) and pa(q) described in the
lemma form a Z-basis of the period lattice P(q). This completes the proof of the first paragraph
in the lemma.

For the second paragraph we observe that we took as the center of the discs Dg the pole points.
The line Lgs) \ Lg) is visible in the (uj21, uj2e) chart, where it is defined by ujz; = 0 and is
parametrized by wige. As w121 = us ™' and ujen = uy, it follows that the centers of the discs Dy,
which correspond to uiz2 = 0, correspond to the zeros of u(z) = ¢, (). The line L(()g) \ L:())G)
is visible in the (ug21, ug22) chart, where it is defined by ug2; = 0 and parametrized by ugee. As
up21 = w1+ and ugge = u ! ug, it follows that the centers of the discs Dy correspond to the zeros
of the derivative us(z) = u(z) = dp,, (2)/dz of the solution u(z) = @, (2) of the autonomous
differential equation i = 6 u” + 1.

For large |¢| and z not in one of the aforementioned small discs D;, the solution of the autonomous
Hamiltonian system in Sg \ I is close to the part Lgﬁ) of I. In the (usi1, usi2) chart, LZ(,,G) is
defined by us12 = 0 and parametrized by us;;. The base point (ug11, usi2) = (4, 0) corresponds to
L:(f) ﬂLf), the origin (us311, ugi2) = (0, 0) to Lgf) ﬂLé6), whereas (ug11, us12) = (00, 0) corresponds
to (us21, usz22) = (0, 0) hence to LgmﬁLg). We have ug11(z) = u(z) 3 u(z)? and 4? —4u?—2u = q =
constant, which suggests the rescaling z = 2o + ¢~ /¢ and u(z) = ¢"/3v(¢"/% (2 — 2)). Then
uzyr = v 2 (V)2 0" = 602 4q %3, and (v')? = 403 +1+2¢ 23 v, hence uzy; = 4+v3+2¢ 23 v72.
In the limit ¢ = oo this leads to uz11(t) = v(t) "3 v'(t)? = 4+v(¢t) 3. The equation (v')? = 4v3+1 has
a regular hexagonal period lattice P, and we arrange that v(t) = p(t) is the solution with its poles
at the points of P. As the poles have order two, it follows that the mapping C/P — L§6) t+P—
us11(t) is a sixfold branched covering, where near the point ¢t + P = 0 + P the mapping behaves
as uz11(t) — 4 ~ t° At this ramification point ¢ + P all the six branches come together, where the
image point uzy; = 4 corresponds to the centers of the discs Dg. There are three ramification points
t where v € C\ {0}, v/ = 0, at each of which u};; = 0 and uf;; = 20 30" = 120! # 0, which
means that at each of these ramification points two branches come together. Both ramification
points ly over ug;; = 0, corresponding to the centers of the discs Dy. The only other ramification
points t occur when v = 0. There are two of these and at each one three branches come together.
Both these ramification points ly over ug;; = oo, corresponding to the centers of the discs D;.

The group of deck transformations of the aformentioned branched covering is isomorphic to Z/6 Z
and generated by T : z + P +— €*71/6 z + P_ which is an automorphism of C/P because P has a

Z-basis consisting of p; € C\ {0} and py = e>™'/% p;. The ramification points of order 6 are the
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fixed points in C/P of T, which is the single point 0 + P. The ramification points of order 3 are
the fixed points of T2 which are no fixed points of 7', which are the two points (p1 + p2)/3 + P and
2 (p1+p2)/3+P. The ramification points of order 2 are the fixed points of T3 : t+ P + —t+ P which
are no fixed points of T', which are the three points p1/2 + P, p2/2 + P, and (p1 +p2)/2+ P. O

Figure 4.1 exhibits the complex times z for which the solutions of the autonomous Hamiltonian
system for large ¢ are near the various irreducible components of the singular fiber I(c0) over g = oo.
The solid dots represent the concentric discs D;, 4 < ¢ < 8, centered at the points of the period
lattice P(g) where u; has a pole, with respective radii ~ |¢|~*/(9=9) r; for large finite r;, where the
distance between the points of P(q) the period lattice is of order |g|~%/¢ > |q|7'/5 > ... > |¢| 7.
The solution is near Lél) when z € Dg, and near ng_z)\Lﬁol_Z) when z € D;\D;y; for4 <i < 7. The
double circles represent the concentric disks D1 and D, centered at the zeros of u, approximately
equal to the points (p1(q) +p2(q))/3 and 2 (p1(q) +pa(q))/3 modulo P(q), and of radius ~ ||~/ r

|—1/4

and ~ |q ro for large finite r;, respectively. The solution is near Lgs) when z € D1, and near

Lg) \ ng) when z € Dy \ Dy. The single circles represent the concentric discs Dy centered at the
zeros of ug = 11, approximately equal to the points p1(q)/2, p2(q)/2, (p1(q) +p2(q))/2 modulo P(q)
with radius ~ |¢|~1/3r for a large finite r. The solution is near Log) when z € Dy. When z is in
the complement of all the aforementioned discs, which happens for most of the complex times, the
solution is near the component LgG) of I(00).

Figure 4.2 is a contour plot of the absolute value of the Weierstrass g function defined by the
regular hexagonal lattice generated by 1 and % + % 3 i. The areas close to the lattice points =
the pole points of p(z) should have been blacker than black, because the second order poles are
very big. Instead the computer program has left these areas blank. The solid level curve is the one

of the level at the zeros of ¢'(2), the saddle points of [p(2)]. For our u(2) = g, (2) the lattice

P(z) is asymptotically equal to ¢ /6 times a standard regular hexagonal lattice Py, and therefore
u(z) ~ ¢'/3 ©p, (2). It follows that the pits in the mountain landscape of |u(z)| in which the zeros
of u(z) ly are separated from each other by mountain ridges in which the heights of the passes,
situated at the zeros of du(z)/dz, are of large order |q|'/3.

The following lemma implies that the solutions near the part L:(f) \ (Lég) U Lg) U Lff’)) of I
of the non-autonomous Boutroux-Painlevé system closely follow the solutions of the autonomous
Hamiltonian system.

Lemma 4.9. Let K be a compact subset of Léﬁ) \ (ng) U Lg) U LEE’)) and R € Rso. Then there
exists a neighborhood U of K in Sy and a constant C' such that the distance between x(z) and xo(z)
is < Clzo| ™ g|7V0 if |20] > C, |2 — 20| < R, x0 is a solution of the autonomous Hamiltonian
system such that xo(z0) € U and zo(z) € U, and x is the solution of the Boutrouz-Painlevé system
such that x(z9) = zo(20).

Proof. Lgﬁ) \ (L(()g) ULg) ULEE’)) is visible in the (u311, ugi2) chart, where it is determined by ugjo = 0

and parametrized by usgi;. As ug;; = oo, uz1y = 0, and wugy; = 4 correspond to ng), L(()g), and

Lff), respectively, we keep u31; bounded and bounded away from 0 and 4. We multiply the vector
field by the scalar factor q*l/6 = u3111/2 us12 (uz;; — 4 — 2U3112u3124)*1/6, which amounts to a
time reparametrization along each solution curve. Lemma 4.8 implies that the distance between
the periods of the solutions of the autonomous system is of order |q\_1/ 6. Lemma 4.1 implies that,

along the solutions near ng), we have q(z) = q(z0) (z/20)~6/5+°()
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for |z — 29| << |zp|. This leads to the time rescaled system

dugi/dt = wuz11"/? (12 — 3uziy + 2uz11? uzi2®) (uz1n — 4 — 2uzi1? uzrp?) =0
~  —3uz1"/? (uz1y — 4)°/6, (4.23)
dugia/dt = wuzi1 2 uzia (=6 + uz1y — uzi1? uziz?) (usrn — 4 — 2ugi? ugip?) =0 .

+(52) " uzir Y2 uzie? (uzin — 4 — 2uzi® uze?) 0.

Actually, we have six vector fields, one for each of the sixth roots of 1/¢, corresponding to the

fact that the curves ¢ equal to a large constant pass six times near Lz(,)G) \ (ng) U Lg) U Lf)). The
autonomous Hamiltonian system is obtained from (4.23 by deleting the z-dependent term from
the equation for dugia/dt. As ugia ~ q*1/6 U311*1/2 (us11 — 4)1/6, the difference between the two
vector fields is ~ (52) "' ¢~ /3 uzy; /2 (uzy; — 4)/6 = O(2~1 ¢~/3), and therefore |x(2) — xo(2)| =
O(q~ Y3271 (t — tg)), where t — tg = O(¢"/% (2 — 2)). O

It follows from the first equation in (4.23) that, for the solutions near LE,,G) \ (Lég) U Lg) U Lf’)) of
both the non-autonomous and the autonomous system, the t-times needed to go from a position with
first coordinate ug1; to a position near Lgf) ﬂLég), Léﬁ) ﬁLg), and L:(f) ﬁLf) are asymptotically equal
to the integral of —3~1 U-1/2 (U—4)*5/6 over the U-interval from usi; to 0, 0o, and 4, respectively.
Therefore the distances between the discs D; for x and the discs D; for x( are of smaller order than
|q|'/®. As the distances between the discs for zg are of order |g|'/%, where near Lgﬁ) we have ¢ = d,
see Lemma 4.2, the discs for « have asymptotically the same relative position as the discs for xo.
Therefore Lemma 4.9 leads to a description of the solutions of the Boutroux-Painlevé sytem near [
which closely resembles the description of the the solutions of the autonomous Hamiltonian system
near S9 . Lemma 4.1 implies for the solutions of the Boutroux-Painlevé system near Lgf) we
have q(z) ~ q(20) (2/20)~%/5t°(M) hence the order |¢(2)|~"/6 ~ |q(z0)|~Y¢ (|2|/|20])"/>+°() of the
distances between the discs increases slowly with growing |z| > |z9| >> 1, until the solution has
left the neighborhood of I in Sy where the estimates hold.

Remark 4.10. Boutroux [2, bottom of p. 310] claimed that the quantity (Y')? —4Y3 4+ 12V, see
Remark 2.1, remains bounded when X runs to infinity along any path with bounded argument
not passing through any pole point of Y(X). As the function ¢ has a simple pole at every pole
point of u(z), where u;(z) ua(z) and u;(z)? have poles of order 5 and 4, respectively, it follows from
(2.5) that (Y’)2 —4Y? 4 12Y has a pole of order 5 at every pole point of Y (X), and therefore the
claim of Boutroux can only be valid if the final X stays sufficiently far away from the pole points
of Y(X). Boutroux referred for the proof to [2, §10], which in turn refers back to the estimates on
[2, p. 296, 297]. No proof is given for the existence of paths along which estimates of the form [2,
(17) on p. 296] hold, and of which the concatenation is the desired path in the X-plane running
to infinity. In particular no analysis is given of the existence of paths along which estimates of the
form [2, (17) on p. 296] hold when |D| is large. Boutroux did not give an explicit 6/5 power law
as in Corollary 4.3, although the last term in the right hand side of [2, (36) on p. 321] contains a
factor X ~%/° which Boutroux used in order to argue that the quantity (Y’)? —4Y?3 +12Y remains
bounded.

The asymptotic formula of Joshi and Kruskal [16, (5.18) with ¢ = 6/5] implies that the solution £
of the averaged equation for their quantity E, which corresponds to our energy function F, satisfies
E(2) ~ E(20) (2/20) /52 for large |€]. Joshi and Kruskal [16] did not provide estimates for E
in terms of £. It follows from (3.3) that E has a pole of order one at the pole points z = (, and
Lemma 4.9 together with the paragraph preceding it imply that for the solutions near the infinity
set the pole points form an approximate regular hexagonal lattice with distance between the pole
points of order |E|~Y/6. Therefore we cannot have E(z) ~ E(z0) (2/2)%/5+t°() for all large |E|.
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However, Lemma 4.2 and Corollary 4.3 imply this estimate if z stays away from the pole points at
a distance of larger order than |d|, when |d| ~ |2 E|~! << |E|71/S,

5. NEAR THE EQUILIBRIA OF THE LIMIT SYSTEM

In this section, we consider the Boutroux-Painlevé system near the equilibria of its autonomous
limit and prove several results about the solutions near these equilibria. These are the solutions
called tronquée by Boutroux that are asymptotically free of poles near infinity in certain sectors.
We use classical methods to determine these properties and end with a determination of their
sequences of poles near the boundaries of pole-free sectors.

The limit system

U = ug,

iy = 6ui’+1, (5.1)

obtained from (2.2) by substituting z = oo, has two equilibrium points, determined by u; = € i /v/6,
ugz = 0, where € € {—1, 1}. The linearization of the vector field at these equilibrium points is given
by (du1, dug) + (Sug, 12wy duy) = (Suz, €2+/6 i duy), which has the eigenvalues

Ay = & (24)1/4 gri(1/2=¢/4) (5.2)

with the corresponding eigenspaces determined by dus = A4 duq.

Because the vector field in Sg9(oco) \ I(c0) has no zeros on the pole line Lg(oo), and Sy(oo) \
(I(00) U Lg(00)) is equal to the coordinate neighborhood where u; and ug are finite, these are the
only equilibrium points of the autonomous Hamiltonian system in Sg(co) \ I(c0). The values of
the function ¢ := 2 E in (2.3) at the equilibrium points are equal to —e (2/3)%/?i, and the curves
q = —€(2/3)%?1 are the only singular level curves of the function ¢ in Sg(co) \ I(00). Both these
singular fibers of the elliptic fibration ¢ : Sg(c0) — P! are of Kodaira type I;. The fiber ¢ = oo,
equal to the infinity set I(co) of the Hamiltonian vector field defined by the Hamiltonian function
E = q/2, is of Kodaira type IT*. The configuration of the singular fibers of the elliptic fibration
q: Sg(OO) — P is II* +1I1 +1;.

5.1. Perturbation of a system with a hyperbolic equilibrium point. With the substitution
t = Ay z and an affine change of coordinates (u1, uz) ~ (p*, p~) which maps (e i /v/6, 0) to (0, 0)
and the eigenvectors of the linearization of (5.1) at (¢ i/v/6, 0) for the eigenvalues A, and A_ to
(1, 0) and (0, 1), respectively, the system (2.2) is transformed to a system

dp/dt = v(t™1, p) (5.3)

such that the right hand side satisfies the conditions in Lemma 5.1 below. In the remainder of
this section we discuss arbitrary systems (5.3) which satisfy the conditions in Lemma 5.1. In the
lemmas 5.2 — 5.11, we describe the solutions p(¢) of (5.3) which remain bounded for all ¢ in an
unbounded domain in the complex plane, where the domain is increased step by step.

The conclusions of the lemmas 5.2 — 5.11 follow from O. and R. Costin [7, Th. 1 and 2],
which deals with systems (5.3) in arbitrary dimensions n, where v is complex analytic on an
open neighborhood of (0, 0) in C x C", v(0, 0) = 0, and less special assumptions are made on
Lo := 0v(0, p)/0p|p=o. The proof of [7, Th. 1] uses Borel summation. Our proofs, a sequence of
variations on the method of Cotton, are more classical, where our step by step approach may be
helpful in understanding all the aspects of the final picture. As we only need the case that n = 2
and Lo has the eigenvalues +1, and a wide generalization would require more elaborate notations
and proofs, we did not attempt to write down the latter. In the next paragraph we summarize the
results of the lemmas 5.2 — 5.11.

In Lemma 5.2 we prove that the solutions p(t) of (5.3) which remain small on half lines ¢y +Rx>¢
form a one-parameter family parametrized by the complex number p(tp)~. Lemma 5.3 yields
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unique solutions p4(t) and p(¢) which remain small on horizontal axes in the upper and lower
complex half plane, respectively. In Lemma 5.5 it is established that for every € > 0 there exists
an r > 0 such that the py(t) have a common complex analytic extension to the domain defined
by the inequalities |t| > r and —7/2 + € < argt < 37/2 — ¢, and that this common extension
has an asymptotic expansion in strictly negative powers of ¢ as [t| — oo. Lemma 5.6 states that
there exists an o € C such that for each solution p(¢) in Lemma 5.2 there exist 7,7 > 0 such that
p(t) has a complex analytic extension to a small solution of (5.3) on the domain R, , defined by
[t| > r, —m < argt < 7, and |7(t)| < 1, where 7(t) := e~! t*. Furthemore, there exist unique
C € Candd; € C?, j € Z>o, such that on every subdomain ¥ where e~ is of smaller order
than every negative power of t as |t| — oo the function p(t) — p4(t) has the asymptotic expansion
p(t) — pr(t) ~ C et ™ >0 t~7d;. Here the d; do not depend on the choice of the solution
p(t) in Lemma 5.2. With a similar argument as in the proof of Lemma 5.6, we obtain that in
a subdomain where C1 [t|”% < |e™!| < Cy|t|™ for strictly positive C1, Oy, €1, €2, we have an
asymptotic expansion of the form p(t) ~ >, oz T(t)" ¢t~ pp ; as [t| — co. Here the coefficients

ph,i satisfy pp i = ch ch,i» where the coefficients ¢, ; do not depend on the choice of the solution
p(t) in Lemma 5.3. Lemma 5.8 states that for each i the series Fj(7) := 3", <, 7/ pp,: converges for
sufficiently small |7|, when Lemma 5.11 implies that we have an asymptotic expansion of the form
p(t) ~ > s Fi(T(t))t7" as [t| — oo in a domain where Im¢ > 0 and Fy(7(t)) remains bounded,
extending far into the domain where p(t) is bounded away from zero. This expansion will lead
to the asymptotic determination of [7, Proposition 15] of the sequence of poles of the truncated
solutions of (1.1) in Lemma 5.18. At some places our statements are more precise and our proofs
more complete than those in [7].

Lemma 5.1. Assume that v = (v, v™) is a C?-valued complex analytic function on an open
neighborhood D of the origin in C® such that v*(u, p) = +pT + w(u, p), w(0,0) = 0, and
ow(0, p)/dplp=o = 0. Here p = (p™, p~) € C% and ||p| := max{|p*|, [p~|}. Then there exist
strictly positive real numbers &g, €y, C1, Co, Cs, and Cy such that |w(u, p)|| < Cy||p||* + C2 |ul,
and ||Ow(u, p)/0p|| < Cs|p|l + Cu|u| if ||p|| < do and |u| < €. Here the last condition implies the
preceding one for C1 = C3/2 and a suitable Co. In the sequel we will take D equal to the set of all
(u, p) € C x C? such that |u| < ey and ||p| < 8. For solutions p of (5.3) we will always require
that |t| > 1/eg and ||p(t)|| < do for all t in the domain of definition of p.

Proof. We have |[w(u,p)| < ||lw(u, p) —w(0, p)|| + ||w(0, p)|| and, with the notation drw(u,p) =
ow(u, p)/Op, ||Ow(u, p)|| < ||Ow(u, p) — d2w(0, p)|| + ||O2w(0, p)||. Because w(0, 0) = 0 and
Ow(0, 0) = 0, an application of a Taylor expansion with estimate for the remainder term to each
of the terms between the norm signs yields the estimates in Lemma 5.1. g

Lemma 5.2. In the situation of Lemma 5.1, let 0 < 0 < &g, 0 < € < €, tg, a~ € C, [t| > 1/e for
everyt € T :=to + Rxg, |[a™| + C1 6%+ Cae < 8, and C36 + Cye < 1. Then there exists a unique
at = a:(;a_ € C such that the solution p(t) of the differential equation (5.3) with p(to) = (a™, a™) is
defined for allt € T and satisfies ||p(t)|| < § for everyt € T. For any 0 < § < min{dy, 1/C4, 1/Cs},
the set of all (to, a™) for which the above conclusions hold is a non-empty open subset of C* on which
the function (tg, a=) — a;a, is complex analytic. Similar conclusions hold with to +R>q replaced
by a curve T + 1 o(7), where T € [Rety, oo, o : [Rety, co[ = R is continuously differentiable with
a bounded derivative, and the curve stays sufficiently far away from the origin.

Proof. We apply the method of Cotton [8].
The system (5.3) can be viewed as an inhomogeneous system of linear differential equations with
w(t™1, p(t)) as the inhomogeneous term, and therefore it is equivalent to the system of integral
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equations

t
p(t)F = =) p(r)E +/ 5 (s p(s))*t ds. (5.4)
T
Let X' denote the set of all continuous functions p : T — C? such that If (t71, p(t)) € D for every
t €T and t — w(t™', p(t))* is bounded on 7. If the solution p(t) of (5.3) belongs to X, then we

can let 7 € T run to infinity in the equation (5.4) for £ = +, and obtain

+oo
p(t)F = — /t e w(s~L, p(s))* ds, (5.5)

where f;roo indicates the limit for T'> 7 — oo of ftT. Conversely, if a= € C and p € X, then the
equations (5.5) and

t

p(t)” =e "t a” +/ e tw(s™h p(s))” ds (5.6)
to

for all ¢ € T imply that p(t) is a solution of (5.3) such that p(tg)” = a~.

Let F' denote the integral operator which assigns to each p € X' the function F(p) : T — C? such
that, for each t € T, F(p)(t)" and F(p)(t)~ are equal to the right hand side of (5.5) and (5.6),
respectively. In the situation of ii), let X denote the set of all continuous functions p : T — C?
such that ||p(¢)|| < 6 for every t € T. Then X C X, X is a complete space with respect to the
metric d(p1, p2) := supser ||p1(t) — p2(t)||, and the assumed estimates imply that

IF(p)t)T] < /Oo e (C 8%+ Che) dr < 6, (5.7)
0
[F(p)t)~| < et la |+ /Ooo e " (C1 6% + Cye) dr < 6, (5.8)
[F(p1)(t)* = F(p2)(t)*] < /OOO e " (C36 + Cye)lpi(to +7) — pa(to + )| dr
< (C38+Cye€)d(p1, p2) (5.9)

for every p, p1, p2 € X and ¢t € T. Therefore F(X) C X and F : X — X is a contraction, with
contraction factor < C3d 4+ Cyge < 1, when the contraction mapping theorem implies that F' has a
unique fixed point, a unique p € X such that F(p) = p. It follows that there is a unique solution
p(t) = pyy, - (t) of (5.3) on T such that p(tg)” = a~ and ||p(t)|| < J for every t € T. As the
arbitrary solutions p(t) of (5.3) are uniquely determined by their value p(to) at t = t¢, it follows
that for every solution p(t) of (5.3) on T with p(tg)~ = a~ and p(to)™ # a™ (to, a™) 1= pyy o (to) T
there exists ¢t € T such that ||p(¢)|| > §. The assumptions remain verified upon small perturbations
of tp and a™, and an application of the implicit function theorem yields that the solution p = py .-
depends in a complex analytic way on (tg, a™). This completes the proof of Lemma 5.2. O

Lemma 5.3. In the situation of Lemma 5.1, let 0 < § < 8y, 0 < € < €, C16% 4+ Cre < 0,
and C30 + Cye < 1. Then there exists a unique solution p(t) = pt(t) and p = py(t) of (5.3) on
R+1i/ epsilon and R —1 /e such that ||p(t)|| < 6 for everyt € R+1/e and t € R—1 /e, respectively.
Similar conclusions hold with R £ 1 /e replaced by a curve 7 +10(T), where 1 € R, 0 : R — R s
continuously differentiable with a bounded derivative, and the curve stays sufficiently far away from
the origin.

Proof. We apply the variation on [8, p. 483] of Cotton’s method.
Let I = R +1i/e, and ) the set of all continuous functions p : I — C? such that (71, p(t)) € D
for every t € I and t — w(t~!, p(t)) is bounded on I. If the solution p(t) of (5.3) belongs to Y,
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then we can let I 3 7 — 400 in the equation (5.4) for + = + and let I 5 7 — —oo in (5.4) for
+ = —, and obtain (5.5) and

p(t)” = / S aw(s™h p(s))” ds, (5.10)

respectively. Conversely, if p € Y satisfies (5.5) and (5.10), then it is a solution of (5.3).

Let G denote the integral operator which assigns to each p € Y the function G(p) : I — C?
such that, for each t € I, G(p)(t)™ and G(p)(t)~ are equal to the right hand side of (5.5) and
(5.10), respectively. Let Y be the set of all continuous functions p : I — C? such that ||p(t)|| < §
for every t € I. Then Y C ), Y is a complete space with respect to the metric d(p1, p2) =
supserr ||p1(t) — p2(t)||, and estimates analogous to (5.7), (5.8), and (5.9) imply that G(Y) C YV
and G is a contraction in Y with contraction factor < C36 + Cye < 1. This time the contraction
mapping theorem yields a unique solution p : I — C2 of (5.3) such that ||p(t)|| < J for every t € I.
This completes the proof of Lemma 5.3. O

Remark 5.4. According to Anosov [1, §4], “Every five years or so, someone “discovers” the theorem
of Hadamard and Perron, proving it either by Hadamard’s method or by Perron’s.” The theorem
alluded to is the stable manifold theorem in dynamical systems, “Hadamard’s method” refers to
Hadamard [12], and “Perron’s method” to Perron [22]. However, Perron [22, p. 130] made perfectly
clear that he used the method of Cotton [8]. The paper [8] seems to be little known, for no good
reason.

Lemma 5.5. For each m, n, r € Ryg such that m > n, let 1 = Ny nr : R = R be defined by
n(r) = (12 = Y2 when || < rm (1 +m?) Y2, n(r) = r (1 +m>)Y2 — m|7| when rm (1 +
m?) 72 < 7| <r(1+m®)Y2/(m —n), and n(t) = —n|7| when || > (1 +m>)Y2/(m —n). Let
V:={teC|Imt>n(Ret)}, see Figure 5.1.

If r is sufficiently large, then all solutions py(t) in Lemma 5.3 have a common extension to a
unique solution of (5.3), also denoted by pi(t), on the union V of V with all their domains of
definition. There exists j — c; : Zso — C?, such that the solution p(t) = p+(t) of (5.8) on' V has
the asymptotic expansion

p(t) ~ Z t7 ¢ (5.11)

ast € V, |t| — oco. The asymptotic expansion (5.11) can be differentiated termwise in the sense
that

dp(t) ~— i1

ast €V, |t| = oo. All the coefficients c¢; are uniquely determined from the equations obtained by
substituting (5.12) and (5.11) in the left and right hand side of (5.3), respectively, and using the
POWET Series erpansion

’U(t_l, p) = Z t_i (p—i_)j+ (p_)j7 Vijy,j_s  Vija,j- € (CQ. (513)

i7j+7j*€ZZO
1
ov(0,p) Ov(u, 0)
c] = — —
o |0 ou

Applying the complex conjugation t — t, we obtain similar conclusions for the solutions py(t) in
Lemma 5.3.

We have

(5.14)

u=0
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Proof. For each t € V we define half-lines Lf emanating from ¢, as follows. If Ret > 0, then
L :=t+Rsg. If 0 < —Ret <m Imt, then L := {t + 7 —i(Ret/Imt)7 | T € ]R>0} If Ret <0
and m Imt < —Ret, then L) .= {t + 7 +im7 | 7 € R>o}. Finally, L; := R(L (t)) for every
t € V, where R is the reflection ¢ — — Ret + i Im¢.

It follows that, for every t € V and s € L, [t| > r and |s| > (m —n) (1+m2)~ /2 |t|. See Figure

5.1.
On the space of functions p : V' — C2 such that p(t) = Ot /?) ast € V, |t| — oo, we
use the norm ||p|| := sup,ey [t[Y2|p(t)||. Let r > 1/ep and 0 < § < /28y, and Z the space

of continuous functions p : V' — C2, complex analytic on the interior of V, such that |[p|| < 4.
For each p € Z we define G(p) as above, where the integrals in the right hand sides of (5.5)
and (5.10) are over L;r and L; , respectively. Using the Cauchy integral theorem, we obtain that
G(p) is a complex analytic function on the interior of V, with derivative equal to dG(p)(¢t)*/dt =
+G(p)(t)* + wF(t71, p(t)). Because the velocities of the parametrizations of LE in the previous
paragraph are at most (1 4+ m?)'/2, we have the estimates

GEOF < (L +m*)? sup (C18%+ ) fs| ™,
selL;

DM = G)MF| < (1+m*)"2 sup (Cyls|™ + Cals| ™) llp1 = pa| [s]7/
seL;

for every p, p1, p2 € Z and t € V. Because |s|~" < (m —n)~' (1 4+m?)Y/2|t|=! and |s| ! <! for
every s € L, it follows that ||G(p)|| < (1 +m?)3* (m —n)~Y2(C1 6% + Cy) r~/2 and ||G(p1) —
G(p2)|| < (14+m2)3/* (m—n)"1/2 (C3r=24Cyr=1) ||p1—p2||. Therefore, if r > 1/¢p, 0 < § < /26y
(14+m?)3/4 (m—n)~Y2(C1 6%+ Cy)r~1/2 < § and (1 +m2)*/* (m —n)~ 2 (Cyr~ 12+ Cyr~ 1) < 1,
which for any m, n, § € Ry can be arranged by taking r sufficiently large, we have G(Z) C Z,
and G : Z — Z is a contraction. This time the contraction theorem implies that there is a unique
solution p = py : V — C? of (5.3) such that |[p(t)|| < & [t|~1/2 for every t € V.
For any a € C, successive integrations by parts yield the asymptotic expansions

oo 0 t o0
/ ™% 57 ds ~ Z (—=1)Fmpt7¢7%  and / 5T ds ~ Z TRt Ok
t k=0 e k=0

for |t| — oo, where 7y, := H?;é (a+j). This is one of the oldest examples of asymptotic expansions
which do not converge. Substituting the inequality [w(s™!, p(s))|| < Cyllp(s)||* + C2|s|7! <
(C1 62 + Cy) |s|™! in the integrals in the right hand sides of p(t)* = G(p)(t)*, we obtain that
p(t) = O(t™ 1) ast € V, |t| — oo. Substituting

N—-1
t7ej+00™) (5.15)
=1

.

for ¢ € V, the power series expansion w(u, p) =32, ;. i >0 Wi, ji,j u' (pt)i+ (p~)-, and u =t~
p = p(t) in the integrals in the right hand sides of p(t)* = G(p)(t)*, we obtain (5.15) with
N replaced by N + 1 and a unique ¢y € C2. This inductive procedure yields that p(t) has
an asymptotic expansion of the form (5.11) for t € V, |[t| — oco. The substitution of u = ¢!
and p = p(t) in the power series expansion of v(u, p) implies that there exist b; € C? such that
Ppt)=o(t™Y pt) ~ >0, t7 biast € V, |[t| = oo, when ft ) ds+p(to) = p(t) ~ > 724 t~I¢;
yields that b; = —(i — 1) ¢;—1 for every i € Z>;. This proves (5 12) for p = py.
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We will prove next that all solutions p; in Lemma 5.3 and py have a common extension to a
solution of (5.3) on V. The conditions in Lemma 5.3 hold if and only if

e < min{eg, 1/Cy, 1/4C1 Ca} and 0_(€) < § < min{dp, d+(€)},

where d4(€) := (14 (1 —4C; Cy€)'/?)/2Cy. If in the proof of Lemma 5.3 we replace Y by the
space Y, ;5 of all continuous functions p on the upper half plane U, := {t € C | Im¢ > 1/e}, complex
analytic in the interior of U. and with ||p(t)|| < 0 for all t € U, then G is a contraction on Y 5
and therefore has a unique fixed point p. s € Y 5. The Cauchy integral theorem implies that the
restriction of p, 5 to the interior of U, is a complex analytic solution of (5.3). As the restriction of
Pe,s to R +1 /e is a fixed point of G : Y — Y, and the latter is unique, and equal to the solution
py in Lemma 5.3, it follows that the solution py(t) in Lemma 5.3 extends to a solution p = p; . of
(5.3) on U, complex analytic on the interior of U,, and satisfying ||p(¢)|| < ¢ for every ¢t € U.. Note
that if 0 < ¢ < ¢, then the conditions in Lemma 5.3 hold with € replaced by €, and the restriction
to Ug of py, is equal to py .

If p(t) is any solution of (5.3) on some upper half plane U, and p(t) — 0 as t € U, [t| — oo,
then there exist J, € as above such that U, C U and |[p(t)|| < ¢ for every t € Ue, and therefore
plu. = D1, As the sector-like domain V' contains an upper half plane Ue, and py(t) = 0ast eV,
|t| = oo, it follows that (pv )|y, = pt,e. This completes the proof that all solutions py in Lemma
5.3 extend to a common solution p(t) of (5.3) on V, of which the restriction to V' is equal to py,
and therefore p has all the properties mentioned in Lemma 5.5. [l

Lemma 5.6. In the situation of Lemma 5.1, let a denote the right lower corner in the 2 X 2-matriz

2 2
A CY ) ;900 p) U(Ozf DI . (5.16)
Ou dp w=0, p=0 Op =0
with ¢ defined by (5.14). Forn, r € Rs, let
Ry, ={teC]| [t|>rand|e "t <n}, (5.17)

where t* = e*1°8! 'logt = log|t| + iargt, and —m < argt < m. For every solution p(t) = py, o (t)
and p(t) = pr(t) of (5.3) in Lemma 5.2 and Lemma 5.5, there exist n, v € Rsq such that p(t) extends
to a solution of (5.8) on Ry ., which extension is again denoted by py, o~ and py, respectively. There
exist j > dj : Z>o — C% with dy = (0, 1), and C = Ciy.a— € C, such that on any subdomain 3 of
R, » on which Ret/log |t| = 400 ast € ¥, |[t| = oo, we have the asymptotic expansion

p(t) —py(t) ~ C e "t "t d; (5.18)
j=0

ast € X, [t| — oco. The asymptotic expansion (5.18) can be differentiated termwise in the sense
that

Pt) =ph(t) ~ C e 1Yyt (—dj+ (= j+1)dj1) (5.19)
5=0

ast € S, |t| = oco. All the coefficients d; are uniquely determined from the equations dy = (0, 1)
and —dj+ (o —j+1)dj_1 = >"]_ Lidj—; for all j > 1, where the 2 x 2-matrices L; are determined
from the asymptotic expansion

ov(t™t, p) <
L(t) = ———— ~> L (5.20)
Ip p=pt(t) =0
ast €V, |t| — co. Here
0v(0, p) 1 0
Ly := = 21
0 Op p=0 ( 0 —1 > ’ (5 )




and Ly is given by (5.16). The asymptotic expansion (5.11) for p(t) = pt(t) holds for t € X,
|t| — oo, and can be differentiated termwise there. In combination with (5.18), (5.19), it follows
that p(t) = py,. - (t) has the same asymptotic expansions (5.11), (5.12) fort € ¥, |t| — oc.

The complex number C' = Cy, ,—, determined by

lim ' t7% (p(t) — p1(t)) = (0, O),
teyx, |t|—oo

depends in a complex analytic way on (tg, a=). Conversely, for every C € C there exist n, r € Rsg
and a unique solution p = pc : Ry, — C? of (5.3) such that (5.18) holds, where pc(t) depends
in a complex analytic way on C. If we choose ty such that ||p(to)| is sufficiently small, then
P =Dy, a- With a= =p(to)~, and a~ > Cy, .- 15 a complex analytic diffeomorphism from its open
domain of definition onto an open subset of C. In particular we have p(t) = py(t) if and only if
C = 0 if and only if there exists a sequence t; in C such that |arg(t;)| < w, e7% £;* — 0 and
eli t;7 (p(t;) — pr(t;)) = 0 as j — .

Finally, for every C € C and & > 0 there exist n, r € Rsq such that

[e" 7% (pc(t) —p(t)) = (0, C)|| < e (5.22)

for every t € R, .. In particular, if C # 0 and we choose 0 < € < |C|, then pc(t) is bounded
away from zero on the set of all t € C such that |e™t t*| = n, |t| > r, and Imt > 0, the part of
the boundary of Vy, » in the upper half plane and sufficiently far away from the origin. A similar
statement holds in the lower half plane with py(t) replaced by p|(t).

Proof. Let W be a suitable subdomain of V and p : W — C? a solution of (5.3). Then y(t) :=
p(t) — pr(t) is a solution of the differential equation

dy/dt = f(t~", y) = vt~ pr(t) +y) — (™", pr(1)), (5.23)

where (¢, y) — f(t71, y) is a C?-valued complex analytic function on W x B, if B := {y € C? |
lyll < 64}, where &) := o — supyey |[p+(t)]| > 6o — 6 7~/2. Furthermore,

&Ly~ Yt fiy) (5.24)
=0

fort € V, |[t| = oo, where each of the functions f; is complex analytic on B. We have fit7t,0)=0,
hence f;(0) = 0 for every j. It follows from (5.20) that 0f;(y)/0y|y—0 = L; for every j € Z>¢. All
aforementioned asymptotic expansions are uniform in y € B, and can be differentiated termwise,
arbitrarily often, with respect to ¢, y™, and y~.

If A(t) = Z;V;Ol t=7 Aj, where the A; are 2 x 2-matrices with Ag = 1, then the substitution
y = A(t) z transforms the linear differential equation dy/dt = L(t)y into the linear equation
dz/dt = M(t) z, where L(t) A(t) = A'(t) + A(t) M(t). It follows that M(t) ~ > 22, t=F My,
where, for each | € Z>g

Z LJAk = (1 —l)Al,1 + Z Aij
k=l J+k=l

Here A; =0 when j < 0or j > N. It follows that My = Lo as in (5.21), when the linear mapping
A; — Lo A; — A; My is surjective from the space of all 2 x 2-matrices A; onto the space of all
antidiagonal 2 x 2-matrices, with kernel equal to the space of all diagonal 2 x 2-matrices. It follows
by induction on [ < N — 1 that, given the A; and M; for j <[ — 1, there is a unique antidiagonal
matrix A; such that the matrix M is diagonal. In other words, with the substitution y = A(t) z
the differential equation (5.23) is equivalent to the differential equation

dz/dt = gt 2) .= A@t) " f(t71, A(t) 2) — A(t) L A'(t) =, (5.25)
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where g(t~!, z) has an asymptotic expansion for |t| — oo of the same nature as f(t~!, y),

N—-1
gt ™t z) = Z t™9 Mjz+h(t™ 2), (5.26)
=0
M 2) = O el +O(l1l),  and (5.27)
-1,
ME 2L~ o)+ o(el) (5.28)

as t € V and [t| = oo, where M; is a diagonal 2 x 2-matrix for each 0 < j < N — 1. We have
My = Lo is as in (5.21), and M; is equal to the diagonal part of the 2 x 2-matrix L; in (5.16).
Let uj and 1y denote the left upper and right lower corner of the diagonal matrix M;, where

uoi = *1 and pu; = a. Write

OF(t) = eft 4 gE(t), where
N-1 ‘

05(t) = exp | Y pft'I/(1—j)]. (5.29)
j=2

Note that (5.29) implies that ©F(t) ~ e* # for large |t|. The solutions ((¢) of the homoge-
neous linear differential equation % = Z;y:_ol t=4 M; ¢ are given by ((t)* = ©F(t) ©F (1)1 ((1)*.
Substituting (5.26) in (5.25), we obtain an inhomogeneous linear differential equation for z with
h(t~%, 2(t)) as the inhomogeneous term, when Lagrange’s method of variation of constants yields

the integral equations

_ ety "ot
- O%(r) r OF(s)
The reasoning leading to (5.5) and (5.6) this time leads to the conclusion that z(¢) is a uniformly

small solution of (5.25) on T' := ¢y + R> such that z(tp)” = b™, if and only if 2(¢) is a uniformly
small continuous function which satisfies the integral equations

2(t)* 2(1)F + h(s™t, z(s))* ds.

too 9+
z@+:H@mﬁe:—Z g%gmyﬂdﬁﬁds (5.30)
and
T = z T = 67(2&) - t @7@) s 2(s))” ds
()7 = HEW = gt + | g i =) ds (5.31)

Assume that N > 1, v > [b= /O~ (to)|. In the next paragraphs we will prove that, if sup,cp [t}
and supcp |e”" t] are sufficiently small, then H is a contraction in the set Z of all continuous
functions 2z : T — C? such that ||z]| := sup,ep e t7||z(t| < v, with respect to the metric
(21, 22) = [|z1 — 22|

If in the integrand in (5.30) we substitute s =t + 7, 7 € R>(, then (5.27) implies that | e’ t~¢|
times the absolute value of the integrand is estimated from above by a uniform constant times

b+ T - -
4?ﬂanﬂ(u+f|N+¢e““°@+TWMADH4L

In view of (5.28), a similar estimate with the last factor ||z|| replaced by |z1 — 22| holds for
let t=| |H(z1)(t)t — H(z2)(t)"|. The integral of 7 + e 27 \(HTT)O‘_“T] over R>( is uniformly
bounded if the distance from T to the origin is bounded away from zero. As |s~!| and |e™* 5%
are uniformly small for all s € T, there exists a 0 < 3 < 1 such that |e t~||H(2)(t)"| <+ and
let 7@ |H(21)(t)T — H(22)(t)*| < Blz1 — 22| for all z, 21, 22 € Z and all t € T.
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In (5.31), | e* 72| times the absolute value of the integrand is estimated from above by a uniform
constant times (|s|™ + |e™* s|)||z||. A similar estimate, with the last factor |z|| replaced by
|21 — 22|, holds for the integrand in the integral formula for |e® t=%||H (21)(t)” — H(22)(t)"|. Let
N >1and vy > |b= /O (to)|. As |s7!| and |e™® 5®| are uniformly small for all s € T, there exists
a0 < B < 1such that |e! t=%||H(2)(t)"| <~ and |e t7*||H(21)(t)” — H(22)(t)"| < B |21 — 22|
for all z, 21, 220 € Z and all t € T. This completes the proof that H(Z) C Z and H : Z — Z is
a contraction with respect to the metric (21, 22) + sup;ep | € t7%| [|21(¢) — 22(¢)||. Because Z is
complete with respect to this metric, it follows that there is a unique solution z = 2, - : T — C?
of (5.25) such that z(tg)” = b~ and ||2(t)| < v|e™t t¥| for every t € T. Because the latter estimate
implies that ||2(¢)| is uniformly small, the solution p(t) = p4(t)+A(t) z(t) of (5.3) is uniformly small
on T, and therefore equal to the solution py, ,-(t) in ii), with a™ = (py(to)™ + A(to) 24,4 (to)) ™
and b~ = A(to) " (pyy. a- (to) — pt(to))~. The assumptions remain valid upon small perturbations
of tg and b~, and an application of the implicit function theorem yields that the solution z =
21,5~ depends in a complex analytic way on (fo, b~), when b~ + a~ is a local complex analytic
diffeomorphism depending in a complex analytic way on tg.

The estimates in the previous paragraph imply that the integral ftzo O~ (s)"th(s7!, 2(s)) ds is
absolutely convergent, when (5.31) implies that ©~(¢)~! z(t)~ converges to

o0
C:=0"(ty) b + O (s) " h(sL, 2(s)) ds (5.32)
to

ast =to+ 7, T — +00. Because O~ (t) ~ e~! t*, the function e’ t~ z(¢)~ has the same limit. The
previous estimates for z(t)* = H(z)(#)" yield that e’ t=% z(¢t)™ converges to zero, and it follows
that e’ t7% z;, ;- (t) converges to the vector (0, C') € C? which depends in a complex analytic way
on (to, b~) and on (to, a~). Because A(t) converges to the identity matrix, also e’ ¢~ (py, o (t) —
py(t)) = A(t) (€' t* 2y, - (t)) converges to (0, Cy, o) as t =to+ 7, T — +o0.

As b~ = z(t9)~, and the previous remains true if we replace typ by any ¢t € T' = to + R>p, the
equation (5.31) implies the integral equation

z(t)” =H(2)(t)” =0 (¢) (C — /too @*(3)*1 h(sil, z(s))” ds> . (5.33)

If H(z)(t)" := H(z)(t)", then then for every C € C the integral operator H = H¢ is a con-
traction in Z, if ¥ > |C| and the numbers sup;cp [t} and sup,cq |~ 2| are sufficiently small.
The unique fixed point z = z¢ of He is equal to the unique solution z(¢) of (5.25) such that
supser | € T |z < v, and €' t*2(t) — (0,1) as t € T, |t| — oo.

Let R = R, be as in (5.17). If v > |C| and n, r~! are sufficiently small, then the integral
operator H in the previous paragraph defines a contraction in the complete space of all continuous
functions z : RNV — C2, complex analytic in the interior of R, such that |e! t=2|||z(¢)|| < v
for every t € RNV, with respect to the metric (21, 22) — supycray | €' 7| ||z1(t) — 22(¢)||. For
every to € RNV the restriction of z to T := tg + R>¢ is equal to the unique fixed point z¢ of the
integral operator H : Z — Z in the previous paragraph, and therefore zo : T — C? extends to
a solution of (5.25) on the much larger domain R NV, which is denoted by the same letter and
satisfies sup,cpay | €f 7 [|2(8)]] < 7.

Susbstituting an asymptotic expansion z(t) ~ e™t t* Z?;é tJejfort €, |t| — oo in the right
hand side of z(t) = H(z)(t) yields a similar expansion with k replaced by k + 1, which procedure
stops at k = N —1. In the induction step it is used that in ¥ we have ||z(¢)|| = O(| e’ t*|) = O(|t|=M)

N=1 4.
j=o0 t d;, where the
d; satisfy the equations dy = (0, 1) and —d;+(a—j+1)dj—1 =Y 1y Lidj—; for 0 < j < N—1. For
j =1 we have —d; +ady = Lo dy + L1 do, which implies that (L; —«) (0, 1) is in the image C x {0}
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of Ly + 1, and we recover that a has to be equal to the right lower corner of L. If j > 1, then the
equation —d;j+(a—j+1)d;—1 = Lod;j+>_7_; L;d;_; determines d; only modulo the kernel {0} x C
of Ly + 1, but the equation with j replaced by j + 1 implies that (L1 —a +j)dj + > .75 Lid;—;
belongs to the image C x {0} of Lo+ 1. As the right lower corner of L; —a+j is equal to j # 0, the
space (L1 —a+ j)({0} x C) is transversal to C x {0}, and it follows that d; is uniquely determined
by the j-th equation and the (j 4 1)-st equation. Because we can take N arbitrarily large, and the
dj, 0 < j < N —1donot depend on N, this implies (5.18), where (5.19) follows from a substitution
of (5.19) in y/(t) = (£, (1)), y(t) = p(t) — py (1)

This completes the proof of the lemma in the upper half plane, where (5.22) follows from the
aforementioned estimates for the integrals [*° ©F(s)™' h(s™!, 2(s))* ds. In turn (5.22), in com-
bination with py(t) = O(t™1), implies that pc(t) is bounded away from zero on the part of the
boundary of V,, ;- in the upper half plane and sufficiently far away from the origin. The statements
regarding the behavior in the lower half plane follow by replacing pt(t) by p;(t). Note that in the
lower half plane pq(t) is equal to one of the solutions py, ,-, and therefore py(t) extends from V' to
a domain of the form VU R, . O

Remark 5.7. Because p|(t) is a solution of (5.3) as in Lemma 5.2, it follows from Lemma 5.6 that
there is a unique constant S € C such that

pu(t) —pr(t) ~ et t*(0, S) (5.34)

as Ret/log|t| — oo, |t| = oo, where S = 0 implies that p|(t) = py(¢) for all t € R, , with n and
1/r sufficiently small. Because this is a nonlinear analogue of the phenomena described by Stokes
[26], we follow Costin [5, Th. 1] in calling S the Stokes constant pertaining to the comparison in the
right half plane of the solutions p|(t) and p; of (5.3). Generically the Stokes constant is nonzero.
This happens in particular for the Boutroux-Painlevé system, see Lemma 5.14 below.

Furthermore, for every solution p(t) = py, ,-(t) of (5.3) in Lemma 5.2 there are unique Cy, C| €
C such that

p(t) = pp(t) ~ e 170, C) and  p(t) —py(t) ~ e t7(0, C) (5.35)

as Ret/log |t| — oo, |t| — oo, where conversely the solution p(t) of (5.3) is uniquely by any of the
two asymptotic identities in (5.35). Because (p(t) —pt(t)) — (p(t) —py(t)) = py(t) — p1(2), it follows
that

Cy—-C =8 (5.36)

Conversely, every complex number occurs as C4 in (5.35) for a unique solution p(t) of (5.3) in
Lemma 5.2. The following statements are equivalent:

i) C) = C4 for some solution p(t) of (5.3) in Lemma 5.2.
i) S'=0.
ili) €} = C; for every solution p(t) of (5.3) in Lemma 5.2.
iv) p,(t) = p4(t) for all ¢ in a domain of the form R, ,.

Recall the definition of uj" as the upper left corner of the matrix L; in (5.16). In analogy with
(5.34), the substitution ¢ — —t leads to the existence of a unique constant S_ € C, the Stokes
constant pertaining to the comparison of the solutions p|(t) and py(t) in the left half plane, such
that

put) — pr(t) ~ et t4 (S, 0) (5.37)

as Ret/log|t| = —oo, [t| = oo. Here S_ = 0 implies that p|(t) = p4(t) for all t € —R, , with
n and 1/r sufficiently small. We have S_ = S = 0 if and only if p+(¢) and p;(t) have a common
extension to a single-valued solution p(t) of (5.3) on a neighborhood of ¢ = oo such that p(t) — 0
as t — oo.
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Write 7(t) = e™* t*, and let

pformal(t) = Z T<t)h tii DPh,i (538)
h,i€Z>q

be a formal power series in 7(¢) and ¢!, with coefficients Dh,i € C2. The termwise derivative of the
right hand side of (5.38), where d(r(t)"t=%)/dt = —h7(t)"t~" + (ha — ) 7(t)"t~*1, is a formal
power series in 7(¢) and ¢!, which by definition is the derivative of pgomai(t) with respect to t.
Substitution of pgormai(t) in the expansion (5.13) yields a formal power series in 7(¢) and ¢t~!, which
by definition is v(t™1, Psormai(t)). The formal solutions p(t) = P germai(t) of the differential equation
(5.3) are obtained by equating the coefficients of 7(t)" ¢t~

Let T' be an unbounded subdomain in the complex upper half plane of the domain R, , in Lemma

5.6, and assume that there exist strictly positive constants Ci, Cs, €1, €2 such that
Crlt[™ < |r(@)] < Co ft|

for every t € T. In such a domain any formal series (5.38) is an asymptotic series. The proof of
Lemma 5.6 yields that the solutions pc(t) in Lemma 5.6 have a formal series piormar, ¢(t) as their
asymptotic expansion in 7', in the sense that for every N there exists an m such that po(t) —
> h<m,i<m Tt pp; = Ot V) ast € T, |t| — oo. The formal series piomar, c(t) is a formal
series solution of the differential equation (5.3) such that pp o = 0 and po,1 = (0, C). As will
be verified in the proof of Lemma 5.8 below, a formal series solution (5.38) of (5.3) is uniquely
determined by the initial consitions pg o = 0, po,1 = (0, C), and pp,; = ch cp,i for uniquely
determined universal coefficients ¢;, ; € C2. This is the formal solution in O. and R. Costin [7, (4),
(5)] for n =2 and C = (0, C'), where the latter implies that only the terms with k = (0, ) appear
in loc. cit. The proof of Lemma 5.8 also yields an independent verification of the existence of the
formal series solution of (5.3) such that pg o = 0 and pg,1 = (0, C).

In the subdomains ¥ in Lemma 5.6, the function 7(¢) is of smaller order than t~* for every
i € Z>0, when (5.38) only is an asymptotic series in the above sense if all terms with A > 0 are
deleted, and pformal, ¢(t) reduces to the right hand side of (5.11), which is independent of C. For
pc(t) — py(t) we have the asymptotic expansion (5.18) in ¥, where the right hand side is equal to
(5.38) with only the terms with h = 1 retained.

If U is an unbounded subdomain of R, , in the upper half plane on which 7(t) — 0 and ¢~¢ =
o(r(t)) as t € U, [t| — oo, then piomay, c(t) is only an asymptotic series for ¢ € U, [t| — oo if
all terms with ¢ > 0 are deleted, when pc(t) is asymptotically equal to this asymptotic series for
t € U, |t| = oo. For t on the boundary of R, , and |t| > r, the absolute value of 7(t) is equal
to the constant 7, piormal, c(t) is not an asymptotic series in the above sense, and we only have
the estimate (5.22). As T is a transitional region between the subdomains S on the one hand and
the subdomains U and the boundary of R, , on the other, the formal series pormal, c(t) and the
asymptotic expansion pc(t) ~ Deormal,c(t) as t € T', [t| — oo could be called the transitional series
and the transitional expansion, respectively.

Lemma 5.8 below, which follows from O. and R. Costin [7, Th. 2(i) and Sec. 6.9], yields that
for each i € Z>¢ the series (5.39) converges for small |7|. This allows to formulate the asymptotic
expansion (5.49) for the solution pc(t) of (5.3). The domain of #’s where the asymptotic expansion
(5.49) holds extends well beyond the part R] , of the boundary of R, , where Im¢ >0, 7(t) = n,
and [t| > r. Along R; ., Lemma 5.6 yielded that pc(t) remains bounded away from zero, but did
not provide an asymptotic expansion for [¢| — co.

29



Lemma 5.8. Let C € C. Then there is a unique formal solution (5.38) of (5.3) such that py,o =0
and p1,0 = (0, C). For each i € Z>q the series

Fi(r) =Y 7"pn; (5.39)
h=0
converges for T in a neighborhood of 0 in C, where the complex analytic functions F; satisfy
dF
—7 (;’(T) = v(Fp(7)) = v(0, Fy(r)) and (5.40)
T
dF; dF;_ .
—T dq(-T) = P(Fy(7), ..., Fi(1)) —arT (171_(7—) +(i—1)F_1(7) (5.41)

fori € Zqy. Here Pi(Fy, ... F;) denotes the coefficient of t=* in the expansion of
vt Yt Fy)
Jj=0

in nonnegative integral powers of t=1; a finite sum of weighted homogeneous polynomials of degree
< in the Fj with 0 < j <1, where each F; has the weight j. In particular

0v(0, F
P(Fo, ..., Fy) = MR‘ + Qi(Fo, - .. Fi1), (5.42)
OFy
where Q;(Fy, ..., Fi—1) is a similar polynomial in the F; with 0 < j <i—1. We have
Fi(0) = po,i = ¢, (5.43)

where the ¢; are the coefficients in (5.11).

Conversely, the system (5.40), (5.41) has a unique solution F;(T) which is complezx analytic on
a neighborhood of T = 0 in C such that Fy(0) = 0 and F}(0) = (0, C). If j € Zsq then, given the
functions Fy (1) for 0 < k < j—1, the function F}(T) is uniquely determined by the conditions that
it is a complex analytic solution on a neighborhood of T = 0 of the equation (5.41) for i = j, and
that the equation (5.41) for i = j+1 admits a complex analytic solution Fj11(T) on a neighborhood
of T=0. If (5.39) denotes the power series expansion of F;(T), then (5.38) is the formal solution
of (5.8) in the previous paragraph.

If F; (1) denotes the solution of (5.40), (5.41) such that Fy (0) = 0 and Fy '(0) = (0, C),
then F; c(1) = F; 1(C'7). Let Tc be the mazimal domain of definition of the, possibly multi-valued,
solution Foy = Fy.c of (5.40). Then To = C, To = C™Y Ty if C # 0, and for each i € Z~q the
function F; ¢ extends to a, possibly multi-valued, solution of (5.41) on Tc.

Proof. With the substitutions 7 = e™*, Fy(7) = po(s), the equation (5.40) is equivalent to the
autonomous limit system

dpgis) = vo(po(s)) (5.44)
of the system (5.3). Because vy(0) = v(0, 0) = 0 and v¢’(0) = Lo, an application of Lemma 5.6
with v replaced by vg, when ¢; = 0, Ly = 0, and o = 0, leads to pg +(s) = po,1(s) = 0 and a
unique solution po(s) of (5.44) on Res > o >> 0 such that po(s) ~ e *(0, C) as Res > o >> 0,
|s] = oo. The corresponding function Fy(7) = po(s) is complex analytic on the punctured disc in
the complex plane determined by the inequalities 0 < |7] < € := €77, and satisfies Fy(7) ~ 7 (0, C)
as 7 — 0. It therefore follows from the theorem on removable singularities that Fy(7) extends to
a unique complex analytic function on the disc |7| < €, denoted again by Fy(7), where Fy(7) is a
solution of (5.40) on the disc |7| < € such that Fy(0) = 0 and Fy’'(0) = (0, C). As the formal power
series solution Y ;< ™" pp o of (5.40) with po,o = 0, p1,0 = (0, C) is unique, the above complex
analytic solution Fy(7) is unique as well.
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Let i € Z~¢. For given complex analytic functions Fj, 0 < j < ¢ — 1, in a neighborhood of the
origin, (5.41) is a linear inhomogeneous differential equations of the form
dF;
-7
dr
where A(7) := 0v(0, p)/0p|y—ry(r) and G;(7) are complex analytic functions of 7 in a neighborhood
of 7 = 0. With the substitutions A(7) = > ;- 7% Ay, where Ag = Lg as in (5.21), and G;(7) =
> w50 ™ Gi g, the formal power series F; = >, Fi x is a solution of the differential equation if
and only if a

= A(7) F; + Gi(1), (5.45)

k
~kFix=LoFx+ > MF si+Gix
=1
for every k € Z>g. These equations determine the coefficients Fj j in terms of the F; ; with
Jj < k and Gj j, with the exception of the equation for k = 1, where the + part yields F¢T1 =
—(1/2) (A1 Fi 0+ Gi 1), but the resonance in the — part yields no equation for F;", but instead
the solvability condition (A Fj o+ Gi1)” = 0. As F; o = — Lyt Gi,0, this solvability condition
is equivalent to the equation G; | = (A Lo~ G; o)~ for the inhomogeneous term G;(7) in the
differential equation. Because G; o = Qi(Fo0, ..., Fi—1,0) + (i — 1) Fj_1,0 is determined, the
solvability condition determines G; 1-
For i = 1 we have Py(Fy, F1) = 01v(0, Fy) + 02v(0, Fy) Fi1, hence Gi(1) = 01v(0, Fo(T)) —
aT Fi(1) = 01v(0, Fo(7)) + av(0, Fy(7)). Therefore G1,o = d1v(0, 0) and Gy 1 is equal to C' times

2
0v(u, p) ta ov(0, p)

oudp~ op~ ’

u=0, p=0 p=0

because F{(0) is equal to C' times the second basis vector. As the minus part of the second term
Is equal to —a, it follows from the definition of o in Lemma 5.6 that G| ; is equal to C' times the

lower left corner of 922v(0, 0) Lo~* 81v(0, 0). On the other hand A; is equal to C times 92%v(0, 0)
applied to the second basis vector, when the symmetry of the second order partial derivatives yields
the solvability condition Gy | = (A4 Lo ' G10)".

For 7 > 2 the above computations yield that Gi_, ; depends in an inhomogeneous linear way on
F,~ 1 with coefficient equal to ¢ —1 # (0. Therefore the solvability condition is satisfied by a unique
choice of F;_; ;. It follows that the system (5.40), (5.41) has a unique formal solution such that
Fy(0) = 0 and F{(0) = (0, C), where for the unique determination of F};(7), j > 0, one needs (5.41)
fori=jand i =75+ 1.

If in a neighborhood of 7 = 0 the functions F};(7) are complex analytic solutions of (5.40), (5.41)
for 0 < 7 <i—1, then (5.45) is an inhomogeneous linear differential equation with complex analytic
coefficients A(7) and G;(7), with 7 = 0 as a regular singular point. Therefore every formal powers
series solution of (5.45) is convergent. For inhomogeneous linear differential equations this theorem,
which sounds classical, seems to be due to Gérard and Levelt [11, Lemme 4.2]. For nonlinear higher
order scalar ordinary differential equations, it has been obtained by Malgrange [20, Remarque 4.1],
where the proof also works for nonlinear systems near a regular singular point.

If g(t) = f(C7), then 7¢/(7) = (C7) f'(C 7). Therefore the function ®y : 7 — Fp 1(C 1)
satisfies (5.40) with ®(0) = 0, ®¢'(0) = C, hence Fy o(1) = ®o(7) = Fo,1(C 7). Furthermore,
if Fj(r) = F;1(CT) for 0 < j <i—1, then ®; : 7 — F; 1(C7) satisfies (5.41), hence F(1) =
®;(7) = F;,1(C'7). This proves F; ¢(7) = F; 1(C 7) by induction on 4. If the coeflicients py, ; for
C =1 are denoted by ¢y, ;, then the equations F; ¢(7) = Fj, 1(C 7) are equivalent to the equations
Dh,i = ch cp,; mentioned in the text preceding Lemma 5.8.
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The last statement in Lemma 5.8 follows, by induction on ¢, from the description of F; as a
solution of an inhomogeneous linear differential equation (5.45), of which the coefficients A(7) and
G;(7) are complex analytic functions of 7 € T¢. O

Remark 5.9. It would have been more precise to define the domain 7o as the Riemann surface
of the maximal solution of (5.40) such that Fy(0) = 0, Fy'(0) = (0, C), as follows. Let Dy :=
{p € C?| (0,p) € D}, where D is the domain of definition of the vector field v in (5.3). In
M :=Cx Dy \{(r,p) € Cx Dy | 7 =0 and v(0, p) = 0} we have the regular complex one-
-dimensional distribution D defined by the equation 7 dp + v(0, p) d7 = 0. For the local solution
Fy of (5.40) with Fy(0) = 0 and Fy/'(0) = (0, C), the set I := {(7, Fo(7)) | 0 < |7| < €} is an
integral manifold of D; let I denote the maximal integral manifold of D which contains I .. Then
T¢ is canonically identified with the Riemann surface I U {(0, 0)}. The inverse of the projection
Ic > (1, p) — 7 followed by the projection (7, p) — p is the, possibly multi-valued, maximal
solution Fyy ¢ of (5.40) mentioned in Lemma 5.8.

Lemma 5.11 below follows from O. and R. Costin [7, Th. 2(ii)]. Our proof is different. Lemma
5.11 implies all the previous asymptotic expansions in Section 5.1, but not the explicit estimates
such as in Lemma 5.2 and 5.3.

The following Lemma 5.10 will be used in the last part of the proof of Lemma 5.11, and in
Lemma 5.18 about the poles of the truncated solutions. Lemma 5.10 is a detailed version of the
estimate in [7, (24)].

Lemma 5.10. Let 7 € C\ {0} and logT a given solution \ of the equation ¢ = 7. Then the
solutions t of the equation e~' 1% = 7, where t* = e* 98¢ logt = log|t| + i argt, |argt| < 7, and
t| is large, form two sequences t,,, where n € Z, n >> 0 and n << 0 respectively, such that
t, =2min+ a log(2win) — log T + s(u, w) (5.46)
as |n| = co. Here log(2min) :=log(2x|n|) + i sgn(n)7/2,
1 log(2min)
vi= ———2

= : = —ul 5.47

2rin’ 2rin v ulogr +av, ( )
and s(u, w) is a convergent power series in (u, w). More precisely, s(u, w) is a complex analytic
function of (u, w) in a neighborhood of (u, w) = (0, 0), equal to the unique small solution s of the

equation

s= f(u, w, s) :=alog(l+w+ aulog(l+us+w)) (5.48)
for u and w both small. It follows that, with the substitutions (5.47) and A :=logT,
s(u, w) = aw+dtuw—aw?/2+ P uPw—3atuw?/2+awd/3+ 0(n?)

= —alutaolv—aila+)/2)u®+a®(a+Nuv—av?/2
—aX(@®+3a)N/24+2/3)u’ +a? (@®+3a)+ ) uPv
—a® (Ba/2+ N uv? +atv/3+0(n ™).

The t,, depend in a complex analytic way on logT, 7 € C\ {0}. If 7 runs around the origin
once in the positive direction, then t,(7) moves continuously to t,_1(7). In this sense the 1,(T) for
n>>0 and n << 0 can be viewed as two multi-valued complex analytic functions of T.

Proof. The equation e~! t* = 7 is equivalent to the equation ¢t — o logt = 2min — log 7 for some
n € Z. For large |t|, log |t| = o(|t|), |n]| is large, 2min/t =1+ o(1), and ¢t = 2win (14 o(1)).

With the notation a := 27in — log7, the equation for ¢ is equivalent to 0 = ¢(t) = (¢t —
a)(1—(t—a)talogt). If v : [0,1] — C\ {a} is a Jordan curve which winds once around
a in the positive direction and || |logs| < |s — a| for all s € ([0, 1]), then the the winding
number = (27) 7! times the increase of the argument of ¢ o a is equal to one, hence the function
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¢ has a unique zero in the interior of 7, which is simple, and therefore in view of the implicit
function theorem depends in a complex analytic way on a. If |a| > 1 and |s — a| = |a| — 1, then
1< |s] > 1, |a||log s| < |a| (m+1og|s|+7) < |a| (m+1og(2]|a] — 1)) and therefore || |log s| < |t —al
for all s on the circle v around a with radius |a| — 1 if |a| (7 + log(2|a] — 1)) < |a| — 1, which
happens if |a| is sufficiently large. Because |n| >> 0 implies that |a| = [2rin — log 7| >> 0, and
t—a=alogt=alog(2rin)+o(1) = aloga+ o(1) = o(|a|), the conclusion is that every solution
t of the equation t — a logt = 2min — log7 such that ¢t = 2win (1 + o(1)) is equal to the unique
zero of ¢ in the disc around a with radius |a| — 1. Therefore the solution ¢ = ¢,,(7) of the equation
t —alogt =2min —logT with |argt| < 7 and |t/ >> 0 is unique, depends in a complex analytic
way on 7, and satisfies t = 2min (1 4+ o(1)).

If we substitute the latter estimate for ¢ in the right hand side of t = 2win — log7 + a logt =
21in —log7 + a(log(2min) 4+ log(1 + (2rin)~! (—log7 + a logt)), we obtain that t = 27in +
alog(2rin) —log T + s with s = O((log |n|)/|n]) — 0 as |n| — oco. With the definitions of u, v,
and w in (5.47), s satifies the equation (5.48). Because f(0, 0, s) = 0, it follows from the implicit
function theorem in the complex analytic setting that there exist open neighborhoods U, W, and
S of the origin in C such that for each (u, w) € U x W the equation (5.48) has a unique solution
s = s(u, w) € S, and that (u, w) — s(u, w) is a complex analytic function on U x W, with
s(0, 0) = 0. Substitution of (5.47) in s = s(u, w) leads to (5.46). Subsequent differentiations of
s(u, w) = f(u, w, s(u, w)) with respect to (u, w) at (u, w) = (0, 0) up to the order three and
subsequent evaluations of the results at (u, w) = (0, 0) lead to the asymptotic formulas for ¢, (7)
modulo terms of order n~*. With the help of a formula manipulation computer program one could
go on a little bit further, but the complexity of the asymptotic formulas increases rapidly with
growing order.

If 7 runs around the origin once in the positive direction, then 27in — log 7 moves continuously
to 2mi(n — 1) — log 7, and therefore ¢,,(7) moves continuously to t,—1(7). O

Lemma 5.11. Let K be a compact subset of C? such that {0} x K is contained in the domain
of definition D of the vector field v in (5.8). Let Ty be a bounded subdomain of the domain T in
Lemma 5.8, such that Fyo(t) € K for every 7 € Ty. Let V be a t-domain in the complex upper
half plane where [t| >> 0 and 7(t) € To. Then the solution pc(t) in Lemma 5.6 extends to a,
possibly multi-valued, solution p(t) of (5.3) on V. This solution has the asymptotic expansion
p(t) ~ Y50 tTHFi(7(t)) in the sense that, for every m € Zso,

m—1
p(t) =Dt F(r(t)+ 0™ (5.49)
=0
ast €V, |t| — oo.
Proof. Write
m—1 m—1
P = ST F(r), PN ) = Y T F(0), and 6(1) = p(t) — p™ (1), (5.50)
1=0 =0

According to Lemma 5.6, p(t)—p4(t) ~ C 7(t) as 7(t) — 0. The expansion (5.18) and equation (5.43)
imply that pr(t)—py " (£) = O(t=™). Finally pI™) (1) —py" (1) = Fo(r(t) ~Fo(0)+ 521 ¢ (Fi(7(1))~
F;(0)) ~ C’T()+O( L)) ~ C7(t) as 7(t) — 0, because Fy(1) ~ C7as 7 — 0 and 7(t) — 0
implies that ¢ — 0. Therefore y™ () := (p(t) — p+(t)) — (P (t) — (1)) = o(7 (1)), as 7(t) — 0
and §(t) = yl™(t) + O(t~™), hence (5.49) < y[m]( t)y=0(@("™).
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The differential equations (5.40) and (5.41) imply that

] ml
WO~ w0, B + Y B BG0) + PG, ., G (0)]
i=1
—m O[TdFmil(T) —(m — - — (7! [m] —m
+ (a2t ) ) o) o,
hence
() dpt)  dp™(t)  d(pr(t) — pg" ()
dt dt dt dt

ot p(6) = (0@, P@) + O ™)) + O )
ot pI(E) + 97 (8) — ot P (E) + O™

as long as 7(t) € To, where in the last identity we have used that p(t) = pI™(t) +yl™ () + (py(t) —
P (0)) = P () £ (1) + O™,
We start with the proof for ¢ in a domain R, , as in (5.17) with n > 0 sufficiently small, when
(5.49) is [7, (20)] in our situation. It follows that dy™ (¢)/dt = L(t, p™(t)) ™ &)+ O(|Jy™ ()||?)+
O(t™™), where L(t, p) := dv(t™", p)/dp. Because pl")(t) = pi(t) = (pr(t) — pg" (1)) + p™) () -
pi™ () = py(t) + O(t™™) + O(7(t)), we have L(t, pl™)(t)) = L(t) + O(t~™) + O(r (1)) with L(t) as
in (5.20), hence

dy™l(¢)
dt

= L)y (1) + O(r@)] Iy )] + Olly™ ®)1%) + O™™).

Applying a linear subtitution of variables y = A(t) z as in the proof of Lemma 5.6 we arrive at an
integral equation z = H(z) for z : t — A(t)"'y™(t), where H(2)(t)t = H(2)(t)T and H(z)(t)~
are as in (5.30) and (5.33), respectively, C = 0 in view of z(t) = A(t)~ 'yl (t) = o(r(t)), and
h(t=Y 2) = O(|r(®)|||z]]) + O(||z]|?) + O(t™). If n and 1/r are sufficiently small, then H is a
contraction on the space Z of all continuous functions z : R,, , — C? that are complex analytic on
the interior of R, , and satisfy a uniform bound ||z(¢)|| < C |[t|7™, where H is a contraction with
respect to the metric (21, 22) — supsep, . [¢[™ [[21(t) — 22(?)]|. It follows that H has a unique fixed
point z in Z, when yl™(t) = A(t) 2(t) satisfies y["l(t) = O(t~™) when t € R, , and |t| — co. This
completes the proof for ¢ in a domain where |7(¢)| remains sufficiently small.

For ¢ in a subdomain of V' where 7(¢) := ¢! t* € Ty remains bounded away from zero, we use
7 = 7(t) instead of ¢ as the independent variable. The domain 7 can be arranged such that its
points 7 can be joined with points 79 close to the origin by smooth paths v in 7y, parametrized
by arclength, with a uniformly bounded length, and staying at a uniform distance away from the
origin. The solution 3! (7) will be estimated along such v. With 7 along v, we view t = t,(7),
n >> 0, as the multi-valued inverse in Lemma 5.10 of the function ¢ — 7(¢) with large |¢| and
0 <argt < m. Thent=t,(7) =2rin(1+o(1)), uniformly for 7 along . Because

[m] [m]
W = (1o L = o) + Ofn(r) ™,
we have
A" o WO | <y my o (s))| < 1 Iy (s + Catalr (D™

ds - ds
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for some positive constants C7 and C5. Or,

] (5
WD 4y 6 + Coltalr () = 1(5)

for a non-negative continuous function r(s). Lagrange’s variation of constants formula yields

T = <@ O]+ [ € (C o)~ (o) do

50
< GO+ 0 [0 (o))

Write ¢ = ¢,(v(s)), where |t| >> 0. Then, unfiformly for 0 < o < s, t,(y(0)) = 2win (1 +0(1)) =
t (14-0(1)), hence |t,(v(0))|~™ = O(|t|~™). Furthermore, because v(0) = 7y is small, ||y[™(v(0))|| =
O(|tn(7(0))|~™) = O(|t|~™). Combination of the estimates yields 3™ (v(s)) = O(t~™). That is,
returning to ¢ as the independent variable, y!™l () = O(t=™).

O

Lemma 5.11 can be used in order to obtain asymptotic information about the large ¢ where the
solution pc(t) becomes singular, where 7(t) is close to points 7 where the solution Fy(7) of (5.40)
becomes singular. This will be done in more detail for the Boutroux-Painlevé system in Subsection
5.2, leading to the asymptotic description in Lemma 5.18 of the poles in the domain R, , with
large n and r correspondingly large. These poles correspond to the first sequence of poles of the
truncated and triply truncated solutions of the first Painlevé equation which appear beyond the
boundary of the truncated domains.

5.2. Truncated and triply truncated solutions. In this subsection we collect the conclusions
from Subsection 5.1 for the Painlevé equation.

Boutroux [2, §13] found a family of solutions u(z) of the Boutroux-Painlevé system (2.2), depend-
ing in a complex analytic way on one complex variable, such that u(z) converges to the equilibrium
point (eiv/6,0) of (5.1) as t = A, z runs to infinity in the complex plane in the direction of the
positive real axis. On [2, p. 346], he called these solutions truncated in the direction of the positive
real azis. These solutions correspond to the solutions py, ,-(t) and p;(t) described in the lemmas
5.2 and 5.6.

In [2, §14], Boutroux found a solution u(z) which converges to the equilibrium point of (5.1)
as t = AT z runs to infinity in a sector in the complex plane which does not contain the positive
imaginary axis. Because such a sector contains the three orthogonal axes equal to the negative
real, negative imaginary, and positive real one, he called this solution the triply truncated solution.
This solution corresponds to the solution p|(t) described in the lemmas 5.3, 5.5, and 5.6. In the
sequel we will follow Boutroux’s terminology.

Remark 5.12. The proofs in Boutroux [2, §13, 14] contain gaps and errors. In the formula for Y3
following [2, (51)] the factor X ~! in the first and second integral should be replaced by —X~2/4/12
and X~2/4/12, respectively. A similar correction is needed in [2, (54 bis)]. In the right hand side
of [2, (54)] the term 6 Z?ﬂ;ll Y}, Y;_ is missing. More seriously, the inductive assumption that
Yi(X) — 0 as X — oo for every k < j implies that the second limit relation at the bottom of [2,
p. 343] is automatically satisfied, when the first one is equivalent to the condition that Y;(X) — 0
as X — oo. This determines Y; only up to the addition of a constant times e~ V12X Therefore
the estimate [; < K1 X' on [2, p. 345] cannot be proved for the solutions Y; described by
Boutroux. It is a bit surprising that Boutroux did not use the method of Cotton [8], which appeared
two years earlier in the same journal as the paper of Boutroux.

Remark 5.13. On [2, p. 261], Boutroux gave a definition of truncated solutions which looks quite
different from the definition in terms of the convergence to the equilibrium point of the limit
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system. In our notation, we understand his definition on [2, p. 261] in the following way. For every
zp € C\ {0} and ¢ € C there is a unique solution U(z) = Uy, .(2) of (2.4) which has a pole at z = 2
and c as the coefficient of (z — 2)* in its Laurent expansion at z = z5. The parameter ¢ corresponds

in an bijective affine manner to the position on the pole line Lg \ Lg) in Okamoto’s space, see (3.2).
Assume that u,,, (z) has another pole at z = 21 # z9. Because the vector field is regular, nonzero
at and transversal to the pole line, an application of the implicit function theorem yields that for
every (zo/, ) near (29, c) there is a unique 21" = Zi(z¢’, ¢’) near z; such that the solution ., ~(z)
has a pole at z = 21/, and the function (2o, ¢) — Z1(z0/, ¢’) is complex analytic. It seems that
Boutroux considered this to be evident, as he did not provide further proof. Then, according to
our interpretation of [2, p. 261], u,,~ o (z) is a truncated solution if the function Zi(z¢’, ¢) has a
complex analytic continuation for (z2¢’,¢’) on a path approaching (2¢”, ¢’), but that the superior
limit of |Z1(z¢’, ¢)| is infinite if (20, /) — (20", ¢’) along the path. We find this an interesting
definition of truncated solutions. However, we did not find any statement or proof in Boutroux’s
paper which relates the truncated solutions as defined on [2, p. 261] with the truncated solutions
defined in term of their convergence to one of the equilibrium points of the limit system. We will
stay with the second definition, and view it as a challenge to find relations with the first one.

According to Remark 2.1, the substitutions z = —273/5371/5¢ y(x) = 274/5373/5y(¢) turn the
first Painlevé equation (1.1) into
d*n/d&? = (n* = €)/2, (5.51)
when the substitutions & = ((5/4) t)*/°, n(€) = €2 711(t), and 7/ (€) = €3/4my(t) turn the corre-
sponding first order system for (1, ) into
dﬂl/dt = m—2 (5t>71 ™,
dmg/dt = (m2—-1)/2—-3(5t)"m.
At the equilibrium point (1, m2) = (1, 0) of the limit system for ¢t = oo, the linearization has the

eigenvalues £1, and the substitution of variables 71 = 1+p™ +p~, my = p™ —p~ lead to the system
(5.3) with

(5.52)

v(1/t,p)" = pT = 1/5t—p*t /2t +p /10t + (T 4+ p7)?/4,
v(1/t,p)” = —p~ = 1/5t—p /2t +pt/10t — (pT +p7)?/4.
It follows that the vector ¢; in (5.14) and the matrix L; in (5.16) are equal to

1/5 -1/2 1/10
e ( —1//5 ) and Ly = ( 1/1/0 —/1/2 )
respectively. Because cf + ¢ =0, the asymptotic expansion (5.11) implies that for the truncated
solutions p(t) we have 71 (t) = 1+0(t72) ast € S, |[t| — oo. Furthermore, both the left upper corner
and the right lower corner a of Ly are equal to —1/2, and therefore p(t) — p4(t) is asymptotically
equal to 7(t) = e~* t~/2 times a series in nonnegative powers of t~! as t € &, [t| — oo, see (5.18).
The fact that Rea < 0 implies that the large positive and negative parts of the imaginary azis are

contained in the interior of the domains Ry , in (5.17). More precisely, the part in |[t| > r of the
boundary of R, , is given by the equation

cos(argt) = (—(1/2) log |t| —logn)/|t], |t| >r, -7 <argt<m, (5.53)

which is to the left of the imaginary axis if and only if |t| > n~2. See Figure 5.2.

Because the Painlevé property implies that all solutions y(x) of (1.1) are single-valued, the
analytic continuation of (m(t), m2(t)) along the path ¢ €?, where # € R runs from 0 to 5/4 times
27, applied to the substitutions

x= —2735375 (54/0)45 y(x) = 274/5373/5 (—23/5 31/5 1) 1/2 7 (1) (5.54)
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leaves the solution y(z) of (1.1) invariant. We conclude as in (2.6) that the analytic continuation
of (m1(t), ma(t)) along the aforementioned path is equal to (—m(t), ima(t)). This agrees with the
symmetry (¢, w1, ma) — (it, —m1, im2) of order four of the system (5.52). This analytic continuation
converges for ¢ running to infinity in the direction of the positive imaginary axis to the other
equilibrium point (71, m2) = (—1, 0) of the limit system of (5.52) for t = co. Applying this analytic
continuation a second and third time, one obtains a solution which converges to (71, m2) = (1, 0)
and (71, m2) = (—1, 0) for ¢ running to infinity in the direction of the negative real and imaginary
axis, respectively. In this way each of the four types of truncated solutions, for ¢ running to infinity
in the direction of the positive and negative real axis with (71 (¢), m2(t)) converging to (1, 0), and for
t running to infinity in the direction of the positive and negative imaginary axis with (71 (¢), m2(t))
converging to (—1, 0), are obtained by analytic continuation from the solutions p;, ,-(t) = pi(t) in
Lemma 5.2 and 5.6.

Similarly, the analytic continuation of p4(t) along the path ¢ e'? is equal to p(¢) if @ € R runs
from 0 to 5. As this agrees with the symmetry (¢, w1, m2) — (—t, m, —m2) of the system (5.52), it
follows that p| (t)* = py(—t)~ and py(t)~ = pr(—t)™. If  runs from 0 to 57/2 and 157/2, then the
analytic continuation of py(t) is equal to the two triply truncated solutions near (7, m2) = (-1, 0).
In this way each of the four triply truncated solutions, for ¢ running to infinity in the upper and
lower half plane with (71 (¢), m2(¢)) converging to (1, 0) and for ¢ running to infinity in the left and
right half plane with (m(¢), m2(t)) converging to (—1, 0), is obtained by analytic continuation from
the solution p4(t) in Lemma 5.3, 5.5, and 5.6.

Because the system (5.52) is real, it has the symmetry (¢, 71, m2) — (¢, 71, P2). Therefore, if
(m1(t), m2(t)) is a truncated solution of (5.52) in the sense that it converges to (1, 0) as t runs to

infinity in the direction of the positive real axis, then ¢ — (m1(t), m2(%)) is a solution of (5.52) with
the same limit behavior, and therefore is truncated in the same way. The triply truncated solutions

satisfy p| (t) = p4(f), which in combination with p,(t)* = py(—t)T implies that py(t)* = pr(—F)F.

The corresponding triply truncated solution of (5.52) satisfies 7 (t) = m1(—t) and ma(t) = —ma(—1).

Lemma 5.14. The Stokes constant S in (5.34) is nonzero and purely imaginary.

Proof. Because p|(t) = p4(t), the asymptotic identity for ¢ € R, t — oo implies that S is purely
imaginary. If S = 0, then p|(t) = p4(t) in the right half plane, and therefore p4(t) and p,(t) would
have a common extension to a small solution p(t) for —(3/2)m < arg(t) < (3/2)m, |t| > r, when the
corresponding solution y(z) would be bounded by a constant times |z|*/? for —(6/5)7 < arg(z) <
(6/5)m and |z| > R for some R. As this implies that the single valued function y(z) has no poles
for large |x|, it would follow that y(x) has only finitely many poles, in contradiction with Corollary
4.7. O

Remark 5.15. Because 7(t) = e~ t~1/2, the positive and negative imaginary axis are transitional
domains as in the paragraphs preceding Lemma 5.8, the Stokes constant S is equal to the one in
Costin [6, (2.8)]. According to [6, Note (3) on p. 7], S =i4/6/5mw. The formula p|(t) — p(t) ~
i,/6/5m et t71/2 as —7w/2 < argt < 7/2, |t| — oo agrees, at least up to the sign, with Kapaev
[19, Cor. 2.4].

Figure 5.3 shows a region in the z-plane, the plane of definition of the solution of (1.1), where
the corresponding truncated solution of (2.2) is close to one of the two equilibrium points of the
limit system (5.1). This region is the image under the mapping t — —273/5371/5((5/4) t)*/% of a
domain of the form R, ,.

The triply truncated solution p4(t) of (2.2) is defined on a domain determined by the inequalities
[t| > r and

—arccos((—(1/2) log|t| —logn)/|t|) < argt < m + arccos((—(1/2) log|t| — logn)/|t]).



Here r and n are sufficiently large and small strictly positive real numbers, and arccos denotes
the inverse of the bijective function cos : [0, 7] — [—1, 1]. As the inequalities for |¢| and argt
allow points ¢, ¢’ such that |t/| = |t| and argt’ = argt + 2, the function py(t) is interpreted as
multi-valued. The properties p+(t)* = py(—t)F, (5.34), and p;(t) = O(t~!) when ¢ runs to infinity
in the direction of the negative imaginary axis imply that for argt = —7/2 and argt = (3/2) 7w we
have py(t) ~ e~ t71/2(0, —S) and py(t) ~ et t71/2(=1 S, 0) as |t| — oo, respectively. As Lemma
5.14 implies that S # 0, the two branches of py(t) do not coincide on the overlap.

The image under the mapping t — x = —273/5371/5((5/4) t)*/" of the aforementioned domain
where pq(t) is small is a domain in the z-plane where |z| is large and arg(x) runs from slightly
smaller than (3/5) 7 to slightly larger than (11/5)7. The other truncated and triply truncated
regions are obtained from these by applying a rotation in the x-plane over k27w /5, 1 < k < 4.
Because the truncated and triply truncated solutions of (2.2) are bounded in their domains of
definition, they have no pole there, and therefore the corresponding truncated and triply truncated
solutions of (1.1) have no poles in the aforementioned truncated and and triply truncated regions
in the x-plane.

Figure 5.4 shows the unique triply truncated region in the z-plane which is invariant under
complex conjugation. If y(z) denotes the corresponding triply truncated solution of (1.1), the
function & — y(T) is a solution of (1.1) which is triply truncated in the same domain. The
uniqueness of triply truncated solutions of (2.2) leads to the following observation of Joshi and
Kitaev [14, Cor. 3].

Lemma 5.16. Let D denote the triply truncated domain in Fig. 5.4 which is invariant under
complex conjugation. Then the solution y(x) of (1.1) which is triply truncated on D is real in the

sense that y(z) = y(T) for every x € C. In particular y(z) € R for every x € R not equal to a pole
point of y.

The next lemma discusses what happens with Lemma 5.11 in the case of the Boutroux-Painlevé
system. Our results correspond to [7, (113)] with the formulas for Hy(¢) and H;(§) on [7, p.
38], as mi(z) = Y(z) = 1 — 4/252% + h(x), see [7, p. 36], hence 71 o(§) = Ho(§) + 1, m1,2(§) =
Hy(§) —4/25 and 71 1(§) = HE) for all [ ¢ {0, 2}. O. and R. Costin [7, p. 39] wrote: “We omit
the straightforward but quite lengthy inductive proof that all H are rational functions of £.” And
on p. 40: “For large £ induction shows that H,, ~ Const, £", ...” , but did not give further details
of the proof.

Lemma 5.17. With the notation of Lemma 5.11, the solution (mw1(t), ma(t)) of (5.52) corresponding
to pc(t) has the asymptotic expansion

3
L

() = tt T 1(C7(t) +O(t™™) (5.55)

l

ast €V, |t| = oo. Here w1 (&) = (€ —12)7172 Py 1(€) and ma 1(€) = (€ — 12)7173 Py y(€), where

Py (&) and Py (€) is a polynomial in § := C'1 of degree < 21+ 2 and < 21+ 3, respectively. We
have

I
o

) (€ —12)% + 144¢,

) = 144€(€ +12),

) €(216 +210& + 3¢2 — £2/60),

) = (497664 — 134784 € + 2661122 4 25704 &% — 24 £* + £5) /60.

38



Proof. It follows from the last paragraph in Lemma 5.8 that it suffices to prove all the formulas for
C =1, when 7 =¢.

The shortest proof of the formulas for m; (&) and ma o(§) is to verify that these functions satisfy
the differential equations —¢ dPy o/d¢é = Pa o, —& dPso/d¢é = (Ppo? — 1)/2 corresponding to
(5.40), with the initial conditions P; ¢(0) = 1, P 0(0) = 0, and the derivatives with respect to & at
E=00ofpt =(Pio+P0—1)/2and p~ = (P1,0— P20 —1)/2 equal to 0 and C, respectively. The
longer proof below explains how the formulas for m1 ¢(§) and 2, ¢(§) could have been found.

The system (5.52) is equivalent to the second order differential equation

d*n lde 1, .,
I TG A | 5.60
@~ tat 2™ Ve (5.60)
for m(t) = m1(t), when ma(t) is given in terms of 7(¢) by means of the formula
dn(t) 2
t) = — (). 5.61
mo(t) = 0+ 2 2 (5.61)

The autonomous limit equation of (5.60) for ¢t — oo is 1" = (112 — 1)/2, a Newton equation with
potential energy V (I) := —II3/6 + II/2. Tt follows that the total energy E = (II')?/2 + V(II) is a
constant of motion, and the solution which converges to the equilibrium point (II, IT') = (1, 0) has
energy E = V(1) = 1/3. This leads to the first order differential equation (II')?2 = 2 (1/3 -V (I)) =
(IT—1)? (IT42) /3, hence, if the independent variable is denoted by s, ds/ dIT = 31/2 (I — 1)~ (IT +
2)1/2, when the substitution IT + 2 = ¥ leads to

- YOy et L U(s)— V3
s = 2\/5/ (T2 —3) di’+c-log7‘y(s)+\/§+c
\I/(s)—i—\/g_ce_s__c o) — cE+1
& W —v3 =: 54:)\11()_\/505_1
12¢c¢
= H(S):\I/(S)Q—QZI‘FW,

where ¢ denotes a constant which at every place might be a different one. The function s — II(s)
is the “degenerate elliptic function” of [7, p. 38]. With the substitution { = e%, the differential
equation (5.40) is equivalent to dFy/ds = v(0, Fy). As the derivative of Fy (¢) and F; (€) at
¢ = 0 have to be equal to 0 and 1, respectively, the derivative of Il = 7 = 1 + p* + p~ with
respect to & at & = 0 has to be equal to 1. Therefore ¢ = 1/12 and II = 1+ £/(£/12 — 1),
which proves m o(€) = Pp,o(€)/(§ — 12)? with P 9(€) as in (5.56). The formula (5.61) with
d/dt = (=1 —1/2t)¢ d/ d€ yields

0 = —& dm,0/ d€ = Py o(€)/(€ — 12)3,

with P ¢(§) as in (5.57).

Because 71,9 and 7o o are only singular at £ = 12, it follows from Lemma 5.8 and Lemma 5.11
that the functions m; ; and 7 ; have a complex analytic continuation along any path in C\ {12},
and that the asymptotic expansion (5.55) holds along these paths. If £ runs around 12 along a
small circle, then the ¢,(§) with large modulus, see Lemma 5.10, return to the same value. As the
Painlevé property implies that the function pc(t) is single valued, the asymptotic expansion (5.55)
implies by induction on [ that m; ; and 7y ; are single valued complex analytic functions on C\ {12}.
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For our system (5.52) the differential equations (5.41) for i € Z~ take the form

d7T1 i 1 dﬂ'l i—1 . 7
_ i — . _ 2 JEE— . . 2
$ae ity T gmin (62
d7T . 1 d7T i — . 8 1 —
—¢ dz’l = m,071,i+ 55 (2i£ ! + (i — 5)7@,@'71 + 5 E (W RREYE (5.63)
j=1

Given m ; and o ; for j < 4, (5.62), (5.63) is an inhomogeneous linear system of first order
differential equations for (7, m2,;), equivalent to the inhomogenous linear second order differential

equation
& dmy d dmy
2 1,2 1,27_ e 1,2
Cae e T fdﬁ( ¢ ds>

1 dme g 8 1
= 771,07T1,i+§f € +(l—5)ﬂ2,i—1+2j;ﬂ'l,jﬂ'l,i—j
d (1 dm i1 .7
_§I§ (25 aé + (i 5)77172—1>

for 7 4, when 79 ; can be solved from (5.62) in terms of 71 ; and 7 ;1.

Let ¢1(£) and ¢2(§) be a basis of solutions of the homogeneous linear second order differential
equation 7’ = a(§) 7' +b(€) w. Lagrange’s method of variations of constants yields that the solutions
of the inhomogeneous equation 7" = a(§) " + b(§) m + f(&) are of the form

Fn) 4

3
7(€) = 1 1(6) + 2 pa(€) + / (—1(€) 02() + 2(€) 01 (1) (5.64)

&o w(n)
Here w = 1 ¢ — ¢} 2 is the Wronskian determinant, which satisfies w’ = a w, hence

w(€) = w(€) el °M W

The differential equation 7" = a(§) 7’ + b(€) 7 has a regular singular point at £ = Z if a(£) and b(§)
have a pole of order < 1 and <2 at { =Z. Ifa(§) = A€ —Z)"1 +0(1) and b(§) = B(( —2) 2 +
O((¢ —2)71) as ¢ — =, and the indicial equation A (A — 1) = A\ + B has to distinct solutions A
and A2, then there is a basis of solutions ¢1(£) and ¢o(€) such that ¢ (&) = (€ —Z)M(1+0(1)), and
w(€) = (A2 — A1) (€ — E)YMFA2~1 See for instance Coddington and Levinson [4, Chap. 4, Sec. §].
Therefore, if (&) = O(¢ —Z)°, then the integral in (5.64) is of order (£ —Z)**2 as & = Z. If \; = Ao,
then one has to replace ¢a(€) = (€ — 2)(1 + o(1)) by va(€) = (€ — 2™ log(é —=)) (1 +o(1)),
with a corresponding change in the estimate for the integral in (5.64).

At £ =12 we have A = 0 and B = (12)72(12)® = 12, when the solutions of the indicial equation

are A\ = —3 and A\ = 4. If, for every 0 < j <¢—1, m ; and 7y ; are meromorphic at { = 12 with
a pole of order < j+ 2 and < j + 3, respectively, then an inspection of the inhomogenous terms in
the second order diffrential equation for m ; yields b = —i — 4, and because b +2 = -7 —2 < =3

it follows that m; ; has a pole of order < 7+ 2 at £ = 12. For i = 1 we have b = —4, but then
A1 = —3 yields that 71 1 has a pole of order < 3. Subsequently (5.62) implies that 7 ; has a pole
of order < i+ 3 at £ = 12. It follows by induction on I that, at { = 12, m; ; and 7 ; have a pole of
order <[+ 2 and <[+ 3, respectively.

At £ = oo we have A = —1 and B = 1, when the solutions of the indicial equation are A\; = 1
and Ay = —1. If, for every 0 < j <14 —1, m,j and ma ; are meromorphic at { = oo with exponents
< j, then an inspection of the inhomogenous terms in the second order diffrential equation for m ;
yields b = 7 — 2, and because b+ 2 = i > 1 it follows that at & = oo the function 7 ; has an
exponent < i. Subsequently (5.62) implies that also 7 ; has an exponent < i at { = oco. It follows
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by induction on [ that the functions m; and my; have exponents < I at £ = oo, and therefore
are rational functions of the form 7 ;(&) = (€ — 12)7172 Py ;(€) and 79 (&) = (£ — 12)7173 Py (&),
where Py ; and P ; are polynomials of degree < 21+ 2 and < 21 + 3, respectively.

The functions 71,1(§) = (€ — 12)73 Py 1(€) and 72,1(€) = (€ — 12)% Py 1(£), with the respective
polynomials P; 1(§) and P 1(§) as in (5.58) and (5.59), have been found with the help of a formula
manipulation computer program, in the following way. The solutions of the system (5.62), (5.63)
for ¢ = 1 which are complex analytic in a neighborhood of £ = 0 are of the form

m1.1(€) = €((720¢ — 84672) + (60 ¢ + 4464) £ + 180 &% — £3)/(60 (€ — 12)%),
T9.1(&) = (497664 + (8640 c — 1306368) & + (2880 ¢ — 124416) £ 4 (60 ¢ + 17568) &
—24€"+€%)/(60 (¢ - 12)"),

where c is free constant. With these functions 71 1 and 73 1, an investigation of the explicit solutions
71,2, T2, 2 of the system (5.62), (5.63) for i = 2 yields that there exist solutions which are complex
analytic in a neighborhood of ¢ = 0 if and only if ¢ = 678/5. Therefore 71 1(£) = (£ —12)73 Py, 1(£)
and ma,1(€) = (£ —12)74 P, 1 (&) with Py 1(€) and Py 1(€) as in (5.58) and (5.59), respectively. [

As the system (5.52) is just a rescaled version of (2.2), passing to the complex projective plane
and successively blowing up the base points of the vector fields, as in Section 2, leads to surface
S, with a locus I where the vector field is infinite equal to the union of nine complex projective
lines ngﬂ), 0 < i < 8, and a pole line Lg \ I, where Lg is the complex projective line appearing
at the last blowup. In the common domain of definition of the coordinate systems (m;;1, m;;2) and
(71, m2), an application of the birational transformation (m, m2) +— (71, mij2) to the symptotic
expansion (5.55) leads to an asymptotic expansion

m—1
migk(t) = Dt mige(r() + O(t™™) (5.65)
(=0

as t € V, |t| = oo, where the functions 7, ;(7) are rational expressions in the functions 7 (7),
mo,p(7) for 0 <1’ <, and therefore are rational functions of 7. Because the differential equations
for 7k 0(7), analogous to (5.40), correspond to the autonomous limit system, these differential
equations are regular and its solutions have a complex analytic extension as long as they remain in
in the complement of the inifinity set I in the coordinate system (mﬂ, mjg). Because also the non-
autonomous vector field is regular in S\ I, the functions ;1 ;(7) with [ € Z~ satisfy inhomogeneous
linear differential equations as (5.41), variational equations of the differential equations for ;1 o(7),
where the inhomogeneous term is a regular expression in the m;j; n(7) with m < [. It follows by
induction on [ that all the rational functions m;;j ;(7) are regular, when the perturbation argument
in the last paragraph of the proof of Lemma 5.11 yields that the asymptotic expansion (5.65)
extends to the whole complement of I in the coordinate system (751, mj2).

The pole line is visible in the coordinate system (w911, m912) as the line w919 = 0, and therefore
the poles are the solutions T of the equation mg12(7") = 0, where mg12 = m1/m2. This leads to the
following asymptotic results for the poles, where in view of (5.54) the poles of the corresponding
truncated solution of (1.1) are given by X, = —273/53-1/5 (51T, /4)*/>,

Lemma 5.18. There exist universal sequences of coefficients c;, di1 j, k, | € Z>qo, with cg = 12,

c1 = 109/10, and do o = 0, such that following holds. Let C # 0, and let pc(t) be the solution in

Lemma 5.11, of the system (5.3) obtained from (5.52) by means of the substitutions w1 = 1+p*T+p~,

o =pt —p~. Let (m1(t), ma(t)) be the corresponding solution of (5.52). Then there is a sequence
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of poles T, n € Z, n >> 0 of m1(t), such that T, =271in (14 o(1)) as n — oo, and

I 1 & »
(T,) == e T T, 71/2 ol Z ¢; T, as n—oo. (5.66)
Furthermore, with the notations
1 log(2min) c v
= =—————= and W:=ulog— —=
Y orin orin “eT Ty

where log(2min) = log(2mn) + w1 /2, we have the more explicit but more complicated asymptotic
expansion

C
T, ~2min — = log(27r1n) —|—logﬁ + E deu* W' as n — oo, (5.67)
k,1>0
of which the leading terms yield
C 1 C 109
Tn = 27r1n—flog(2w1n)+logﬁ+1—(§lgﬁ—i—m)
1, 1 C 139
— v —(=log —+ — .
16U (4 08 7 +240)uv+0( 2) (5.68)

asn — oo. If C € C\ {0} runs once around the origin in the positive direction, then T, moves
continuously to Tpi1.

Conversely, for every n > 0 there exists an r > 0, such that these T,, are the only poles T of
m1(t) such that |T| > r, ImT >0, and |e~T T-Y2| <.

Proof. It follows from Lemma 5.17 that the poles T of 7 (t) with bounded Z(T) := C' e~ T T-1/2
satisfy 2(T") — 12 as |T| — oo.

There exists a sequence of rational functions 7912, | € Zxp, such that, with the notation
E=Cr=Cett1/2

,_.

m—

Zt ' To12,1(€) + O(t™),
=

7T912

for every m € Z~¢. Lemma 5.17 implies that
mo12,0(6) = (€ —12) (144 + 120€ + €%)/(144£(¢ +12))  and
To12.1(€) = (—71663616 — 40310784 ¢ — 248832 &% — 11860992 £3 — 1221696 ¢*
+1224 65 — 24065 — €7)/((1244160 €2 (€ + 12)?).

Because mg12,0(12) = 0 and g5 ((12) = 1/24 # 0, an application of the implicit function theroem
yield that there exist open neighborhoods A and B of 12 and 0, respectively, such that for every

t~1 € A the equation
m—1
Z t~ wo12,1(6) =0
=0

has a unique solution Z,,, = Z,,(t~!) € B, which moreover depends in a complex analytic fashion on
t~1, and satisfies Z,,(0) = 12. Furthermore, Z(T) = =Z,,,(T~1) + O(T~™), and as the left hand side
does not depend on m, it follows that the coefficients c; for 0 < j < m — 1 in the Taylor expansion
of the function =, at the origin do not depend on m. Because this holds for every m € Z~q, it
follows that there is a sequence of complex numbers ¢;j, j € Zsg, such that the poles T' of m;(t)

with bounded Z(T) := C e~ 7 T~/ satisfy

Cr(T)=Ce T V?~124) ¢T7 as |T| - oo,
7>0
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Because 7g12,1(12) = —109/240, we have ¢; = —mo121(12)/mg15 ¢(12) = 109/10. This completes
the proof of (5.66).
The proof of (5.67) is analogous to the proof of (5.46). For any m € Z~¢, (5.66) yields that

S

1

12
J

T=1(T) = ¢ T +1),

1

12
124
o

where r = O(T,,”™) = O(n™™), hence

m—
logT = log —|— log(1 Z Lo, 4 T)
=1

Upon the substitution

C
T, = 2win— = log(27r1n)—|—logﬁ+5’

1
= 2min(1l-— §v+ulog(0/12) +uS)=2rin(14+W +ubs),
which implies
log T,, = log(2win) +log(1 4+ W +uS)

and
T l=u(+W+4uS)™
the equation T;, = 2win — (1/2) log T,, — log 7 is equivalent to the equation

3

1 ¢ .
S=F(u, W, r, S):= —3 log(1+ W +uS) —log(1l+ f—]uj (I+W+uS)™7 +r).
J

Il
o

Because F'(0, 0, 0, §) = 0, it follows from the implicit function theorem in the complex analytic
setting that there exist open neighborhoods U, W, R, and S of the origin in C such that for every
(u, W, r) € U x W x R the equation has a unique solution S = S,,(u, W, r) € S, and that Sy, is a
complex analytic function on U x W x R. In our setting

—

m—k
dk,l uF W + O(nim)
0 =0

3

S (u, W, r) = Sp(u, W, 0) + O(r)

il

Here the coefficients dj ; do not depend on m because S does not depend on m. This completes
the proof of (5.67).
The equation for m = 2 yields

S:—%(W—i-us) (W2+2WUS)_E (1—W)—|—O(n*2),
hence
1 c
_ty_a 2 (244 -2
S = W 12 u+t g Ly (4 12)Wu+0(n );

which implies (5.68).
If C € C\ {0} runs once around the origin in the positive direction, then (5.66) implies that
7(T},) runs once around the origin in the negative direction, when Lemma 5.10 implies that T,

moves continuously to Tj,41. O
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Figure 5.5 illustrates the asymptotic approximations of the poles in (5.68) in the complex ¢-plane,
of Boutroux’s triply truncated solution p,(t), when, according to Remark 5.15, C' = i /6/5.
Shown are the points in the right hand side of (5.68) without the remainder term O(n~2), for
1 <n < 20. For clarity of the picture, the imaginary part has been multiplied by 1/24 in comparison
to the real part. It would be interesting to compare the approximate poles in Figure 5.5 with the
numerical approximations of the actual poles of p|(t).

Remark 5.19. The intriguing “General comments 2” of [7, p. 40] say:

“The pole structure can be explored beyond the first array, in much of the same way: For large £
induction shows that H, ~ Const £", suggesting a reexpansion for large £ in the form

= HY (&) _ .
he Yy kxik; Co=Cllegt =M g=3/2 ¢, (118)
k=0
By the same technique it can be shown that (118) holds and, by matching with
he 2 Hp(é()) (113)
k=0
at & ~ x72/3 we get H(gl] = Hy with ¢l = —1/60. Hence, if x5 belongs to the first line of poles,
i.e.
109
§lws) =& =124 -+ O(z72), (116)
the second line of poles is given by the condition

27 e = —60-12¢

i.e., it is situated at a logarithmic distance from the first one:

r1—xs= —Inzs+ (2n+ 1) 7i—1n(60) + o(1).

Similary one finds z, 3 and in general x, ,,. The second scale for the n-array is x= 2 gt

The expansion (113) can however matched directly to an adiabatic invariant-like expansion valid
throughout the sector where h has poles, similar to the one in Joshi and Kruskal [16]. In this
language, the successive expansions of the form (118) pertain to the separatrix crossing region. We
will not pursue this issue here.”

The word “suggesting” preceding (118) indicates that (118) is a conjecture, but in the sequel all
the statements, including (118), are treated as facts, with only some hints of proofs. The phrase
“matching with (113) at & ~ £72/3” suggests that H, ~ Const, £" implies that the expansion
(113) extends to domains where £(z) is of order z'/3, thus allowing a matching with (118) for
&(z) = CMg(z) 21 of order z—2/3.

Write 7IN(¢) :== 7(t)t~N = et t~N~1/2 the second scale for the (N + 1)-st array of poles.
Because 7y ;(£) ~ Consty, ; £ for € — oo, see Lemma 5.17, the t~' 7y ;(C7(t), | € Z>o form an
asymptotic sequence for |t| — oo, |7(t)| = o(|t|) and 7(¢) bounded away from 12/C, in the sense
that ¢~ . (C 7(t) = O(r1H(¢)!), where 7l(t) — 0. A stronger conjecture would be that (5.55)
extends as an asymptotic expansion for |t| — oo in the aforementioned domain. Because (5.56)
and (5.57) imply that (7 o(€), m2,0(¢)) — (1, 0) as £ — oo, it would follow that (m(¢), m2(t))
converges to the equilibrium point (1, 0) of the autonomous limit system if |¢| — oo, |7(¢)| — oo,
and |7(t)| = o(|t|). In view of (5.56), (5.57), (5.58), and (5.59), the first two terms of the extended
asymptotic expansion yield

mt) = 1+144(C7(t)"t = Cc7M(1) /60 4+ o(r(t) ") + o(r1 (2)),
m(t) = 144(C7(t) "+ M) /60 + o(r (1)) + o(rH (¢)).
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Therefore, if we restrict to 7(t) ™' = o(r}(¢)) = o(7(t)/t), that is |7(t)|/|t|"/? — oo, then
(ma(t), ma(t)) = (1, 0) + €M (1, =1) + (€M) it €M(e) = —C7(1)/60,

the leading term of an asymptotic expansion

(ma(t), ma(t) ~ Y 7 (€W (2), my (€M),

1>0

As in Lemma 5.8, the function &M — (WE}O(fm), 71'%17]0 (€M) satisfies the same differential equation
(5.40) as the function & — (m1,0(§), m2,0(§)), where both functions have the same value and first

order derivative at the origin. Therefore 771[61]0 = T,0, With 7 o and 72 ¢ as in Lemma 5.8. It
follows, if the aforementioned statements about the asymptotic expansions hold, that the second
sequence of poles occurs at points 2win — (3/2) log(2win) — log(—720/C) + o(1), equal to the
first sequence 27in — (1/2) log(27i n) —log(12/C) + o(1) plus —log(2win) — log(—60) + o(1) as
n — oo.
The text in “General comments 2”of [7, p. 40] continues with the statement that for each N

there is an asymptotic expansion of the form

o0

(m(t), ma() ~ > 7 (W 7N @), N (O - N (1)),
1=0

valid, if interpreted in the strong sense, for [t| — oo, |[7V(#)| = o(t), and |[7IN=1(t)| = oo, where
the constant CIV depends linearly on C. This would lead to an asymptotic description of the
(N +1)-st sequence of poles, equal to the N-th sequence plus —logn+ vy +0(1) as n — oo, where
the constant yx neither depends on n nor on C. For |[t| — oo and ¢ between the Nth and the
(N + 1)-st sequence of poles, the solution (71 (t), m2(t)) converges to the equilibrium point (1, 0) of
the autonomous system, if and only the distance from ¢ to both sequences of poles tends to infinity.
Furthermore, for every M > 0 we have that the energy E = m2/2 — m%/6 + 71/2 converges to
the criticial level 1/3, meaning that the solution converges to the solution of the autonomous limit
system at the critical energy level, if Imt — oo, Ret > —M log(Imt), and |¢| times the distance
from ¢ to the poles tends to infinity. The latter condition is related to the description of the energy
near the poles in (3.3).

We would like to prove statements like those in the second paragraph in the “General comments
2”7 of [7, p. 40] by means of the averaging method. This is not a trivial matter, as all the asymptotic
expansions up till now are near one of the critical values of the energy function, where solutions of
the averaged differential equation for the energy function are not uniquely determined. One might
expect that the energy function acquires different limit values from the critical value 1/3 of the
energy function, if ¢ runs to infinity in the direction of e'? with 7/2 < # < 37/2. On the other
hand the truncated solution converges to the equilibrium point of the autonomous limit system
(with energy equal to the critical value 1/3) if —7/2 < 6 < /2.
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APPENDIX A. OKAMOTO’S SPACE

We construct Okamoto’s space of initial conditions [21] in the Boutroux rescaling. (See also
[10] for the original Painlevé equation (1.1).) The notation (u;;1,usj2) will be used to denote the
coordinates in the j-th chart of the i-th blowup. In each coordinate chart, the Jacobian of the
coordinate change from (u1,u2) to (usj1,usj2) will be denoted by

8uz~j1 8uij2 8uij1 8114‘]‘2
i = — . Al
YT Ty Buy | Ous O (4.1)

Up to and including the seventh blowup, the function z E is rational with wj; in the denominator,

and we have added the formula for E wj; in each coordinate chart.
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Second affine chart in P?:

ug21 = U1,
Upr = w1l ug,
ur = ugar ',
us = upar " uo2e,
Uoo1 = up21 (—uge2 +2(52)7h),

o2 = o1t (6 + uga1® — w21 w022 — (52) ! uger uo22),
wo2 = —u0213,
w2 = 3ugar® (upae —2(52)71),

Ewpy = 2+up® — 27" w1 uoo?,

E'IU()Q = —(5 Z)_l (12 + 2’LL0212 — 3upa21 UOQQZ).

The line at infinity Lo corresponds to uge; = 0. In this chart there are no base points for the
Painlevé vector field or the anticanonical pencil.
Third affine chart in P?:

-1

up3r = ug
Uozz = ujug ',
up = upz1 ' uos2,
us = gz ',
dos1 = —uos1® — 6uoza”® + 3 (52) o,
Uoz2 = uoz1 " (uoz1 — uos1® uos2 — 6 uoza® + (52) T uost uoz2),
w3 = up31’,
[wos uos2 )" = Bugz® (=142 (52) " uosa) uos2
Ewos = 2 ' uggr — uos1® uos2 — 2uoz2?,
E wp3z = (5 Z)il (—3“031 +2 U0312 ug3z2 + 12 U0323).

The line at infinity Lg corresponds to upz; = 0. Both the The Painlevé vector field and the
anticanonical pencil both have a base point by given by ug31 = 0, ugze = 0.
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Blowing up P? at by leads to S;. First coordinate chart:

Up31r = U111 U032,
up3z2 = U112,
u = up
Uiz = ujugl,
ur = wun
uy = winn tune
i1 = une tuinn (=14 2(52)  uine),
G112 = uinn* (uin — 6uri2? — w2 uine® + (52) 7 uin uiia),
wir = uinn® uie?,
(w11 w1127 = Bun® (1 +2(52)  uie) ue
(w11 w1117 Y= 2w un? (—6une — winFune + 3 (52)  uan),
Ewy = 2w — 2uii® — win? uine?,
Ewy = (52)71 (=3uin + 12u112® + 2u111? ur12?).

Then 1112 = 0 defines Ly and uq17 = 0 defines Lél). The Painlevé vector field and the anticanonical
pencil both have a base point b; given by w111 = 0, w112 = 0.
The second coordinate chart after the first blowup is defined by

w31 = U121,
Up3z2 = U122 U031,
U1 = up ' = ugig uie,
Uiy = up =uinn
ur = U122,
uy = uar ',
G121 = w21 (—u121 — 6urer uige® +3(52)7 1),
Q12 = wiz (1 —2(52)"  uior uize),
w2 = ui’,
e = 2uin? (—uiz1 — 6uio ur® +3(52)71),
Ewiy = 27 —wnuiz — 2uio1? uiae®,
Fws = (52)71 (=3 + 2u191% w199 + 12u1912 u10?).

The equation u191 = 0 defines Lq. The line L(()l) is not visible, and there are no base points in this
chart.
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Blowing up S at by leads to S5. First coordinate chart:

U1l = U211 U112,
U112 = U212,
)
U211 = U1 U2,
1
U212 = U2 Ui,
-1 -1
Ul = u211 U212,
_ -1 2
Ugy = U211 U212,
. -1 2 3 -1
Uoir = w212 (—2wu211 + 6uzie + uai1” u212” + (52) " uair u212),

otz = uorn  (u211 — Gugna — ugiit ugra® + (52) " ugiy ugi2),
war = upir®ugnat,
[wor 212" = Buar®uge? (—1+2(52) ugra),
[woruoi1 )" = 2uant usre? (=6 — uani? u21o® + 3 (52) " uann),
Ewyn = 2 ugiy — 2ug1 — uoni® usio?,
Ewy = (52)7' (=3ug1 + 12u212 + 2ug11? ug12®).

Then w192 = 0 defines Lo and us1; = 0 defines the proper transform LéQ) of Lgl). The proper
transform Lgl) of L is not visible in this chart. The Painlevé vector field and the anticanonical
pencil both have a base point by given by ug11 = 0, ug12 = 0.

The second coordinate chart after the second blowup is defined by

ulll = U221,
U2 = U222 U111,
Uger = ui ' = iy u2i2,
Ugy = urPup ' =g Y,
up = ugar
us = ugor uggn
o1 = Uzt (—1+2(52)  uga ugem),
ooz = uzon T (2 — Gugor uszn® — ugo1® ugae® — (52) ! et ugoe),
Wwar = ugar ugas?,
Woy = 2uor” ugg® (—6usz — uzer®uszn +3(52)7 ),
Ewyn = 27— 2ugi ug® — ugor® ugeo?,
FEwyy = (52)71 (=3 + 12u901 u99? + 2 w9913 ugno?).

The equations u9s1 = 0 and ug9e = 0 define Ly and Lgl), respectively. The line L(()Q) is not visible,

and there are no base points in this chart.
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Blowing up Ss at by leads to S3. First coordinate chart:

U211
U212
U311
U312
u1

U2
U311
U312
w31
[ws1 (ugn —4)7']°
E w31
Ews

U311 U212,
U312,

-3, 2
U uz-,

uyup
usiyuzie 2,

ugt~ugia?,

uzia ' (12 — 3ugy + 2uzin? uzit),

ust1 (=6 + uzin — uginZ uzint + (52) 7  usin ugi2),

u3113 U3126,

2uz11” uz12® (uztn — 4) 72 (—usii® usi2® + 3 (52) 7 (ugnn — 4)),
—2+ 27 ugyy — ugii® ugia?,

(5 Z)_l (12 —3usz11 + 2U3112 ’LL3124).

Then ugio = 0 defines Ly and usg;; = 0 defines the proper transform Lé?’) of L(()2). The proper

transforms Lgl) of Ly and L§2) of Lgl) are not visible in this chart. The Painlevé vector field and
the anticanonical pencil both have a base point b3 given by us11 = 4, uzi2 = 0.
The second coordinate chart after the third blowup is defined by

U211
U212
U321
U322
Uy

U2
U321
U322
w32
[wsa (1 — dugan)™']*
Ews
E w32

U321,
U322 U211,
-2
Uy ~ U2 = U311 U312,

3, —2 -1
Uy u2 = usir

Uso1 % ugan !,

Uso1 > ugpe 2,

Uza " (=2 + 6 uzae + uznt usae® + (52) 7 user uz2e),

ugor ! (3 — 12ug20 — 2ugan® ugan®),

163216 U3224,

2u321% usan® (1 — 4usoe) 2 (—ug21® usoe® +3(52) 71 (1 — 4ugz)),
271 — 2ug99 — ugort uges®,

(5 Z)_l (—3 + 12 uz00 + 2 U3214 U3223).

The equations ugs1 = 0 and uges = 0 define Ly and Lél), respectively. The lines L(()3) and L§2) are
not visible. The Painlevé vector field and the anticanonical pencil both have a base point b3 given
by uzo1 = 0, uges = 1/4 in this chart.

50



Blowing up S3 at b3 leads to S4. First coordinate chart:

usil —4 = U411 U312,
Uzl = U412,
i = wr tus (—4ur® +ug?),
Ugy = upus”
up = ugia” 2 (44 warn uar2) ",
us = ugra (44 w11 ugr2)” 1
g1 = wgrn (44 warn war2)” 1
2

X (=10 ug11 — 4 ugns u412 + 128 ugro® + 112ug11 ware® + 32 wan1? ug12®
+3 w11’ ua12°% — (52) " uar wara (4 + war1 uar2)),

g2 = (44 ugrr uaiz) !
X (=2 4 war1 ua12 — 16ug12® — 8uary uaro” — warr® ugar2®

+(52) M uarz (4 + uar1 uar2)),

Wy = uare” (4 + ugr ua)?,
[wi w1 = 2ua12® (44 wann wano)® warn 2 (—uare? (4 + wary war2)? + 3(52) " uann),
Ewg = 27 sy — uaio® (4 + wann uain)?,
Ewy = (52)7" (=3 ua +2ua12® (4 + uar1 uai2)?).

Then wu412 = 0 defines Ly and 4 + ug411 w412 = 0 defines the proper transform L(04) of L(()S). The
proper transforms of the other lines on which the Painlevé vector field is infinite are not visible in
this chart. The Painlevé vector field and the anticanonical pencil both have a base point b4 given
by w411 = 0, ug12 = 0.

The second coordinate chart after the fourth blowup is defined by

uglr —4 = u421,
uzl2 = w422 (usn — 4),
ugr = w0 (—dur® 4 ua?) = warr waro,
Uy = ui? U2_1 (—dur® + U22)_1 = w1 Y,
ur = ugor 2 (44 uaz) sz,
uy = g1 (44 ugar) U422 3,
Qg1 = ug2a” ' (=3 + 32us21® wgon® + 16 ugar® ugn® + 2u4215 ug20t),
Ggzr = wazn ' (4 +waor) (10 + dugar — 128 ugon® wane® — 112 ug91* ugnn?
—32u491° a0 — Buan1 O wane® + (52) 7 w01 (4 + wan) uaze),
Wiy = s (4 + uger)? use0®,
gy = 2us91” (44 wa21)? ws22® (—uaz? (4 4 wa1)® uao® + 3 (52)71),
Ewg = 27" —ugon® (4 4+ wgo1)? wann®,
Ewp = (52)71 (=3 + 2> (4 + ugo1)? uaze?).

The equations ug91 = 0, 4 + ug91 = 0, and ug00 = 0 define Ly, L(()4), and and Lél), respectively. The
proper transforms of the other lines on which the Painlevé vector field is infinite are not visible in
this chart. Both the Painlevé vector field and the anticanonical pencil have no base point in this
chart.
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Blowing up Sy at b4 leads to S5. First coordinate chart:

U411
U412
Us11
U512
u1
U2

U511

Us12

W51

[ws1 u511’1]'
E ws;

Ew51

U511 U412,

us12,
2 3 2y, —5
uo” (—4ur” + ug®) up 7,

—1
upuz o,

2\—1

)
us12 < (44 usi1 usi2

-1 -1
= usi2 (44 us11 usio

)
= uz2 > (4 + us11 us2?) 7,
-
x (—8usz11 + 128 uz12? — Husii® usi2® + 128 usi1 usi2® + 40 us11? us12°
+dusii® us12® — 2 (52) sty usi2 (44 usi1 usi2?)),
= (4+us usi2®) "
X (—2 + us11 us12® — 16 us12® — Susiy us12® — us11” us1o®
+(52) " ust2 (4 + us1 us12%)),
= usio® (4 + usi1 us12?)?,
2usio? (4 + usi1 usi2?)? usi1 2 (—us12 (4 + usi1 usi2?)? +3(52) T usnn),
27 us1y — us1e? (4 + us us12?)?,
= (52)7' (=3 us11 + 2uz12” (4 + us1 uz12?)?).

Then usi2 = 0 defines Ls and 4 + us11 us12? = 0 defines the proper transform L[()S) of Lgl). The
proper transforms of the other lines on which the Painlevé vector field is infinite are not visible in
this chart. The Painlevé vector field and the anticanonical pencil both have a base point b5 given
by us11 = 0, us12 = 0.

The second coordinate chart after the fifth blowup is defined by

Uq11r =

Uq12 =

Us21

U522

U1

u2

Us21 =

Uszy =

W52
Wy =
FE W52 =

Euwsy =

U521,

U522 U411,

ur ™t (—4ur® + us?) ug = us11 usi2,
ur® (—dur® + us?) " ue = sl

uso1 2 usae 2 (4 + usar® use)

uso1 > ug2e P (4 + usor® usa2) T,

sz (4 + uzo? usan) !

x (—10 — 4 usa1® usaz + 128 uso1® usz0® + 112 us01® usan® + 32 us© uze®
+3 us01° us22® — (52) " usor usn (4 + uso1? use)),

wso1 ' (4 + us? usan)

X (8 + bz uszn — 128 uzo? us0® — 128 usor® usan® — 40 uso1® use®
—dusor® us20° + 2 (52) " uson usez (4 4 usa1® usez)),

usn ? usae® (4 4 usar” usnn)?,

2 uz1t usa2” (4 + usn? use)® (—usor usae? (4 + usar® us0)? +3(52)71),
271 — uso1? usae® (4 + usar® us22)?,

(5 Z)_l (—3 + 2 U5212 U5223 (4 + U5212 U522)2).
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The equations usa; = 0, 4+ us212 useo = 0, and usze = 0 define Ls, Lé5), and and L(l), respectively.
The proper transforms of the other lines on which the Painlevé vector field is infinite are not visible
in this chart. Both the Painlevé vector field and the anticanonical pencil have no base point in this

chart.

Blowing up S5 at b5 leads to Sg. First coordinate chart:

Uus11
Us12
U611
Ue12
ul
U2

Up11

Up12
We1
[we1 U611_1].

E we:
E we:

Ug11 U512,

UE12,

U176 U23 (—4 U13 + UQ2),
uyup

ug12 2 (4 4 ugr1 ugi2®) 7,
ug1a > (4 + up1 ug2”) Y,
ugr2 " (4 + ue11 us12®)”
x (—6ugi1 + 128 uga — 6 ugi1® ug12®
+144 ugi1 ugra” + 48 ugi1® ugi2” + 5uer” ugra™
—3(52) " ugr1 ugra (4 + uer1 ugi2”)),
(4+ ug11 ugr2”)
X (—2 + ug11 ug12” — 16 ugi2" — 8ue1 ugi2”
—ug11® ug12' + (52) " uera (4 + uer1 us12”))),
ug12® (4 + ue11 ugi2®)?,
2ug12” (4 + w11 ug12®)® ugin ™~
x (—(4 + ue11 ue12®)? + 3 (52) uer),
27 ugi1 — ugia (4 + ugi ue12”)?,
(52)7! (=3 ugi + 2ue12 (4 + us11 ug2”)?).

2

Then ugi2 = 0 defines Lg and 4 + ugi1 ugi2® = 0 defines the proper transform Léﬁ) of Lg’). The
proper transforms of the other lines on which the Painlevé vector field is infinite are not visible in
this chart. The Painlevé vector field and the anticanonical pencil both have a base point bg given

by ue11 = 0, ugi2 = 0.

The second coordinate chart after the sixth blowup is defined by

U511
Us12
U621
U622

U1

Uz

U621 5

U22 U511,

w1 ug? (—4ur® + uo?) = ugr1 ugl2,
ur®us ™ (—4ur® +up?) T = uen Y,

2 —2 3 -1
ue21 ~up22 - (4 + ue21” ue22”) T,
3

-3 -3 -1
ue21 © U2 (44 ue21” ug22”)
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Ug21 = U2z ' (44 upar® ueaz?) !
X (=8 + 128 ugn1 ug22” — B ug21® ue2a”
+128 ugor* upaz® + 40 ugar” ug0’ + 4 upar ™ upa2®
—2(52) " upar ue2z (4 + upar® uga?)),

Ugoe = U2 (44 upar® ueaz?) !
x (6 — 128 ug2y ugaz® + 6 ug21 > ugao
—144 ugor * ugae® — 48uea1 " ug0® — 5ugar ™ uga2®
+3 (5 2) " upar ueaz (4 + upar® uga?)),

wer = uga1® ugae” (4 + ug2n® ug?)?,
Ueae = 2uea1” ug® (4 + ue® ugao?®)?
X (—ug22 (44 ugn® ug?)?> +3(52)71),
Ewgy = 271 — ugr uga® (4 + uea1® ua2®)?,
Ewgy = (52)71 (=34 2ue1 ugo® (4 + ugar® uea2?)?).

The equations uga1 = 0, 44+ ug21> ugaa? = 0, and ugao = 0 define Lg, L(()G), and and Lél), respectively.
The proper transforms of the other lines on which the Painlevé vector field is infinite are not visible
in this chart. Both the Painlevé vector field and the anticanonical pencil have no base point in this
chart.

Blowing up Sg at bg leads to S7. First coordinate chart:

ugll = U711 U612,
ugl2 = Uri2,
urt = ur " uet (—4ur® + u?),
urz = upug
up = ume (44 ungumet)
uy = upa S (44 upguret)
U1 = upe ' (4 +urunet)

x (128 — 4duzi1 + 160 uz11 uzie® — 7wz urin?
+56 ur11% ur12® + 6 uri1® ura'?
—4(52) " urn unz (4 4 un urz?)),
iz = (44 umunz')
x (=2 — 16 uz12® + ur11 uria® — 8uzin uri2®

—uri 2 ure'? + (52) " uria (4 + urin urit)),
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wr1

(w1 (urn —32)71]°

E
E

w71

w71

ur12? (4 + w1 uri?)?,

—2uz12? (4 4wz un2?)? (urn — 32)72

x (ur12® (1024 — 64 w71y + 512711 urin® + 12 ugi1 2 ure?
+64 ur11? ur12® + urin® urio®)

+(52)7" (32 = Burin) (4 + un uri2?)),

27w — (4 + urin ur?)?,

(5 Z)_1 (=3ur1 +2 4+ um U7124)2).

Then w712 = 0 defines Ly and 4 4 w711 uri2* = 0 defines the proper transform L(()7) of L(()6). The
proper transforms of the other lines on which the Painlevé vector field is infinite are not visible in
this chart. The Painlevé vector field and the anticanonical pencil both have a base point b7 given
by w711 = 32, u712 = 0. Remarkably this base point in the Boutroux coordinates does not depend
on the independent variable z, whereas the seventh base point in the unscaled system is given by

yr11 = 32z, yr12 = 0.

The second coordinate chart after the seventh blowup is defined by

Ue11
U612
U721
U722
ul
U2

U721

U722

w72
[w72 (32 U792 — 1)_1].

E wry
E wro

The equations w791 = 0, A+ w1t ugeg® = 0, and w799 = 0 define L7, L(()7

U721,

U722 U611,

w1 O ug® (—dur® + u2?) = w1 una,
u gt (—4ur® +u®) T =

) —2 4 3y—1
uro1” U2 < (44 urer” ure2”) T,

Uror P uzoe T (4 + urar® ur®) 7,

Uroo " (4 wro t uges®) !

X (—6 + 128 uz20 — 6 ura1” urae® + 144 urar  uron® + 48 wzo1® uzan”
+5ura1 ' ur20™ — 3 (52) " uzar urn (4 + urart urn?)),

—uz1 (4 + ugar ugee®)

X (4 — 128wz + Tuzor* uzo® — 160 uzor® uzan® — 56 uga1® ugas”
—6 w21 ura2'® + 4 (52) " uzar uron (4 + ot urn?)),

Uro1® urae® (4 + uzar® urn®)?,

2uz1” wro® (44 uzon® ur20®)? (32uge0 — 1) 72

x (wr21° ur92® (—64 4+ 1024 urey + 12 U791t urae®
+512ura1t uron® + wrar® wro® + 64wz B uran”)
+(52) 7" (=3 + 32ur22) (4 + urar* ura2?)),

271 — uzon (4 + urar t uzn®)?,

(52) 71 (=3 + 2urgo (4 + uro P urn®)?).

)

, and and Lél), respectively.

The proper transforms of the other lines on which the Painlevé vector field is infinite are not visible
in this chart. The Painlevé vector field and the anticanonical pencil have the base point u79; = 0,
w722 = 1/32 in this chart, which is equal to the previously found base point by.
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Blowing up S7 at b7 leads to Sg. First coordinate chart:

urilr — 32 = wug11 U712,
url2 = Ug12,
ugn = —up Sug (32w’ +4urd ugt — uof),
ugi2 = upu
up = ugiz 2 (44 32usio* + ugi ugi2®) 7,
uy = ugiz (4 + 32usio" + ug ugi2®)
tg11 = ugiz L (4 + 32ugiet + ugiy ug2®) !

x [=2 (us11 + 1024 ugia® + 152 ugiy ugia® + 4ugi1? ugi2®)

+ugia” (32 + ugi1 ugi2) (1792 + 64 ugi1 usiz + 6144 ugio® + 416 ugyy ugi2”

+7us11? ug12®) — (52) 7' (128 + 5usit usi2) (4 + 32 ugin® + us11 usia”)],
tglz = —(4+ 32ugio® + ugiy uge®) !

X [2 — 16 ug1o® — ugiy ugia® + 256 ug12® + Sugiy ugia® + 1024 ugyp'?

+64 ugyq ug1o'® + ugi1? ugio™ — (52) 7 ugia (4 + ugi usia® + 32us12”)],

wgy = ugye (4 + 32ugiat + usiy ugie®)?,
Ews = 2 " ugiy — ugi2® (32 + ugi1 ug12) (8 + 32ug1o” + usi1 ugi2”),
Ews; = (5 z)_l u812_1 (—64 — 3ugy1 ugi2

+2ugio® (32 + ug11 ugio) (8432 ug12® + ugiy u8125))-

Furthermore

[wgl (ug11 + 256 (5 z)_l)_l} * = 2ugy (4 + 32ug1o* + us11 ug12”)? (us11 + 256 (52) 1) 2
x [—ugio? (—2'0 — 28 ugyy ugio + 2" - Tugin® + 2% - Sugyy usio® + 27 - 3usi? ugi2®

+21% . Bugyo® + 20 Tugry ugia® +2° - Hugin? usi2' + usii® ugi2't)

+(52)71 (22 - Bugis — 2'% - Bugin® — 2° - 3% ugyy ugin® + 3usii? usi2® + 217 - Sugia”

+219 5 ugyq ugio® 4+ 217 - Bugiatt + 21 - 5ugyy ugie'? + 27 - Sugii? ugin'?)

+768 (52) 7% (4 + 32 ug12* + us11 us12”)].

The equation ugi2 = 0 defines Lg and 4+ 32 ug12* +ug11 ugi2® = 0 defines the proper transform L(()S)

of L(()7). The proper transforms of the other lines on which the Painlevé vector field is infinite are
not visible in this chart. The Painlevé vector field has a base point bg given by ug;; = —256 (52) 71,
ug12 = 0. In the Boutroux coordinates, this is the first base point which depends on the independent
variable z. The anticanonical pencil has a base point b§“ given by ugy1 =, ugia = 0. We have
bs" # bg with a distance between both base point vanishing of order 1/z as z — oco.
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The second coordinate chart after the eighth blowup is defined by

uril — 32 = uga1,
uriz = ugee (ur11 — 32),
—7 7 3.4 6
ugor = —ui ' (32ur’ +4ur”ue® —u2”) = ugi1 usi2,
8 1 7 3 4 6y—1 1
ugee = —uitus (32w’ +4uiCus” —ug’)T =usnin
) 2 4 4 5 4y—1
up = ugol - ugee - (44 32usa” ugee” + uga” ugee”) T,
_ -3 =344 39 4 4 5 41
ug = ugal Cugaa © (4 + 32ugor” ugee” + uga’ uga”) ",
. -1 4 4 5 4y—1
Uggr = ug2e (44 32ugor” uga™ + us21” use”)

5 4
Ug22

+2uga” (32 + U821)2 Uug2® (28 + 96 uga1? ugos® + 3ugar® U8224)

—4(52)71 (32 + ug21) ugan (4 + 32 ugor ugao® + ugan® ugn?)],
-1

X [—4 — 2048 u8213 u8224 — 288 u8214 u8224 — 7u821

sz = —uga1 (4 + 32ugon® ugae® + ugor® ugao?)
X [—2 — 8ugar® (256 + 38 ugay + ug21?) ugae’
Fugor” (32 + ugar) usee® (1792 + 64 ugar + 6144 usoy? ugao® + 416 ugo)® ugao®
+7 ugo1% usgao®) — (52) 7 (128 + 5ugar) usoz (4 + 32usor” uson™ + us2” ugz?)),

2 4 4 5 4\3
= ug21 U822 (4+32u821 ugo2” + ug21” Ug22 ) )

wgo
Fwgy = 271 —ugy?® (32 + usg21) ugza? (8432 ugo1? ugon® + ugor® U8224),
Ewgg = (5 Z)_l ’LL821_1 (—64 — 3uga1
+2 ugar* (32 + usg21) uggo? (8+ 32 ugo1® ugon® + ugor® U8224))-
Furthermore,

[wso (256 (52) T ugan + 1) 71" =

2 ugan® (4 4 32 ugo1® uge™ + ug2n® ugan®)? (256 (52) " ugae + 1) 2

X [—ugo1® ugn® (210 — 26 ugay + 217 Tugor? ugae® + 2% - 5ugar® usan® + 22 - 3usa  ugon?
+21% - 3ugor® ugan® + 210 Tugar” ugoe® + 2% - Sugor ' ugan® + ugar !
—(52)71 (2% — 22 - Bugar — 2" ugor® usoe® — 2M - 3% ugor® ugan®
—2° - 5ugor® ugn® — 3ug O ugoe® + 2% - Tugor " ugao®

+210 5 ugo1® ugan® + 210 - 3ugar? ugae® + 22% - 3ugor M ugan'?

+218 - Tugor ' ugn®® + 2" - 5ugor ™ ugon® + 2% ugor M ugan'?)

+27 (5 z)_2 (27 + 11 u821) (4 + 32 u8214 u8224 + u8215 u8224) USQQ].

Uug29®)

(8)

4 u8224 + u8215 u8224 = 0, and Uug — 0 define Lg, LO y and and

The equations ugo; = 0, 4 + 32 ugoy

L(71), respectively. The proper transforms of the other lines on which the Painlevé vector field is
infinite are not visible in this chart. The Painlevé vector field has the base point bg defined by the
equations uga; = 0, 256 (5 2) ! ugaa + 1 = 0. The base point bg" of the anticanonical pencil is not
visible in this chart.
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Blowing up Sg at bg = bg(z) leads to Sg = Sg(z). First coordinate chart:

ugy1 + 256 (52) 7
Uug12

U911

U912

Uy

U2

U911

U912

wo1

wo1

E wgy

E woy

U911 U812,

u912,

T (—32 ur uy — dur® ug® + us” + 256 (5 z)_l u18),
ug ug
ugra 2 (4 + 32ug1a” + uor1 ug12® — 256 (52) " ugi2®) 7,
U912~ (44 32ugia” + ugr1 ug12® — 256 (52) " ug12®) Y,

(4 + 32ug1o® + ugr1 ug12® — 256 (52) " ugio®) !

x [ugia (=2 — 20 - 5ugiy ugia? + 2" - Tugin® — 3% ugi1? ugio*
+2'2 ug1 ugr2® + 20 - Bugia® + 27 - 3% ugi1? ugra®

+2'2 - 5 g1y ugia™ + 2% - 11 ugy1® ugrn'? + 2% ugry® ugio')
—2(52)71 (2% - Bugrr — 2'% - 3% ug1a? — 2° - 3% - Ty ug12*
+2 -3 - 5ug12® + 3ugii? ugia® +2'% - 17 ugiq ug1o®

+217 19 ugo'® 4+ 213 - 3 - Tugyy ugra'? 4 27 - 23 ug11? ug12'?)
427 (52) 2 ugro® (2% - 3 5 4 3ug1; ugy2>

+23 ugio? + 2 Bugio® 4 2% - 11 gyt ugio™)

—2% .7 (5 2) B ug12'?,

—(4 + 32ugia” + ugi1 ug12® — 256 (52) " ugi2®) !

x [2 — 2% ugra® — ug11 ugr2® + 28 ug12® + 23 ugyy ugra™
+2'%ug12" + 20 ugyy ugra™ + ugr1® ugra'®

—(52) M ugia (22 — 2° - Tugia® + ugiy ug12®

+2M ug1o® + 2" ugin'? + 2% ugry ug12™)

128 (5 2) "2 ug12% (1 + 2% ug12°)],

(4 + 32 ugr2® + ug11 ug12® — 256 (52) " ug12”)?,

3ugre” (4 + 32ug12® + ug11 ug12® — 256 (5 2) " ugia”)?)

6 2 | 69 4, od 6, oll
X [—2° — Bugi1 ug12” + 2° ug12” + 2" ug1q ugr2° + 2 ugi2
2

8

+2" ugry ug12'® + 2ug11? ugra!
—28(52) M ugra (=3 + 2  ugr® + 27 ugi12® + 2% ug11 ug12™)
+217 (5 z)_2 ’LL91210],

—27 g1 ugre (—ug1n + 2% ugio® + 2% ugr1 ugra?

+2M ug19°% + 27 ugry ugio® + 2ug11? ug12')

—28(52) 71 (=1 + 2" ugr2® + 27 ug12® + 4 ugry ug2')

+217 (5 2) 2 ugy2”],

(52) " ugra 2 [~2° — Bugr1 ugr2® + 2% ugra? + 2% ugry ug12®
+2M 9198 + 27 g1y ugra® + 2ug11” ugin'?

28 (52) " ugra (=3 4 2 ugia® + 27 ug12® + 2% ugyy ug12'?)

217 (5 Z)_2 U91210]-
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As the change of coordinates from (u1, uz) to all previous coordinate systems (u;j1, uij2) for ¢ < 8
do not depend on z the limiting system of differential equations %4, = g, %y = 6412 + 1 in the
coordinate systems (u;j1, uij2) for i@ < 8 is obtained by deleting the term in #;;; and ;52 which
have a factor 1/z in front. This is no longer true in the coordinate system (ug11, ug12). However,
the difference between the Painlevé-Boutroux system and the limiting system still has a relatively
simple expression:

U911 0 U911 = —2 (5 Z)_l U912_2 (64 — 640 (5 Z)_l ug12 + 3 U911 U9122)

. . A2
912 = g1y = (52) L ugya. (A-2)

The equation ug1g = 0 defines Lg and 4+ 32 UQ124 “+ U911 U9126 — 256 (5 Z)_l U9125 = 0 defines the
proper transform L(()g) of L(()S). The proper transforms of the other lines on which the Painlevé vector
field is infinite are not visible in this chart. The Painlevé vector field is regular along Lg, nonzero,
and transversal to it. Moreover, the Painleveé vector field has no base points in this chart. On the
other hand the blowing up of Sg in the point bg, which is not the base point of the anticanonical
pencil, causes E wg; to be infinite along Lg, the line determined by the equation ugis = 0. The
image (Vbg" of bg" in Sy is not visible in this coordinate chart.
The second coordinate chart after the ninth blowup is defined by

8 -1
ugr = wugil +2°(bz),
8 1
ugly = ugz (ugi1 +2°(52)7 ),
-8 5.7 2.3 5 7 o8 1.8
Ugo1 = U1 (—2 ur' uo — 2w u® +ug’ + 2 (52) Ul )ZUgll U912,
9. —1 5.7 2 3 5 7 o8 1. 8y—1 -1
ugor = ur uz (2w ug — 2wt ue® +un’ +2°(52) wi®)T =wuen1 7,
) —2/62 | o5 4 4 6 5 o8 -1 5 5yv—1
up = ugal - U922 - (2% 4 27 uga1” ugaa” + uga1® ugaa” — 2% (52) 7 ugar” uge2”) T,
-3 3792 | o5 4 4 6 5 o8 -1 5 5y—1
ug = uga1r S ugaa (2% 4 27 uga1” uga” + uga1® uga” — 2° (52) 7 ugar” ugee”) T,
. “1/92 , o5 4 4 6 5 o8 1 5 5y—1
Ugor = —ug2e (27 4+ 2° uger” ugee™ + uga1” ugae” — 2° (5 2) 7 uga1” ug22”)

11 2 3, o4 4 4, 53 6 5
X [24 27 uga1” ugaa” + 27 - 19 uge1” ugee” + 2° uge1” ugee

13 6 7 o8 8 8 of 10 9
=277 - Tugor” ugan' — 27 - 3 - Sugar” ugaa” — 27 uga1 Uy

11 13

210 g1 10 ugan™ — 210 - 19 ugo1 M ugaa'® — 27 - 5uger M ugoe
—T uga1'® ugaa™ + (52) " uga1 ug2

X (22 -5 — 213 32 UQ212 U9223 — 25 . 7 . 17U9214 ’LL9224

+5 1921 ° ug2e” + 20 - 3+ 5 g O ugae” + 2" ugar® ugeo®

+2'8 . 19 ugo1 1 ugoa™t + 210 - 5 g P ugen'? 4+ 2° - 3 - Tugar M ugan'?)
—28 (5 2)72 UQ214 U9225 (—27 -3-5+5 IL9212 U922

+2M ugort ugoa® + 2% - 5uger® ug® 4+ 2% - 3 - Tugar ' ugan?)

224 .7 (5 Z)_3 u92113 u92214],
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Uger = —(2% + 2% ugm ugaa + ug91® ug20® — 2% (52) 7 uga1® ug20”) T ugae
X [uga1 ugao® (=21 — 2% 5uga1® ugos — 3% ugar? uges?
+213 - T g ugas® + 212 ugo1® ugan® + 2% - 3% ugar® ugan®
+210 - 3ug1® ugaa® + 22 - 5 g ¥ ugas® + 25 - 11 uga M ugan!
—|-23 U92114 U92211) -2 (5 Z)_l (22 -3 - 212 . 32 U92]_2 U9223
—2° 3% Tugor* ugoa® + 3921 ugae® + 2 - 3+ 5ugr® ugas”
+210 17 ugo1® 1g20® + 217 - 19 ugar ' ugae ™™ 4213 - 3 - Tugar ' uges'?
+27 - 23 ugor M ugan™) + 2% (52) "2 uga® ugoa® (—2° - 35 + 3ugar® ugas
+213 ugo1 ugoa® + 2M - 5uga®
_224 .7 (5 z)—3 u92112 u92213],

woy = Ugaz (22 4+ 2% ugar? ugan® 4 ug1® ugae® — 28 (52) 7 ugar® uga®)?,

gy = 2ugen (22 4 2% ugar? ugaa® 4 uga1® ugae® — 28 (52) ! uger® uge®)?

2/ 610 o6, 2 12 4 4
X [—ug21 ugaa” (—27° — 2° uga1“ ugaa + 277 - Tugar” uge

0

8 | o8 10 9
ug22° + 2° - 11 ugpr ™ ug22”)

+2% - 5ugo1 % ugas® + 2% - Bugar® ugeo® + 2" - 3ugar® ugoe®
+210 - Tugo1 1 ugao? + 2% - 5ugar ™ ugae'® + ugar M ugan't)
+(52) 71 (223 — 2" - 3% ugyr® ugo® — 2° - 3 ugar? ugay?
+3ug21% ug20” + 217+ 3+ 5ugar ® ugas” + 210 11 ugo;® ugao®
+27 - 19 ugr ¥ ugoa™ 4+ 27 3 Bugar P ugea 4 27 - 11 ugar M ugae'?)
—28 (52) 2 ugar® ugoa™ (—2° - 3+ 5+ 3uga1® ugaz + 2" ugar* ugao?
+2M - 5 ugor® ug2e® + 2M ugar 'O ugas?) + 2% 7(52) 7% ugar ' ugae ',
Ewgy = —2 " ugo " [ugzr (—1 + 27 ugor® ugao® + 2% ugor ? ugoo®
+2M g1 % ugae” + 27 uga1® uga0® + 2 ugar ™ ugoa?)
=28 (52) 71 (=1 + 2" ugor® ugao® + 27 ugar® ugao® + 2% uga M ugos?)
+2'7 (5 2) 7% uga1” uga2?),
Ewgy = (52) " uga *ugas ™

x [—2% — 3ugar® ugan + 27 ugar® ugan® + 2% uga1® ugas®
+2M 1go1® ugae® + 27 g1 0 uges® + 2 ugar ™ ugoe”
—2% (52) ! ugar ugaa (—3 + 2% ugar ugas® + 27 ugar ® ugeo®
+22 g1 ™ ugaa?) + 217 (5 2) 7% ugar ' ugan ™.

The difference between the system and the limiting system is given by

tgor —dgar = —(52) 7" ugar T ugae ™! (128 — 1280 (5 2) ! ugar ug2o + 5 ugar” ugas)
tgor — dgae = 2(52) " ugar T (64 — 640 (52) " ugar ugaa + 3 ugar® ugao).
The equations ugo; = 0, 22 + 25 uga1? ugas? + 1g21% 1922 — 28 (5 2) 7! uga1® U922 = 0, and uggs = 0
define Lo, L(()g), and and Lg), respectively. The proper transforms of the other lines on which the
Painlevé vector field is infinite are not visible in this chart.
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FIGURE 4.2. The absolute value of the Weierstrass p function
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FIGURE 5.1. The domain V, four half-lines L C V, and their distances to the origin
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FIGURE 5.2. The region R, ,, to the right of the curved boundary
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FI1GURE 5.3. Truncated region in the z-plane, to the left of the curved boundary
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FI1GURE 5.4. Triply truncated region in the z-plane, to the left of the curved boundary
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FIGURE 5.5. The first twenty of the asymptotic approximations in (5.68) of the poles of p(t)
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