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OKAMOTO’S SPACE FOR THE FIRST PAINLEVÉ EQUATION

IN BOUTROUX COORDINATES

J.J. DUISTERMAAT AND N. JOSHI

Abstract. We study the completeness and connectedness of asymptotic behaviours of solutions of the first
Painlevé equation d2 y/dx2 = 6 y2 + x, in the limit x→∞, x ∈ C. This problem arises in various physical

contexts including the critical behaviour near gradient catastrophe for the focusing nonlinear Schrödinger

equation. We prove that the complex limit set of solutions is non-empty, compact and invariant under the
flow of the limiting autonomous Hamiltonian system, that the infinity set of the vector field is a repellor for

the dynamics and obtain new proofs for solutions near the equilibrium points of the autonomous flow. The

results rely on a realization of Okamoto’s space, i.e., the space of initial values compactified and regularized
by embedding in CP2 through an explicit construction of nine blow-ups.

1. Introduction

In this paper, we consider the completeness and connectedness of the asymptotic behaviours of
the first Painlevé equation

d2 y

dx2
= 6 y2 + x, (1.1)

in the limit x → ∞, x ∈ C. The first Painlevé equation arises in many physical contexts, as a
reduction of the Korteweg-de Vries equation, in the double scaling limit of random matrix models
and in the critical behaviour near the point of “gradient catastrophe” of the solution to the Cauchy
problem for the focusing nonlinear Schrödinger equation [9].

The asymptotic limit x → ∞ of Equation (1.1) was first studied in 1913 by Boutroux [2], who
provided a transformation of variables that makes the asymptotic behaviours explicit. It is known
that all solutions of (1.1) are meromorphic in C with double movable poles, i.e., with locations
that change with initial conditions. Boutroux found that locally, in each patch near infinity, the
general solutions are given to leading-order by elliptic functions. More detailed results about how
the local asymptotic behaviours of solutions change slowly as x moves near infinity were provided
by Joshi and Kruskal [15, 16], who constructed a complex multiple-scales method to carry out
asymptotic analysis along a large circle in the complex plane for the first and second Painlevé
equations. Such local behaviours were used in the Riemann-Hilbert method, which was applied to
deduce connections between behaviours valid along special directions approaching infinity (see the
review by Kitaev [18]).

In addition to the two-parameter solutions asymptotic to elliptic-function behaviours, Boutroux
identified five one-parameter family of solutions asymptotic to algebraic power expansions in certain
sectors of angle 4π/5 in C. He called them tronquée or truncated solutions. In each family of
tronquée solutions, there is a unique solution whose algebraic expansion is valid in a sector of angle
8π/5. Boutroux called these tritronquée or triply truncated solutions. In the literature, this term
has come to be associated with the unique tritronquée solution that is real on the real line; each of
the other four such solutions can be obtained from this one by a discrete symmetry of Equation (1.1)
corresponding to rotating variables in C. This real tritronquée solution appears as a distinguished
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solution in various physical problems (see, e.g., Dubrovin et al. [9]). In the form Ytt = 6Y 2 − t
(for y(x) = Y (−t)), Joshi and Kitaev [14] constructed a sequence of solutions that converge to the
tritronquée solution on the whole positive real axis and proved that the tritronquée solution has no
poles whatsoever on the positive real axis. O. and R. Costin [7] applied Borel-summation methods
to deduce many complex properties of the tronquée solutions.

However, while it is known that the solution space of Equation (1.1) is connected, through
Okamoto’s [21] compactification and regularization of the space of initial-values, there has been no
investigation (to our knowledge) of the completeness or connectedness of the known asymptotic
behaviours of the solutions of this equation (or of any of the six Painlevé equations). We tackle this
problem by undertaking asymptotic analysis in Okamoto’s space. Our approach relies on explicit
resolution of singularities in an asymptotic version of this space. We note that although we focus
on the first Painlevé equation in this paper, our approach can be extended to the other Painlevé
equations.

The paper is organized as follows. In §2, we recast Equation (1.1) as a Hamiltonian system,
provide a rescaling of it under Boutroux’s transformation of variables, and summarize known prop-
erties of solutions. The resolution of singularities of this Boutroux-Painlevé system is provided
explicitly in Appendix A where we carry out the sequence of changes of variables necessary first to
compactify and then blow up the nine base points of the system in CP2. The last space S9 con-
structed by this sequence of steps is Okamoto’s “space of initial values.” The construction shows
that the vector field is infinite on the union I := ∪8

i=0Lj of nine complex projective lines.
We show in §3 that the Boutroux-Painlevé vector field is regular and transverse to the last

complex projective line, L9, in S9. It is shown here that the Taylor expansion of the flow around a
point on this line provides us with the Laurent expansion of the solutions y(x) near a pole. In §4, we
consider the vector field near the infinity set I and show that this is a repellor for the flow. We also
construct the limit set for each solution and show that it is a non-empty, compact and connected
subset of S9, which remains invariant under the autonomous flow. As a corollary, we prove that
every solution of Equation (1.1) must have an infinite number of poles in the complex plane. Finally,
in §5, we consider the Boutroux-Painlevé system near the equilibria of the autonomous limit system
and prove several results about tronquée solutions, ending with a determination of their sequence
of poles near the boundaries of pole-free sectors, by using classical methods.

2. Boutroux scaling

Equation (1.1) can be viewed, upon the substitutions y = y1, dy/dx = y2, as a Hamiltonian
system dy1/ d x = ∂H/∂y2, dy2/dx = −∂H/∂y1 with an x-dependent Hamiltonian function

H = H(x, y1, y2) := y2
2/2− 2 y1

3 − x y1. (2.1)

The function H is a weighted homogeneous polynomial in the sense that if we substitute x = λ4 ξ,
y1 = λ2 u1, and y2 = λ3 u2, then H = λ6 (u2

2/2−2u1
3−ξ u1). We have ξ = 1 if and only if x = λ4,

when λ = x1/4, y1 = x1/2 u1, u1 = x−1/2 y1, y2 = x3/4 u2, and u2 = x−3/4 y2. If x = x(z) and a

dot means differentiation with respect to z, then u̇1 = ẋ (−(1/2)x−1 u1 + x1/4 u2). If we choose

(4/5)x5/4 = z then ẋ x1/4 = 1, and the Painlevé system takes the form

u̇1 = u2 − 2 (5 z)−1 u1,
u̇2 = 6u1

2 + 1− 3 (5 z)−1 u2.
(2.2)

This is an order z−1 perturbation of the Hamiltonian system with Hamiltonian function equal to
the z-independent energy function

E := u2
2/2− 2u1

3 − u1,
where

Ė = (5 z)−1 (2u1 + 12u1
3 − 3u2

2) = −(5 z)−1 (6E + 4u1).
(2.3)
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It implies Boutroux’s second order differential equation

ü1 = 6u1
2 + 1− z−1 u̇1 + 4 (5 z)−2 u1 (2.4)

for u1. These transformations have been used by Boutroux [2] in order to investigate the asymptotic
behavior of the solutions of the Painlevé equation when x→∞.

Because
∫∞
z0

z−1 dz = ∞, we cannot straightforwardly conclude that solutions of the Boutroux

system (2.2) converge to solutions of the autonomous Hamiltonian system when z →∞. Actually
they don’t: we will see that each solution of (2.2) converges to different solutions of the autonomous
limit system, depending on the path along which z runs to infinity.

Remark 2.1. If a and b are nonzero complex constant complex numbers, then the substitutions
y(x) = a η(ξ), ξ = b x turn (1.1) into the differential equation d2 η/dξ2 = αη2 + β ξ, where

α = 6 a/b2 and β = 1/a b3, or equivalently b = (6/αβ)1/5 and a = α b2/6.
Boutroux [2, p. 311] took the first Painlevé equation with the constants α = 6 and β = −6,

or equivalently b = (−1/6)1/5 and a = b2, as his point of departure, and applied the substitutions

X = (4/5) ξ5/4 and η = ξ1/2 Y in order to arrive at the differential equation d2 Y/ dX2 = 6Y 6 −
6 − (1/X) dY/ dX + (4/(5X)2)Y . Therefore the translation from Boutroux’s notation to ours is

X = (−1/6)1/4 z, Y = (−1/6)−1/2 u = (−1/6)−1/2 u1, and Y ′ = (−1/6)−3/4 u̇ = (−1/6)−3/4 (u2 −
2 (5 z)−1 u1). An expression which plays a central role in Boutroux [2, §7–11] is

(Y ′)2 − 4Y 3 + 12Y = (−1/6)−3/2 (u̇2 − 4u3 − 2u).

Joshi and Kruskal [15], [16] took the first Painlevé equation with the constants α = 3/2 and

β = −3/2, or equivalently b = (−8/3)1/5 and a = b2/4, as their point of departure, and applied

the substitutions Z = (4/5) ξ5/4 and η = ξ1/2 U , where they actually wrote z and u instead of

Z and U , respectively. Therefore the translation from their z and u to ours is Z = (−8/3)1/4 z,

U = 4 (−8/3)−1/2 u = ± i
√

6u1, and dU/ dZ = 4 (−8/3)−3/4 u̇ = 4 (−8/3)−4/3 (u2 − 2 (5 z)−1 u1).
A central role is played in [15], [16] by the function

E := ((dU/ dZ)2 − U3 + 3U)/2 = 2−1/2 (−3)3/2 (u̇2/2− 2u3 − u).

The functions (Y ′)2− 4Y 3 + 12Y and E are closely related to the energy function E in (2.3), as

u̇2/2− 2u3 − u = E − 2 (5 z)−1 u1 u2 + 2 (5 z)−2 u1
2. (2.5)

Remark 2.2. The Boutroux substitutions x =
(
(5/4) z

)4/5
with inverse z = (4/5)x5/4, and y(x) =

x1/2 u(z) = x1/2 u
(
(4/5)x5/4

)
=
(
(5/4) z

)2/5
u(z) with inverse u(z) = x−1/2 y(x) are singular at

x = 0 and correspondingly z = 0. These substitutions introduce multi-valuedness of the solutions
u(z) of the Boutroux-Painlevé equation (2.4) when z runs around the origin in the complex plane,
where the solutions y(x) of the Painlevé equation (1.1) are single-valued.

More precisely, every local solution y(x) of (1.1) extends to a single-valued meromorphic function
on the whole complex x-plane, where the poles are of order two and have leading coefficient equal
to 1. This is the Painlevé property in its strongest form; see [10, Remark 1.1] for some remarks on
its proofs in the literature.

The equation u(z) = ((5/4) z)−2/5 y
((

(5/4) z
)4/5)

, in combination with the single-valuedness of

y(x), implies that the analytic continuation of u(z) along the path z e i θ, avoiding the poles of u(z),
returns to its opposite if θ ∈ R runs from 0 to 5/4 times 2π. This may be expressed by the formula

u1(z e5π i /2) = −u1(z), u2(z e5π i /2) = iu2(z), (2.6)
3



where the second equation follows from the first, in view of the first equation in (2.2). This
observation has been used in Joshi and Kruskal [15, Sec. 5] as a consistency check for their
asymptotic results for u(z) for large |z|.

Remark 2.3. Each solution y(x) of the Painlevé equation (1.1) has a convergent Laurent expansion

y(x) =
∞∑

n=n0

yn x
n

for 0 < |x| << 1, when u(z) =
(
(5/4) z

)−2/5
y(x) = ((5/4) z)−2/5 y(((5/4) z)4/5) implies the conver-

gent power series

u(z) =
∞∑

n=n0

yn
(
(5/4) z

)(−2+4n)/5

for 0 < |z| << 1. We have the following cases.

i) y(0) is finite, when n0 = 0. The Painlevé equation y′′ = 6 y2+x is equivalent to the recursive
equations

n (n− 1) yn = 6
n−2∑
m=0

yn−2−m ym for n ≥ 2, n 6= 3, (2.7)

y3 = 2 y0 y1 + 1/6 (2.8)

for the coefficients yn. The mapping which assigns to the solution y(x) the complex numbers
y0 = y(0) and y1 = y′(0) is bijective from the set of all regular solutions y(x) near x = 0
onto C2. Subcases:
ia) y0 = y1 = 0, when (2.7) for n = 2 yields that y2 = 0, whereas (2.8) implies that y3 = 1/6.

An induction on n yields that yn = 0 unless n ∈ 3 + 5Z, as n − 2 −m = 3 + 5 k and
m = 3 + 5 l imply that n = 3 + 5 (k + l + 1). Because −2 + 4 (3 + 5 j) = 10 (2 j + 1),

it follows that u(z) =
∑∞

j=0 y3+5 j ((5/4) z)2 (2 j+1). In particular this solution u(z) is
single-valued.

ib) y0 = 0 and y1 6= 0, when u(z) = y1 ((5/4) z)2/5 + O(z2) as z → 0.

ic) y0 6= 0, when u(z) = y0 ((5/4) z)−2/5 + O(z2/5) as z → 0.
ii) y(x) has a pole at x = 0, when n0 = −2, y−2 = 1, y−1 = y0 = y1 = y2 = 0, and y3 = −1/6.

The mapping which assigns to the solution y(x) the coefficient y4 is bijective from the set
of solutions with a pole at x = 0 onto C, see for instance [10, the text following (11.3)]. For
n ≥ 5 the Painlevé equation y′′ = 6 y2 + x implies the recursive equations

(n (n− 1)− 12) yn = 6

n−2∑
m=3

yn−2−m ym. (2.9)

Subcases:
iia) y4 = 0. As in ia) it follows from (2.9) by induction on n that yn = 0 unless n ∈ 3 + 5Z,

and it follows that u(z) =
∑∞

j=−1 y3+5 j ((5/4) z)2 (2 j+1). In particular this solution

u(z) is single-valued.

iib) y4 6= 0, when u(z) = ((5/4) z)−2−(1/6) ((5/4) z)2 +y4 ((5/4) z)14/5 +O(z18/5) as z → 0.

It follows that the solution u(z) of the Boutroux-Painlevé equation (2.4) is not single-valued, unless
we are in the cases ia) or iia). That is, the solution y(x) of (1.1) is either equal to the unique
regular solution near x = 0 for which y(0) = y′(0) = 0, or y(x) is the unique solution of (1.1) with
a pole at x = 0 such that y4 = 0.

If y(x) is a solution of (1.1), and a ∈ C is a fifth root of unity, that is, a5 = 1, then x 7→ a−1 y(a2 x)
is also a solution of (1.1). The solutions y(x) in ia) and iia), corresponding to the single-valued
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solutions u(z) of (2.4), are exactly the solutions which are invariant under this five-fold symmetry,
that is, which satisfy y(x) = a−1 y(a2 x) for every fifth root of unity a, as this means that in the
Laurent expansion of y(x) only the powers xj appear such that 2 j− 1 ∈ 5Z ⇔ 2 j− 1 ∈ 5 (2Z+ 1)
⇔ j ∈ 5Z + 3. The solutions y(x) in ia) and iia) appear in Boutroux [2, p. 336, 337].

Remark 2.4. If y(x) is a solution of the Painlevé equation (1.1), and a ∈ C is a fifth root of unity,
that is, a5 = 1, then x 7→ a−1 y(a2 x) is also a solution of (1.1).

The solutions y(x) in ia) and iia) of Remark 2.3, corresponding to the single-valued solutions
u(z) of the Boutroux-Painlevé equation (2.4), are exactly the solutions which are invariant under
this five-fold symmetry, that is which satisfy y(x) = a−1 y(a2 x) for every fifth root of unity a, as
this means that in the Laurent expansion of y(x) only the powers xj appear such that 2 j− 1 ∈ 5Z
⇔ 2 j − 1 ∈ 5 (2Z + 1) ⇔ j ∈ 5Z + 3. This explains why Boutroux [2, p. 336, 337] called the
solutions y(x) in ia) and iia) of Remark 2.3 the symmetric solutions.

3. The poles

In this section, we consider the Boutroux-Painlevé vector field in Okamoto’s space S9 constructed
explicitly in Appendix A. This construction shows that the vector field has no base points in S9,

is infinite along the configuration I :=
⋃8
i=0 L

(9−i)
i of nine complex projective lines, and regular in

S9 \ I. For this reason the set I is called the infinity set of the vector field.
The set of points in S9 \ I which project to L0, the set where (u1, u2) is infinite, is equal to

L9 \ I. Because L9 ∩ I = L9 ∩L(1)
8 consists of one point, L9 \ I is isomorphic to the affine complex

plane. The regular vector field in S9 \ I is nonzero at and transversal to L9 \ I. A solution crosses

the complex line L9 \ L(1)
8 at the time z = ζ, if and only if u(z) = u1(z) becomes infinite as z → ζ.

The whole set L9 \ I is visible in the coordinate chart (u911, u912), where it is the line u912 = 0,
parametrized by u911 ∈ C. Because

u(z) = u912(z)−2 (4 + 32u912(z)4 + u911(z)u912(z)6 − 256 (5 z)−1 u912(z)5)−1, (3.1)

is a rational expression in z, u911(z), and u922(z), and the solution z 7→ (u911(z), u912(z)) of the
regular non-autonomous system is a complex analytic function in a neighborhood of z = ζ with
u912(ζ) = 0 and a := u911(ζ) ∈ C, it follows that the solution z 7→ u(z) of the Boutroux-Painlevé
equation is a meromorphic function in a neighborhood of z = ζ, with a pole of order two. For this
reason the line L9 \ I is called the pole line.

It follows from the equation for u̇912 that the coefficients of (z − ζ)i in the Taylor expansion at
z = ζ of u912(z) do not depend on a for 1 ≤ i ≤ 6, when (3.1) shows that the coefficients of (z− ζ)j

in the Laurent expansion at z = ζ of u(z) do not depend on a for −2 ≤ j ≤ 3. Substitution of the
Taylor expansion at z = ζ of order i of u912(z) in the formula for u̇912 yields the Taylor expansion
at z = ζ of order i of u̇912(z) of order i, hence the Taylor expansion at z = ζ of order i+1 of u912(z),
as long as i ≤ 5. Then substitution of u911(ζ) = a in the formula for u̇912 yields the coefficient of
(z − ζ)6 in the Taylor expansion at z = ζ of u̇912(z), hence of (z − ζ)7 in the Taylor expansion at
z = ζ of u912(z), when (3.1) yields the coefficients of (z − ζ)j in the Laurent expansion at z = ζ of
u(z) for −2 ≤ j ≤ 4. This yields

u911(z) = a+ O(z − ζ),

u912(z) = −1

2
(z − ζ)− 1

22 · 5 · ζ
(z − ζ)2 +

3

22 · 52 · ζ2
(z − ζ)3 − 3 · 7

23 · 53 · ζ3
(z − ζ)4

+

(
3 · 7 · 19

23 · 55 · ζ4
+

1

2 · 5

)
(z − ζ)5 −

(
3 · 7 · 19

2 · 56 · ζ5
− 41

22 · 3 · 52 · ζ

)
(z − ζ)6

+

(
3 · 19 · 29

2 · 57 · ζ6
− 41

2 · 3 · 53 · ζ2
+

3 a

29 · 7

)
(z − ζ)7 + O((z − ζ)8),
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u(z) = (z − ζ)−2 − 1

5 · ζ
(z − ζ)−1 +

3

22 · 5 · ζ2
− 31

2 · 53 · ζ3
(z − ζ)

+

(
19 · 283

24 · 55 · ζ4
− 1

2 · 5

)
(z − ζ)2 −

(
3 · 11 · 727

24 · 56 · ζ5
+

11

2 · 4 · 52 · ζ

)
(z − ζ)3

+

(
197 · 443

26 · 56 · ζ6
+

29

23 · 3 · 52 · ζ2
− a

28 · 7

)
(z − ζ)4 + O((z − ζ)5). (3.2)

The anticanonical pencil has a base point at the point (1)b ell8 determined by the equations u921 =
256 (5 z)−1, u922 = 0 which is the lift to S9 of the point b ell8 of the anticanonical pencil in S8.
The blowing up of S8 in the point b8, which is not the base point of the anticanonical pencil,

causes E w92 to be infinite along L9 \ L(1)
8 , the line determined by the equation u921 = 0. In turn

this forces the energy function E(z) to have a pole at the point z = ζ where the solution u(z)

of the Boutroux-Painlevé equation has a pole. The equations for w91, E w91, and Ė w91 imply in
combination with the Taylor expansion for u911(z) and u912(z) in (3.2) that E = −22 (5 ζ)−1 (z −
ζ)−1 + 2−7 a− 22 (5 ζ)−2 + O(z− ζ) and Ė = −22 (5 ζ)−1 (z− ζ)−2 (1 + O((z− ζ)2)). Combination

of these asymptotic expansions for E and Ė leads to

E(z) = −22 (5 ζ)−1 (z − ζ)−1 + 2−7 a− 22 (5 ζ)−2 + O((z − ζ)/ζ), (3.3)

where the remainder term is uniform for bounded ζ−1 and a. It follows that the energy E(z),
although it has a pole of order one at z = ζ, is close to 2−7 a if |z − ζ| is large compared to 1/|ζ|,
and E(z) = 2−7 a+ O(ζ−1) if z − ζ and (z − ζ)−1 are bounded. That is, for large |z|, E(z) is well
approximated by 2−7 a as soon as z leaves the disc centered at z = ζ with radius of small order
1/|ζ|, where the approximation improves when |z − ζ| increases to order one.

4. The solutions near the set where the vector field is infinite

In this section, we consider the vector field near the infinity set I and show that it is repelling for
the flow. We also construct the limit set for each solution and show that it is a non-empty, compact
and connected subset of S9 that remains invariant under the autonomous flow. As a corollary, we
prove that every solution of Equation (1.1) must have an infinite number of poles in the complex
plane.

Let S denote the fiber bundle of the surfaces S9 = S9(z), z ∈ C\{0}, in which the time-dependent
Painlevé vector field vz, in the Boutroux scaling, defines a regular (= holomorphic) one-dimensional

vector subbundle P of S. For each z ∈ C \ {0}, let I(z) :=
⋃8
i=0 L

(9−i)
i (z) be the infinity set, the

set of all points in S9(z) where vz is infinite. That is, where P is “vertical” = tangent to the fiber.
If I denotes the union in S of all I(z), z ∈ C \ {0}, then S \ I is Okamoto’s “space of initial
conditions”, fibered by the surfaces S9(z) \ I(z), the open subset of S of all points in S where P
is transversal to the fibers, and therefore defines a regular infinitesimal connection in the bundle of
the S9(z) \ I(z), z ∈ C \ {0}. Instead of using the coordinate-invariant description of a bundle of
surfaces with a connection, we will analyse the asymptotic behavior, for |z| → ∞, of the solutions
of the Painlevé equation in the Boutroux scaling, by studying the z-dependent vector field in the
coordinate systems introduced in Section 2. The solution curve in S will we denoted by γ = γ(z),
whereas the corresponding solution of the Boutroux-Painlevé differential equation is denoted by
u(z). Note that u(z) is equal to the first coordinate u1(z) of γ(z) in the (u1, u2) coordinate system,
the 01-coordinate system.

In this section we begin with an asymptotic description of the solutions near the locus I where
the vector field is infinite. In the notation we often drop the dependence on z of the surfaces
S9(z). All order estimates will be uniform in z for z bounded away from zero. Near the part

I \ L(1)
8 =

⋃6
i=0 L

(9−i)
i ∪ (L

(2)
7 \ L

(1)
8 ) of I we will use the function 1/E, where E is the energy, as
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an indicator for the distance to I, whereas near the remaining part L
(1)
8 of I we switch to w92 in

the 92-coordinate system. See the first statement in Lemma 4.2. The function 1/E is no longer

useful as an indicator function near L
(1)
8 because L

(1)
8 contains the lift (b ell8 )(1) to S9 of the base

point b ell8 of the anticanonical pencil, and E takes all finite values near (b ell8 )(1). One of the points

of the proof is that w92 is approximately constant when the solution runs closely along L
(1)
8 .

Lemma 4.1. Let

I6 :=

6⋃
i=0

L
(9−i)
i .

For every ε > 0 there exists a neighborhood U of I6 in S9 such that |(Ė/E)/(−6/5 z)− 1| < ε in U

and for all z ∈ C \ {0}. For every compact subset K of L
(2)
7 \L

(1)
8 there exists a neighborhood V of

K in S9 and a constant C > 0 such that |(Ė/E) z| ≤ C in V and for all z ∈ C \ {0}.
Proof. Because I6 is compact, it suffices to prove that every point of it has a neighborhood in S9

in which the estimate holds. The quantity r := (5 z (Ė/E) + 6)/8 = −2u1/E is equal to

r02 = u021
2/(4 + 2u021

2 − u021 u022
2),

r03 = u031
2 u032/(−u031 + 2u031

2 u032 + 4u032
3),

r11 = u111
2 u112

2/(−u111 + 4u112
2 + 2u111

2 u112
2),

r12 = u121
2 u122/(−1 + 2u121

2 u122 + 4u121
2 u122

3),

r21 = u211
2 u212

3/(−u211 + 4u212 + 2u211
2 u212

3),

r22 = u221
3 u222

2/(−1 + 4u221 u222
2 + 2u221

3 u222
2),

r31 = u311
2 u312

4/(4− u311 + 2u311
2 u312

4),

r32 = u321
4 u322

3/(−1 + 4u322 + 2u321
4 u322

3),

r41 = u412
3 (4 + u411 u412)2/(−u411 + 2u412

3 (4 + u411 u412)2),

r42 = u421
3 (4 + u421)2 u422

4/(−1 + 2u421
3 (4 + u421)2 u422

4),

r51 = u512
2 (4 + u511 u512

2)2/(−u511 + 2u512
2 (4 + u511 u512

2)2),

r52 = u521
2 u522

3 (4 + u521
2 u522)2/(−1 + 2u521

2 u522
3 (4 + u521

2 u522)2),

r61 = u612 (4 + u611 u612
3)2/(−u611 + 2u612 (4 + u611 u612

3)2),

r62 = u621 u622
2 (4 + u621

3 u622
2)2/(−1 + 2u612 u622

2 (4 + u621
3 u622

2)2),

r71 = (4 + u711 u712
4)2/(−u711 + 2 (4 + u711 u712

4)2),

r72 = u722 (4 + u721
4 u722

3)2/(−1 + 2u722 (4 + u721
4 u722

3)2)

in the coordinate charts which cover I6. The part L
(9)
0 \ L

(6)
3 of I6 is equal to the line u021 = 0 on

which r02 = 0. The part L
(8)
1 \ L

(7)
2 of I6 is equal to the line u121 = 0 on which r12 = 0. The part

L
(7)
2 \L

(6)
3 of I6 is equal to the line u221 = 0 on which r22 = 0. The part L

(6)
3 \ (L

(5)
4 ∪L

(1)
2 ) of I6 is

equal to the part u311 6= 4 on the line u312 = 0 on which r31 = 0. The part L
(6)
3 \ (L

(5)
4 ∪L

(9)
0 ) of I6

is equal to the part u322 6= 1/4 on the line u321 = 0 on which r32 = 0. The part L
(5)
4 \ L

(4)
5 of I6 is

equal to the line u421 = 0 on which r42 = 0. The part L
(4)
5 \ L

(3)
6 of I6 is equal to the line u521 = 0

on which r52 = 0. The part L
(3)
6 \ L

(2)
7 of I6 is equal to the line u621 = 0 on which r62 = 0. The

part L
(3)
6 \ L

(4)
5 of I6 is equal to the line u722 = 0 on which r72 = 0. This covers all of I6, and the

proof of the first statement in the lemma is complete.

For the second statement we observe that L
(2)
7 \ (L

(3)
6 ∪ L

(1)
8 ) is the line u712 = 0, u711 6= 32 on

which r71 = 16/(u711 − 32)2, whereas u721 = 0, u722 6= 1/32, on which r72 = 16u722/(32u722 − 1)2,
7



is an open neighborhood of L
(2)
7 ∩ L(3)

6 in L
(2)
7 . Note that r becomes infinite when approaching

L
(2)
7 ∩ L

(3)
6 on L

(2)
7 , which is why L

(2)
7 cannot be included in the first statement of the lemma. �

The function |d| in the following lemma will be used as a measure for the distance to the infinity
set I of the vector field.

Lemma 4.2. Suppose z is bounded away from zero. Let q := 2E. There exists a continuous
complex valued function d on a neighborhood of I in S9 such that d = q−1 in a neighborhood in S9

of I \ L(1)
8 , d = w92 in a neighborhood in S9 of the remaining part L

(1)
8 \ L

(2)
7 of I, and q d → 1,

d/w92 → 1 when approaching L
(1)
8 \ L

(2)
7 .

If the solution at the complex time z is sufficiently close to a point of L
(1)
8 \ L

(2)
7 (parametrized

by coordinate u921 ), then there exists a unique ζ ∈ C such that |z − ζ| = O(|d(z)| |u921(z)|), where
d(z) is small and |u921(z)| is bounded, and u921(ζ) = 0, that is, the solution of the Boutroux-
-Painlevé equation has a pole at z = ζ. In the sequel we write δ := d(ζ) = w92(ζ) = 26 u922(ζ),
and consider δ → 0. We have d(z)/δ ∼ 1. For large finite R8 ∈ R>0, the connected component
of ζ in C of the set of all z ∈ C such that |u921(z)| ≤ R8 is an approximate disc D8 with center
at ζ and radius ∼ 2−5 |δ|R8, and z 7→ u921(z) is a complex analytic diffeomorphism from D8 onto
{u ∈ C | |u| ≤ R8}.

For i decreasing from 7 to 4 we use the coordinate u(i+1) 21 in order to parametrize L
(9−i)
i \

L
(10−i)
i−1 , where u(i+1) 21 = 0 corresponds to the intersection point of L

(9−1)
i with L

(8−i)
i+1 . The point

on L
(8−i)
i+1 \L

(9−i)
i with coordinate u(i+2) 21 runs to the same intersection point when |u(i+2) 21| → ∞.

For large finite Ri ∈ R>0, the connected component of ζ in C of the set of all z ∈ C such that

the solution at the complex time z is close to L
(9−i)
i \ L(10−i)

i−1 , with |u(i+1) 21(z)| ≤ Ri, but not

close to L
(8−i)
i+1 , is the complement of Di+1 in an approximate disc Di with center at ζ and radius

∼ (23−i |δ|Ri)1/(9−i), where we note that |δ|1/(9−i)/|δ|1/(9−(i+1)) = |δ|−1/(9−i) (8−i) >> 1. More
precisely, z 7→ u(i+1) 21 defines a (9− i)-fold covering from the annular domain Di \Di+1 onto the
complement in {u ∈ C | |u| ≤ Ri} of an approximate disc with center at the origin and small radius

∼ (2−6 |δ|Ri+1
9−i)1/(8−i), where u(i+1) 21(z) ∼ −2i−3 δ (z − ζ)9−i.

For all z ∈ D4, the largest approximate disc, we have |z − ζ| << |ζ| and d(z)/δ ∼ 1.

Proof. Recall that L
(1)
8 \ L(2)

7 is determined by the equation u922 = 0 and is parametrized by

u921 ∈ C. Moreover, L9 minus one point not on L
(1)
8 corresponds to u921 = 0 and is parametrized

by u922. For the study of the solutions near the part L
(1)
8 \ L(2)

7 of I, we use the coordinates
(u921, u922). Asymptotically for u922 → 0 and bounded u921, z−1 we have

u̇921 ∼ −2−1 u922
−1, (4.1)

w92 ∼ 26 u922, (4.2)

ẇ92/w92 = 6 (5 z)−1 + O(u922
2) = 6 (5 z)−1 + O(w92

2), (4.3)

q w92 ∼ 1− 28 (5 z)−1 u921
−1. (4.4)

It follows from (4.3) that, as long as the solution is close to a given large compact subset of

L
(1)
8 \L

(2)
7 , w92(z) = (z/ζ)6/5w92(ζ) (1 + o(1)), where z/ζ ∼ 1 if and only if |z − ζ| << |ζ|. In view

of (4.2), in this situation, u922 is approximately equal to a small constant, when (4.1) yields that

u921(z) ∼ u921(ζ)−2−1 u922
−1 (z−ζ), and it follows that u921(z), the affine coordinate on L

(1)
8 \L

(2)
7 ,

fills an approximate disc centered at u921(ζ) with radius ∼ R if z runs over an approximate disc
centered at ζ with radius∼ 2 |u922|R. Therefore, if |u922(ζ)| << 1/|ζ|, the solution at complex times
z in a D centered at ζ with radius ∼ 2 |u922|R has the properties that along it u922(z)/u922(ζ) ∼ 1

8



and that z 7→ u921(z) is a complex analytic diffeomorphism from D onto an approximate disc
centered at u921(ζ) with radius ∼ R. If R is sufficiently large, we have 0 ∈ u921(D), that is,
the solution of the Boutroux-Painlevé equation has a pole at a unique point in D. After having
established this fact, we can arrange that u921(ζ) = 0, that is, the center ζ of D is equal to the
pole point. As long as |z − ζ| << |ζ|, we have d(z)/d(ζ) ∼ 1, i.e., 26 u922(z)/δ ∼ w92(z)/δ ∼ 1 and
u921(z) ∼ −2−1 u922

−1 (z − ζ) ∼ −25 δ−1 (z − ζ), where for a large finite R8 ∈ R>0 the equation
|u921(z)| = R8 corresponds to |z − ζ| ∼ 2−5 |δ|R8, which is still small compared to |ζ| if |δ| is
sufficently small. It follows that the connected component D8 of ζ of the set of all z ∈ C such
that |u921(z)| ≤ R8 is an approximate disc with center at ζ and small radius ∼ 2−5 |δ|R8. More
precisely, z 7→ u921(z) is a complex analytic diffeomorphism from D8 onto {u ∈ C | |u| ≤ R8}, and
d(z)/δ ∼ 1 for all z ∈ D8. The function q(z) has a simple pole at z = ζ, but it follows from (4.4)
that q(z)w92(z) ∼ 1 as soon as 1 >> |z−1 u921(z)−1| ∼ |ζ−1 2u922(ζ) (z−ζ)−1| = 2−5 |δ|/|ζ (z−ζ)|,
that is, when |z − ζ| >> 2−5 |δ|/|ζ|. As the approximate radius of D8 is 2−5 |δ|R8 >> 2−5 |δ|/|ζ|
because R8 >> 1/|ζ|, we have q(z)w92(z) ∼ 1 for z ∈ D8 \ D9, where D9 is a disc centered at ζ
with small radius compared to the radius of D8.

The set L
(2)
7 \ L

(3)
6 is visible in the coordinate system (u821, u822), where it corresponds to the

equation u822 = 0 and is parametrized by u821 ∈ C. The set L
(1)
8 minus one point corresponds to

u821 = 0 and is parametrized by u822 ∈ C. It follows from the equations which express (u811, u812)
and (u821, u822) in terms of (u711, u712) that u822 = 1/u811. Also, u811 = u921 − 28 (5 z)−1 which

implies that u921 → ∞ if and only if u822 → 0. That is, the point near L
(1)
8 approaches the

intersection point with L
(2)
7 , when (4.4) implies that q w92 → 1. Therefore the functions q−1 and

w92 can be glued together by means of a continuous interpolation to a continuous function d as
asserted in the lemma.

Asymptotically for u822 → 0 and bounded u821 and z−1, we have

u̇821 ∼ −u822
−1, (4.5)

u̇822 ∼ 2−1 u821
−1, (4.6)

w82 ∼ 26 u821 u822
2, (4.7)

q w82 ∼ 1, (4.8)

q̇/q = Ė/E ∼ −6 (5 z)−1 − 27 (5 z)−1 u821
−1. (4.9)

It follows from (4.9) and (4.6) that q̇/q ∼ −6 (5 z)−1 − 28 (5 z)−1 u̇822, hence

log(q(z1)/q(z0)) ∼ log((z1/z0)−6/5)

−(28/5) (z1
−1 u822(z1)− z0

−1 u822(z0) +

∫ z1

z0

z−2 u822(z) dz).

Therefore q(z1)/q(z0) ∼ 1, if for all z on the segment from z0 to z1 we have |z − z0| << |z0| and
|u822(z)| << |z0|. We choose z0 on the boundary of D8, when d(z0)−1 δ ∼ q(z0) δ ∼ q(z0)w92(z0) ∼
1, and |u921(z0)| = R8 implies that |u822(z0)| ∼ R8

−1 << 1. Furthermore, (4.7) and (4.8) imply
that |u821(z0)| ∼ 2−6 |w82(z0)| |u822(z0)|−2 ∼ 2−6 |δ|R8

−2, which is small when |δ| is sufficiently
small. Because D8 is an approximate disc with center at ζ and small radius ∼ 2−5 |δ|R8, and
R8 >> |ζ|−1, we have that |u921(z)| ≥ R8 >> 1 hence |u822(z)| << 1 if z = ζ + r (z0 − ζ), r ≥ 1,
and |z−z0|/|z0| = (r−1) |1−ζ/z0| << 1 if r−1 is small compared to the large number 1/|1−ζ/z0|.

Then equations (4.8), (4.7), and q ∼ δ−1 yield u822
−1 ∼ (δ−1 26 u821)1/2, which in combination

with (4.5) leads to 2 d(u821
1/2)/ dz = −23 δ−1/2, hence u821(z)1/2 ∼ u821(z0)1/2 − 22 δ−1/2 (z − z0),

and therefore u821(z) ∼ 24 δ−1 (z − z0)2 if |z − z0| >> |u821(z0)|1/2. For large finite R7 ∈ R>0 the

equation |u821(z)| = R7 corresponds to |z − z0| ∼ (2−4 |δ|R7)1/2, which is still small compared to
9



|z0| ∼ |ζ|, and therefore |z − ζ| ≤ |z − z0|+ |z0 − ζ| << |ζ|. This proves the statements about the

behavor of the solution near L
(2)
7 \ L

(3)
6 .

The statements for 4 ≤ i ≤ 6 about the behavior of the solutions near the part L
(9−i)
i \L(10−i)

i−1 of

I will be proved by induction over decreasing i. The set L
(9−i)
i \L(10−i)

i−1 is visible in the coordinate
system (u(i+1) 21, u(i+1) 22), where it corresponds to the equation u(i+1) 22 = 0 and is parametrized

by u(i+1) 21 ∈ C. The set L
(8−i)
i+1 minus one point corresponds to u(i+1) 21 = 0 and is parametrized by

u(i+1) 22 ∈ C. It follows from the equations which express (u(i+1) 11, u(i+1) 12) and (u(i+1) 21, u(i+1) 22)
in terms of (ui 11, ui 12) that u(i+1) 22 = 1/u(i+1) 11, u711 = u821 + 32, u611 = u721, and u511 = u621.

This shows that u(i+2) 21 →∞ if and only if u(i+1) 22 → 0, that is, the point near L
(8−i)
i+1 approaches

the intersection point with L
(9−i)
i .

Asymptotically for u(i+1) 22 → 0 and bounded u(i+1) 21 and z−1, we have

u̇(i+1) 21 ∼ −(9− i) 2−1 u(i+1) 22
−1, (4.10)

w(i+1) 2 ∼ 26 u(i+1) 21
8−i u(i+1) 22

9−i, (4.11)

q w(i+1)2 ∼ 1, (4.12)

q̇/q = Ė/E ∼ −6 (5 z)−1. (4.13)

Assume that |u(i+2) 21(z0)| = Ri+1 >> 1, where the induction hypothesis yields that |z0 −
ζ| << |ζ| and 1/(q(z0) δ) ∼ d(z0)/δ ∼ 1. It follows from (4.11), (4.12), and |u(i+1) 22(z0)| ∼
1/|u(i+2) 21(z0)|, that

|u(i+1) 21(z0)|8−i ∼ 2−6 |q(z0)|−1 |u(i+1) 22|i−9 ∼ 2−6 |δ|Ri+1
9−i,

which is small if |δ| is sufficiently small.

It follows from (4.13) that q(z)/δ ∼ q(z)/q(z0) ∼ 1 along a solution near L
(9−i)
i \L(10−i)

i−1 , as long
as |z − z0| << |z0|. Then (4.12) and (4.11) yield

u(i+1) 22
−1 ∼ (δ−1 26 u(i+1) 21

8−i)1/(9−i),

which in combination with (4.10) leads to

(9− i) d(u(i+1) 21
1/(9−i))/dz = −(9− i) 2−1+6/(9−i) δ−1/(9−i),

hence
u(i+1) 21(z)1/(9−i) ∼ u(i+1) 21(z0)1/(9−i) − 2(i−3)/(9−i) δ−1/(9−i) (z − z0),

and therefore u(i+1) 21(z) ∼ 2i−3 δ−1 (z − z0)9−i if |z − z0| >> |u(i+1) 21(z0)|1/(9−i). For large finite

Ri ∈ R>0 the equation |u(i+1) 21(z)| = Ri corresponds to |z− z0| ∼ (23−i |δ|Ri)1/(9−i), which is still
small compared to |z0| ∼ |ζ|, and therefore |z − ζ| ≤ |z − z0|+ |z0 − ζ| << |ζ|. �

The following corollary implies that the infinity set I of the vector field is repelling. This in turn
implies that every solution which starts in Okamoto’s space S9 \ I remains there for all complex
nonzero times.

Corollary 4.3. For every ε1 > 0, 0 < ε2 < 6/5, and 0 < ε3 < 1, there exists a δ ∈ R>0 such that
for every solution we have that if |z0| ≥ ε1 and |d(z0)| < δ, we have the following conclusions. Let
ρ denote the supremum of all r > |z0| such that |d(z)| < δ whenever |z0| ≤ |z| ≤ r. Then

i) ρ is bounded above by the inequality δ ≥ |d(z0)| (ρ/|z0|)6/5−ε2 (1− ε3).

ii) If |z0| ≤ |z| ≤ ρ, then d(z) = d(z0) (z/z0)6/5+ε2(z) (1 + ε3(z)), where |ε2(z)| ≤ ε2 and
|ε3(z)| ≤ ε3.

iii) If |z| ≥ ρ then |d(z)| ≥ δ (1− ε3).
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Proof. It follows from Lemma 4.2 that for every solution close to I the set of all not too small
complex times z such that the solution is not near I6 is a union of approximate discs of radius of
order |d|1/2 where the distance between the discs is at least of order |d|1/3, where |d|1/3/|d|1/2 >> 1.
Therefore, if the solution is near I6 at the complex times z0 and z1, and is near I for all complex
times z such that |z| is between |z0| and |z1|, there is a path γ from z0 to z1 such that for all z on γ

we have that the solution at time z is near I6, and γ is C1 close to the path [0, 1] 3 t 7→ el0+t (l1−l0),

where li = log zi. Then Lemma 4.1 implies that q(z1) = q(z0) (z1/z0)−6/5+o(1) (1 + o(1)), hence

d(z) = d(z0) (z/z0)6/5+o(1) (1 + o(1)). Because Lemma 4.2 implies that the ratio between the

values of d remains close to 1 if the solution stays close to L
(2)
7 ∪ L(1)

8 , it follows that d(z1) =

d(z0) (z1/z0)6/5+o(1) (1 + o(1)) if the solution is close to I at all complex times z such that |z| is
between |z0| and |z1|. The corollary follows from these estimates. �

Remark 4.4. The substitutions

u1(z) = ((5/4) z)−2/5 y1(((5/4) z)4/5),

u2(z) = ((5/4) z)−3/5 y2(((5/4) z)4/5)

in the beginning of Section 2 lead in combination with (2.3) to

E(z) = 2−1 ((5/4) z)−6/5 y2(((5/4) z)4/5)2

−2 ((5/4) z)−6/5 y1(((5/4) z)4/5)3 − ((5/4) z)−2/5 y1(((5/4) z)4/5).

Because the solution (y1(x), y2(x)) of the Painlevé system is single valued, we have the analytic
continuation formula

E(z e5π i /2) = −E(z), (4.14)

analogous to (2.6). Because also (z e5π i /2)−6/5 = −z−6/5, the asymptotic formula E(z)/E(z0) ∼
(z/z0)−6/5 along solutions close to the part I \ (L

(1)
8 ∪ L

(2)
7 ) of the inifinity set I is consistent with

(4.14).

Because the substitutions of coordinates in Section 2 depend in a polynomial way on z−1, the
bundle of the complex projective algebraic surfaces S9(z), z ∈ C\{0} extends to a complex analytic
family S9 = S9(z), z ∈ P1\{0}, where the complex projective line P1 is identified with the Riemann
sphere C∪{∞}. The surface S9(∞) over the point∞ ∈ P1 is obtained by blowing up P2 nine times
as in the definition of S9(z), where in the formulas for the base point b8(z) and the coordinate
systems (u911, u912) and (u921, u922) the coefficient 1/z is replaced by zero. Because b8(∞) = b ell8 ,
the base point of the anticanonical pencil defined by w and E w, the limit surface S9(∞) is equal
to the rational elliptic surface obtained by blowing up the base points of the anticanonical pencil.
The Boutroux-Painlevé vector field converges for z → ∞ to the vector field of the autonomous
Hamiltonian system u̇1 = u2, u̇2 = 6u1

2 +1 with Hamiltonian function equal to the energy function
E in (2.3). The function u1(z) satisfies the Weierstrass equation (u̇1)2−4u1

3−2u1 = 2E, which is
why in the sequel we will use the function q := 2E instead of the energy function E. The function
q defines the elliptic fibration q : S9(∞) → P1, where the fiber I(∞) = q−1({∞}) = limz→∞ I(z)
over q =∞ is a singular fiber of Kodaira type II∗. The vector field of the autonomous Hamiltonian
system is regular in the limit fiber S9(∞) \ I(∞) of Okamoto’s space of initial conditions, and
infinite on I(∞). The function q is constant on its solution curves, and each non-singular fiber is
an elliptic curve where the time parameter of the solution leads to an identification of the fiber
with C/P (q), where P (q) denotes the period lattice of the flow at the level q. The −1 curve L9(∞)
which appears at the last, the ninth blowup is a global holomorphic section for the elliptic fibration.
Starting at the complex time z = 0 on the unique intersection point of the level curve with L9(∞),
the period lattice P (q) is equal to the set of all z ∈ C such that the solution of the autonomous
Hamiltonian system hits L9(∞). In view of the Weierstrass equation (u̇1)2 − 4u1

3 − 2u1 = q, and
11



the fact that u1(z) has a pole at z = ζ if and only if ζ ∈ P (q), the u1-coordinate of this solution is
equal to the Weierstrass ℘ function of the lattice P (q), and we recover the fact that hitting L9(∞)
corresponds to u1 having a pole. The equilibrium points of the autonomous Hamiltonian system are
the points in the affine (u1, u2)-charts determined by the equations u2 = 0 and 6u1

2 + 1 = 0. The

corresponding singular values are q = −4u1 (−1/6) − 2u1 = −(4/3)u1 = ± i
√

8/27. For each
of these two finite singular values of q we have a singular fiber of Kodaira type I1. Therefore the
configuration of the singular fibers of the rational elliptic surface S9(∞) is II + I1 + I1, the second
item in Persson’s list [23, pp. 7–14] of configurations of singular fibers of rational elliptic surfaces.
It also occurs on p. 121 in the classification of Schmickler-Hirzebruch [24] of all elliptic fibrations
over P1 with at most three singular fibers.

The following definition is a complex version of the concept of limit sets in dynamical systems.

Definition 4.5. For every solution C \ {0} 3 z 7→ U(z) ∈ S9(z) \ I(z), let ΩU denote the set of all
s ∈ S9(∞) \ I(∞) such that there exists a sequence zj ∈ C with the property that zj → ∞ and
U(zj)→ s as j →∞. The subset ΩU of S9(∞) \ I(∞) is called the limit set of the solution U .

Corollary 4.6 below is analogous to Coddington and Levinson [4, Th. 1.1 and 1.2 in Ch.16].

Corollary 4.6. There exists a compact subset K of S9(∞) \ I(∞) such that for every solution
U the limit set ΩU is contained in K. The limit set ΩU is a non-empty, compact and connected
subset of K, invariant under the flow of the autonomous Hamiltonian system on S9(∞) \ I(∞).
For every neighborhood A of ΩU in S9 there exists an r > 0 such that U(z) ∈ A for every z ∈ C
such that |z| > r. If zj is any sequence in C \ {0} such that zj → ∞ as j → ∞, then there is a
subsequence j = j(k) → ∞ as k → ∞ and an s ∈ ΩU such that U(zj(k)) → s as k → ∞. Finally,
for every solution U the limit set ΩU is invariant under the transformation T of S9(∞) which in
the coordinate system (u1, u2) is given by (u1, u2) 7→ (−u1, iu2), when q 7→ −q and E 7→ −E.

Proof. For any δ, r ∈ R>0, let Kδ, r denote the set of all s ∈ S9(z) such that |z| ≥ r and |d(s)| ≥ δ.
Because S9 is a complex analytic family over P1\{0} of compact surfaces S9(z), z ∈ P1\{0}, Kδ, r is
a compact subset S9. Furthermore Kδ, r is disjoint from union of the infinity sets I(z), z ∈ P1 \{0},
and therefore Kδ, r is a compact subset of Okamoto’s space S9 \ S9,∞, where the latter is viewed as
a complex analytic family of non-compact surfaces over P1 \{0}. When r ↑ ∞, the sets Kδ, r shrink
to the set Kδ,∞ of all s ∈ S9(∞) such that |d(s)| ≥ δ, which is a compact subset of S9(∞) \ I(∞).

It follows from Corollary 4.3 that there exists δ ∈ R>0 such that for every solution U there exists
r0 ∈ R>0 with the property that U(z) ∈ Kδ, r0 for every z ∈ C such that |z| ≥ r0. In the sequel,
let r ≥ r0, when it follows from the definition of Kδ, r that U(z) ∈ Kδ, r whenever |z| ≥ r. Let
Zr := {z ∈ C | |z| ≥ r} and let ΩU, r denote the closure of U(Zr) in S9. Because Zr is connected
and U is continuous, U(Zr) is connected, hence its closure ΩU, r is connected. Because U(Zr) is
contained in the compact subset Kδ, r, its closure ΩU, r is contained in Kδ, r, and therefore ΩU, r is
a non-empty compact and connected subset of S9 \ S9,∞. Because the intersection of a decreasing
sequence of non-empty compact and connected sets is non-empty, compact, and connected, and
the sets ΩU, r decrease to ΩU as r ↑ ∞, it follows that ΩU is a non-empty, compact and connected
subset of S9. Because ΩU, r ⊂ Kδ, r for all r ≥ r0, and the sets Kδ, r shrink to the compact subset
Kδ,∞ of S9(∞) \ I(∞) as r ↑ ∞, it follows that ΩU ⊂ Kδ,∞. This proves the first statement in
the corollary with K = Kδ,∞. Because ΩU is the intersection of the decreasing family of compact
sets ΩU, r, there exists for every neighborhood A of ΩU in S9 an r > 0 such that ΩU, r ⊂ A, hence
U(z) ∈ A for every z ∈ C such that |z| ≥ r. If zj is any sequence in C\{0} such that |zj | → ∞, then
the compactness of Kδ, r, in combination with U(Zr) ⊂ Kδ, r, implies that there is a subsequence
j = j(k)→∞ as k →∞ and an s ∈ Kδ, r such that U(zj(k))→ s as k →∞, when it follows from
the definition of ΩU that s ∈ ΩU .
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We next prove that ΩU is invariant under the flow Φt of the autonomous system Hamiltonian
system. Let s ∈ ΩU , when there is a sequence zj ∈ C \ {0} such that zj → ∞ and U(zj) → s as
j →∞. Because the z-dependent vector field of the Boutroux-Painlevé system converges in C1 to
the vector field of the autonomous Hamiltonian system as z → ∞, it follows from the continuous
dependence on initial data and parameters for first order ordinary differential equations, see for
instance Coddington and Levinson [4, Th. 7.4 in Ch. 1], that the distance between U(zj + t) and
Φt(U(zj)) converges to zero as j → ∞. Because Φt(U(zj)) → Φt(s) and zj → ∞ as j → ∞, it
follows that U(zj + t)→ Φt(s) and zj + t→∞ as j →∞, hence Φt(s) ∈ ΩU .

The invariance of ΩU under the transformation T follows from (2.6) and (2.3). �

Corollary 4.7. Every solution of the first Painlevé equation has infinitely many poles.

Proof. Let u(z) be a solution of the Boutroux-Painlevé equation with only finitely many poles,
U(z) the corresponding solution of the system in S9 \ S9,∞, and ΩU the limit set of U . According
to Corollary 4.6, ΩU is a compact subset of S9 \ S9,∞. If ΩU intersects the pole line L9 in a point
p, then there exist z with |z| arbitrarily large such that U(z) is arbitrarily close to p, when the
transversality of the vector field to the pole line implies that U(ζ) ∈ L9 for a unique ζ near z,
which means that u(z) has a pole at z = ζ. As this would imply that u(z) has infinitely many
poles, it follows that ΩU is a compact subset of S9 \ (S9,∞ ∪ L9). However, S9,∞ ∪ L9 is equal to
the set of all points in S9 which lie over the line L0 at infinity in the complex projective plane, and
therefore S9 \ (S9,∞ ∪ L9) is the affine (u1, u2) coordinate chart, of which ΩU is a compact subset,
which implies that u1(z) = u(z) and u2(z) remain bounded for large |z|. In view of the theorem on
removable singularities it follows that u1(z) and u2(z) are equal to holomorphic functions of 1/z in a
neighborhood of 1/z = 0, which in turn implies that there are complex numbers u1(∞), u2(∞) such
that u1(z) → u1(∞) and u2(z) → u2(∞) as |z| → ∞. In other words, ΩU = {(u1(∞), u2(∞))}.
Because the limit set ΩU is invariant under the autonomous Hamiltonian system and contains only
one point, this point is an equilibrium point of the autonomous Hamiltonian system. That is,
u2(∞) = 0 and u1(∞) is equal to one of the two zeros c of u 7→ 6u2 + 1. According to the last
statement in Corollary 4.6, (−c, 0) ∈ ΩU if (c, 0) ∈ ΩU , where (−c, 0) 6= (c, 0) because c 6= 0. This
contradiction with ΩU = {(c, 0)} completes the proof. �

In Lemma 5.18 more information will be given about the asymptotic distribution for large |ξ| of
the poles ξ of the solutions y(x) of the first Painlevé equation. In the remainder of this section we
discuss, for the solutions U(z) close to the infinity set I, the asymptotic behavior of the set of z

such that U(z) is close to L
(9−i)
i for 0 ≤ i ≤ 3, extending the description for 4 ≤ i ≤ 8 in Lemma

4.2.
As in Lemma 4.2, one finds concentric approximate discs D1, D2, and approximate discs D0 of

small radii such that the connected component of the set of all z ∈ C such that the solution in S9 is

close to L
(8)
1 \L

(7)
2 , L

(7)
2 \ (L

(8)
1 ∪L

(6)
3 ), and L

(9)
0 \L

(6)
3 is equal to D1, D2 \D1, and D0, respectively.

More precisely, L
(8)
1 \ L(7)

2 is visible in (u121, u122) chart, where it is defined by u121 = 0 and

parametrized by u122. We have u̇122 ∼ u121
−1 = w12

−1/2 ∼ q1/2 = d−1/2, where q̇/q = Ė/E ∼
−6 (5 z)−1, hence d is approximately constant. Therefore each connected component of the set of all

z ∈ C such that |u122(z)| ≤ R1 is an approximate disc D1 of radius ∼ |d|1/2R1, and z 7→ u122(z) is a

complex analytic diffeomorphism fromD1 onto {u ∈ C | |u| ≤ R1}. Furthermore, L
(7)
2 \L

(6)
3 is visible

in (u221, u222) chart, where it is defined by u221 = 0 and parametrized by u222, whereas the part of

L
(8)
1 in this chart is defined by u222 = 0 and parametrized by u221 = u111 = u031 u032

−1 = u122
−1,

hence |u122| > R1 corresponds to |u221| < R1
−1. We have u̇222 ∼ 2u221

−1 = 2w22
−1/4 u222

1/2, where

w22 ∼ q−1 = d and q̇/q = Ė/E ∼ −6 (5 z)−1 yields that (u222
1/2)• ∼ d−1/4 with approximately

constant d, hence u222(z) ∼ (u222(z0)1/2 + d−1/4 (z − z0))2. Let R2 be a large finite positive real
13



number. As |u221| < R1
−1 corresponds to |u222| ∼ |d|1/2 |u221|−2 > |d|1/2R1

2, and |d|1/4/|d|1/2 >>
1, the mapping z 7→ u222(z) is a twofold covering from the complement of D1 in an approximate

disc D2 of radius ∼ |d|1/4R2
1/2 onto {u ∈ C | |d|1/2R1

2 < |u| ≤ R2}. Finally L
(9)
0 \ L

(6)
3 is visible

in the (u021, u022) chart, where it is defined by u021 = 0 and parametrized by u022. We have

u̇022 ∼ 6u021
−1 = −6w02

−1/3, where w02 ∼ 4 q−1 = 4 d, and q̇/q = Ė/E ∼ −6 (5 z)−1 yields that d

is approximately constant, with u̇022 ∼ −21/3 3 d−1/3. Let R0 be a large finite positive real constant.
Then each connected component of the set of all z ∈ C such that |u122(z)| ≤ R0 is an approximate

disc D0 of radius ∼ 2−1/3 3−1 |d|1/3R0, and z 7→ u122(z) is a complex analytic diffeomorphism from
D0 onto {u ∈ C | |u| ≤ R0}.

In order to understand the location of the concentric discs D8 ⊂ D7 ⊂ D6 ⊂ D5 ⊂ D4, the
concentric discs D1 ⊂ D2 and the discs D0 in the complex z-plane, we first describe the situation
for the solutions of the autonomous Hamiltonian system, which have a similar behavior near the
infinity set I, but in addition has the function q = 2E as a constant of motion. Recall that for
each q ∈ C \ {± i

√
8/27} the level set in S9(∞) of the function q is an elliptic curve Cq such

that z 7→ Φz(σ(q)) defines an isomorphism from C/P (q) onto Cq. Here Φz denotes the flow of
the autonomous Hamiltonian system defined by the function E = q/2, σ(q) is the unique point in
Cq ∩ L9(∞), and P (q) is the period lattice of the flow at the level q. In the (u1, u2) coordinate
system, the first coordinate u(z) = u1(Φz(σ(q))) of Φz(σ(q)) is the solution of the autonomous
differential equation d2 u/dz2 = 6u2 + 1 such that u̇2 − 4u3 − 2u = q and u(z) has a pole at
z ∈ P (q), and no other poles. Therefore u(z) = ℘

P (q)
(z), the Weierstrass ℘ function defined by the

lattice P (q).
Locally the period lattice has a Z-basis p1(q), p2(q) depending in a complex analytic fashion

on q. The period functions p(q) = pi(q) satisfy the homogeneous linear second order differential
equation

d2 p

dq2
+

54 q

8 + 27 q2

dp

dq
+

15

4 (8 + 27 q2)
p = 0, (4.15)

as an application of Bruns [3, p. 237, 238] to g2(q) = −2 and g3(q) = −q.
Lemma 4.8. For large |q| the period lattice P (q) has a Z-basis of the form

p1(q) = q−1/6 a(1/q) + q−5/6 b(1/q),

p2(q) = q−1/6 e2π i /6 a(1/q) + q−5/6 e−2π i /6 b(1/q),
(4.16)

where a and b are complex analytic functions on an open neighborhood of the origin in the complex
plane such that a(0) = − i 2−1 π−1 Γ(1/3)3 and b(0) = i 24 3−3/2 π2 Γ(1/3)−3. Here Γ denotes
Euler’s Gamma function. The differential equation (4.15) in combination with the explicit values
of a(0) and b(0) leads to a successive determination of the coefficients in the Taylor expansions at
the origin of the functions a and b.

For 0 ≤ i ≤ 8 and i 6= 3 the point Φz(σ(q)) is near L
(9−i)
i if and only if z belongs to the

aforementioned approximate discs Di with δ = q−1. The centers of the concentric discs D8 ⊂ D7 ⊂
D6 ⊂ D5 ⊂ D4 are at the points of the period lattice P (q) that are the pole points of the solution
u(z) = ℘

P (q
(z) of the autonomous differential equation ü = 6u2 + 1. The centers of the concentric

discs D1 ⊂ D2 are at the zeros of u(z) = ℘
P (q)

(z). The zeros of u(z) are close of order smaller

than |q|−1/6 to the points (p1(q) +p2(q))/3 and 2 (p1(q) +p2(q))/3 modulo P (q). The centers of the
discs D0 are at the zeros of the derivative u̇(z) = d℘

P (q)
(z)/ dz, and close of order smaller than

q−1/6 to the points p1(q)/2, p2(q)/2, and (p1(q) + p2(q))/2 modulo P (q).

Proof. Any period along a closed path γq on the curve u̇2 = 4u3 + 2u+ q is equal to

p =

∮
(4u3 + 2u+ q)−1/2 du = 4−1/3 q1/3 q−1/2

∫
γ

(v3 + 2 · 4−1/3 q−2/3 v + 1)−1/2 dv.
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Asymptotically for q →∞ we have

(v3 + 2 · 4−1/3 q−2/3 v + 1)−1/2 = (v3 + 1)−1/2 (1 + 2 · 4−1/3 q−2/3 v/(v3 + 1))−1/2

= (v3 + 1)−1/2 − 4−1/3 q−2/3 (v3 + 1)−3/2 v + O(q−4/3).

Furthermore d(v3 + 1)−1/2/ dv = −1
2 (v3 + 1)−3/2 3 v2, and therefore an integration by parts yields∮

(v3 + 1)−3/2 v dv = −(2/3)

∮
((v3 + 1)−1/2)′ v−1 dv = −(2/3)

∮
(v3 + 1)−1/2 v−2 dv.

Therefore p(q) = q−1/6 α+ q−5/6 β + O(q−3/2), where

α = 2−2/3

∮
(v3 + 1)−1/2 dv and β = 2−1/3 3−1

∮
(v3 + 1)−1/2 v−2 dv,

where the integration is over a closed path on the elliptic curve v̇2 = v3 + 1 homotopic to γq.
Here the elliptic curve is the compact one obtained by adding one point at infinity to the curve
v̇2 = v3 + 1 in the affine (v, v̇) plane. In the next computations we use the well-known formulas

Γ(p) :=

∫ ∞
0

e−t tp−1 dt, (4.17)

Γ(p+ 1) = pΓ(p), (4.18)

Γ(
1

2
) = π1/2, (4.19)

B(p1, p2) :=

∫ 1

0
tp1−1 (1− t)p2−1 dt

=

∫ ∞
0

sp1−1 (s+ 1)−p1−p2 ds =
Γ(p1) Γ(p2)

Γ(p1 + p2)
, (4.20)

Γ(2 p) = 22 p−1 π−1/2 Γ(p) Γ(p+
1

2
), and (4.21)

Γ(p) Γ(1− p) =
π

sin(π p)
(4.22)

for Euler’s Gamma function, where (4.20), (4.21), and (4.22) are Euler’s Beta function, Legendre’s
duplication formula, and the reflection formula for the Gamma function, respectively. The second
identity in (4.20) follows from the substitution of variables t = s/(s+ 1)

As our first loop we take the closed path which doubly covers the real v-interval from −∞ to
−1. The substitution of variables v = −(s + 1)1/3 then yields in view of (4.20) and the other

identities for the Gamma function that α = ± i 21/3 3−1 B(1/2, 1/6) = ± i 2−1 π−1 Γ(1/3)3 and

β = ∓ i 22/3 3−2 B(1/2, 5/6) = ∓ i 24 3−3/2 π2 Γ(1/3)−3.
As our second loop we take the closed path in v̇2 = v3 +1 which doubly covers the real v-interval

from −1 to 0 followed by the straight line in the v-plane from 0 to e−2π i /6, where the substitution
of variables w = e2π i /3 v shows that the integral of (w3 + 1)−1/2 dw over the the second interval is

equal to minus the integral of (v3 + 1)−1/2 dv over the first interval. The first and the second loop
in v̇2 = v3 + 1 intersect each otehr once, at the point (v, v̇) = (−1, 0), where the intrersection is
transversal, and therefore the intersection number of the first loop with the second loop is equal to
±1, where the sign depends on the choices of the orientations of the loops. as the elliptic curve is
a real two-dimensional torus, its first homology group is isomorphic to Z2, when the fact that the
intersection number of the two loops is ±1 implies that the homology classes of the two loops form a
Z-basis of the first homology group of the elliptic curve. This implies in turn that the correponding
periods, asymptotically equal to the integrals of 4−1/3 q−1/6 v̇−1 dv over these loops, form a Z-basis
of the period lattice P (q).
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The substitution of variables v = −s1/3 yields that the integral of (v3 + 1)−1/2 dv over the real

v-interval from −1 to 0 is equal to 3−1
∫ 1

0 (1−s)−1/2 s−2/3 ds = 3−1 B(1/2, 1/3), and therefore the

integral over the second loop leads to α = (1− e2π i /3) 21/3 3−1 B(1/2, 1/3). As

B(1/2, 1/3)

B(1/2, 1/6)
=

Γ(1/2) Γ(1/3) Γ(2/3)

Γ(1/2) Γ(1/6) Γ(5/6)
=

sin(π/6)

sin(π/3)
= 3−1/2,

and (1 − e2π i /3) 3−1/2 = − i e2π i /6, we arrive at the conclusion that, if in the above ± we choose

the minus sign, the second period is asymptotically equal to e2π i /6 times the first period.
Because the differential equation (4.15) for the periods has q = ∞ as a regular singular point,

and the two solutions λ = −1/6 and λ = −5/6 of its indicial equation λ (λ−1)+2λ+5/36 = 0 do

not differ by an integer, each solution of (4.15) is of the form q−1/6 a(1/q) + q−5/6 b(1/q), where a
and b are complex analytic functions on a neighborhood of the origin, and the solution is uniquely
determined by a(0) and b(0). See for instance Coddington and Levinson [4, Ch. 4, Sec. 4]. It
follows that our first period fits the description for p1(q). The analytic continuation of p1(q), when
the small 1/q runs around the origin once, is equal to p2(q). Because p2(q) asymptotically agrees
with our second period, it is equal to it. Therefore the periods p1(q) and p2(q) described in the
lemma form a Z-basis of the period lattice P (q). This completes the proof of the first paragraph
in the lemma.

For the second paragraph we observe that we took as the center of the discs D8 the pole points.

The line L
(8)
1 \ L(7)

2 is visible in the (u121, u122) chart, where it is defined by u121 = 0 and is
parametrized by u122. As u121 = u2

−1 and u122 = u1, it follows that the centers of the discs D1,

which correspond to u122 = 0, correspond to the zeros of u(z) = ℘
P (q)

(z). The line L
(9)
0 \ L(6)

3

is visible in the (u021, u022) chart, where it is defined by u021 = 0 and parametrized by u022. As
u021 = u1

−1 and u022 = u1
−1 u2, it follows that the centers of the discs D0 correspond to the zeros

of the derivative u2(z) = u̇(z) = d℘
P (q)

(z)/ dz of the solution u(z) = ℘
P (q)

(z) of the autonomous

differential equation ü = 6u2 + 1.
For large |q| and z not in one of the aforementioned small discs Di, the solution of the autonomous

Hamiltonian system in S9 \ I is close to the part L
(6)
3 of I. In the (u311, u312) chart, L

(6)
3 is

defined by u312 = 0 and parametrized by u311. The base point (u311, u312) = (4, 0) corresponds to

L
(6)
3 ∩L

(5)
4 , the origin (u311, u312) = (0, 0) to L

(6)
3 ∩L

(6)
0 , whereas (u311, u312) = (∞, 0) corresponds

to (u321, u322) = (0, 0) hence to L
(6)
3 ∩L

(7)
2 . We have u311(z) = u(z)−3 u̇(z)2 and u̇2−4u3−2u = q =

constant, which suggests the rescaling z = z0 + q−1/6 t and u(z) = q1/3 v(q1/6 (z − z0)). Then

u311 = v−3 (v′)2, v′′ = 6 v2+q−2/3, and (v′)2 = 4 v3+1+2 q−2/3 v, hence u311 = 4+v−3+2 q−2/3 v−2.
In the limit q =∞ this leads to u311(t) = v(t)−3 v′(t)2 = 4+v(t)−3. The equation (v′)2 = 4 v3+1 has
a regular hexagonal period lattice P , and we arrange that v(t) = ℘(t) is the solution with its poles

at the points of P . As the poles have order two, it follows that the mapping C/P → L
(6)
3 : t+P 7→

u311(t) is a sixfold branched covering, where near the point t + P = 0 + P the mapping behaves
as u311(t)− 4 ∼ t6. At this ramification point t+ P all the six branches come together, where the
image point u311 = 4 corresponds to the centers of the discs D8. There are three ramification points
t where v ∈ C \ {0}, v′ = 0, at each of which u′311 = 0 and u′′311 = 2 v−3 v′′ = 12 v−1 6= 0, which
means that at each of these ramification points two branches come together. Both ramification
points ly over u311 = 0, corresponding to the centers of the discs D0. The only other ramification
points t occur when v = 0. There are two of these and at each one three branches come together.
Both these ramification points ly over u311 =∞, corresponding to the centers of the discs D1.

The group of deck transformations of the aformentioned branched covering is isomorphic to Z/6Z
and generated by T : z + P 7→ e2π i /6 z + P , which is an automorphism of C/P because P has a

Z-basis consisting of p1 ∈ C \ {0} and p2 = e2π i /6 p1. The ramification points of order 6 are the
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fixed points in C/P of T , which is the single point 0 + P . The ramification points of order 3 are
the fixed points of T 2 which are no fixed points of T , which are the two points (p1 + p2)/3 +P and
2 (p1+p2)/3+P . The ramification points of order 2 are the fixed points of T 3 : t+P 7→ −t+P which
are no fixed points of T , which are the three points p1/2 + P , p2/2 + P , and (p1 + p2)/2 + P . �

Figure 4.1 exhibits the complex times z for which the solutions of the autonomous Hamiltonian
system for large q are near the various irreducible components of the singular fiber I(∞) over q =∞.
The solid dots represent the concentric discs Di, 4 ≤ i ≤ 8, centered at the points of the period
lattice P (q) where u1 has a pole, with respective radii ∼ |q|−1/(9−i) ri for large finite ri, where the

distance between the points of P (q) the period lattice is of order |q|−1/6 � |q|−1/5 � . . . � |q|−1.

The solution is near L
(1)
8 when z ∈ D8, and near L

(9−i)
i \L(10−i)

i+1 when z ∈ Di\Di+1 for 4 ≤ i ≤ 7. The
double circles represent the concentric disks D1 and D2, centered at the zeros of u1, approximately
equal to the points (p1(q)+p2(q))/3 and 2 (p1(q)+p2(q))/3 modulo P (q), and of radius ∼ |q|−1/2 r1

and ∼ |q|−1/4 r2 for large finite ri, respectively. The solution is near L
(8)
1 when z ∈ D1, and near

L
(7)
2 \ L

(8)
1 when z ∈ D2 \D1. The single circles represent the concentric discs D0 centered at the

zeros of u2 = u̇1, approximately equal to the points p1(q)/2, p2(q)/2, (p1(q)+p2(q))/2 modulo P (q)

with radius ∼ |q|−1/3 r for a large finite r. The solution is near L
(9)
0 when z ∈ D0. When z is in

the complement of all the aforementioned discs, which happens for most of the complex times, the

solution is near the component L
(6)
3 of I(∞).

Figure 4.2 is a contour plot of the absolute value of the Weierstrass ℘ function defined by the
regular hexagonal lattice generated by 1 and 1

2 + 1
2

√
3 i. The areas close to the lattice points =

the pole points of ℘(z) should have been blacker than black, because the second order poles are
very big. Instead the computer program has left these areas blank. The solid level curve is the one
of the level at the zeros of ℘′(z), the saddle points of |℘(z)|. For our u(z) = ℘

P (q)
(z) the lattice

P (z) is asymptotically equal to q−1/6 times a standard regular hexagonal lattice P0, and therefore

u(z) ∼ q1/3 ℘P0 (z). It follows that the pits in the mountain landscape of |u(z)| in which the zeros

of u(z) ly are separated from each other by mountain ridges in which the heights of the passes,

situated at the zeros of du(z)/ dz, are of large order |q|1/3.

The following lemma implies that the solutions near the part L
(6)
3 \ (L

(9)
0 ∪ L(7)

2 ∪ L(5)
4 ) of I

of the non-autonomous Boutroux-Painlevé system closely follow the solutions of the autonomous
Hamiltonian system.

Lemma 4.9. Let K be a compact subset of L
(6)
3 \ (L

(9)
0 ∪ L

(7)
2 ∪ L

(5)
4 ) and R ∈ R>0. Then there

exists a neighborhood U of K in S9 and a constant C such that the distance between x(z) and x0(z)

is ≤ C |z0|−1 |q|−1/6 if |z0| ≥ C, |z − z0| ≤ R, x0 is a solution of the autonomous Hamiltonian
system such that x0(z0) ∈ U and x0(z) ∈ U , and x is the solution of the Boutroux-Painlevé system
such that x(z0) = x0(z0).

Proof. L
(6)
3 \(L

(9)
0 ∪L

(7)
2 ∪L

(5)
4 ) is visible in the (u311, u312) chart, where it is determined by u312 = 0

and parametrized by u311. As u311 = ∞, u311 = 0, and u311 = 4 correspond to L
(9)
2 , L

(9)
0 , and

L
(5)
4 , respectively, we keep u311 bounded and bounded away from 0 and 4. We multiply the vector

field by the scalar factor q−1/6 = u311
1/2 u312 (u311 − 4 − 2u311

2 u312
4)−1/6, which amounts to a

time reparametrization along each solution curve. Lemma 4.8 implies that the distance between
the periods of the solutions of the autonomous system is of order |q|−1/6. Lemma 4.1 implies that,

along the solutions near L
(6)
3 , we have q(z) = q(z0) (z/z0)−6/5+o(1), which is asymptotically constant
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for |z − z0| << |z0|. This leads to the time rescaled system

du311/dt = u311
1/2 (12− 3u311 + 2u311

2 u312
4) (u311 − 4− 2u311

2 u312
4)−1/6

∼ −3u311
1/2 (u311 − 4)5/6,

du312/dt = u311
−1/2 u312 (−6 + u311 − u311

2 u312
4) (u311 − 4− 2u311

2 u312
4)−1/6

+(5 z)−1 u311
1/2 u312

2 (u311 − 4− 2u311
2 u312

4)−1/6.

(4.23)

Actually, we have six vector fields, one for each of the sixth roots of 1/q, corresponding to the

fact that the curves q equal to a large constant pass six times near L
(6)
3 \ (L

(9)
0 ∪ L

(7)
2 ∪ L

(5)
4 ). The

autonomous Hamiltonian system is obtained from (4.23 by deleting the z-dependent term from

the equation for du312/ dt. As u312 ∼ q−1/6 u311
−1/2 (u311 − 4)1/6, the difference between the two

vector fields is ∼ (5 z)−1 q−1/3 u311
−1/2 (u311− 4)1/6 = O(z−1 q−1/3), and therefore |x(z)− x0(z)| =

O(q−1/3 z−1 (t− t0)), where t− t0 = O(q1/6 (z − z0)). �

It follows from the first equation in (4.23) that, for the solutions near L
(6)
3 \ (L

(9)
0 ∪L

(7)
2 ∪L

(5)
4 ) of

both the non-autonomous and the autonomous system, the t-times needed to go from a position with

first coordinate u311 to a position near L
(6)
3 ∩L

(9)
0 , L

(6)
3 ∩L

(7)
2 , and L

(6)
3 ∩L

(5)
4 are asymptotically equal

to the integral of −3−1 U−1/2 (U−4)−5/6 over the U -interval from u311 to 0,∞, and 4, respectively.
Therefore the distances between the discs Di for x and the discs Di for x0 are of smaller order than

|q|1/6. As the distances between the discs for x0 are of order |q|1/6, where near L
(6)
3 we have q = d,

see Lemma 4.2, the discs for x have asymptotically the same relative position as the discs for x0.
Therefore Lemma 4.9 leads to a description of the solutions of the Boutroux-Painlevé sytem near I
which closely resembles the description of the the solutions of the autonomous Hamiltonian system

near S9,∞. Lemma 4.1 implies for the solutions of the Boutroux-Painlevé system near L
(6)
3 we

have q(z) ∼ q(z0) (z/z0)−6/5+o(1) hence the order |q(z)|−1/6 ∼ |q(z0)|−1/6 (|z|/|z0|)1/5+o(1) of the
distances between the discs increases slowly with growing |z| ≥ |z0| >> 1, until the solution has
left the neighborhood of I in S9 where the estimates hold.

Remark 4.10. Boutroux [2, bottom of p. 310] claimed that the quantity (Y ′)2 − 4Y 3 + 12Y , see
Remark 2.1, remains bounded when X runs to infinity along any path with bounded argument
not passing through any pole point of Y (X). As the function q has a simple pole at every pole
point of u(z), where u1(z)u2(z) and u1(z)2 have poles of order 5 and 4, respectively, it follows from
(2.5) that (Y ′)2 − 4Y 3 + 12Y has a pole of order 5 at every pole point of Y (X), and therefore the
claim of Boutroux can only be valid if the final X stays sufficiently far away from the pole points
of Y (X). Boutroux referred for the proof to [2, §10], which in turn refers back to the estimates on
[2, p. 296, 297]. No proof is given for the existence of paths along which estimates of the form [2,
(17) on p. 296] hold, and of which the concatenation is the desired path in the X-plane running
to infinity. In particular no analysis is given of the existence of paths along which estimates of the
form [2, (17) on p. 296] hold when |D| is large. Boutroux did not give an explicit 6/5 power law
as in Corollary 4.3, although the last term in the right hand side of [2, (36) on p. 321] contains a

factor X−6/5 which Boutroux used in order to argue that the quantity (Y ′)2− 4Y 3 + 12Y remains
bounded.

The asymptotic formula of Joshi and Kruskal [16, (5.18) with c = 6/5] implies that the solution E
of the averaged equation for their quantity E, which corresponds to our energy function E, satisfies
E(z) ∼ E(z0) (z/z0)−6/5+o(1) for large |E|. Joshi and Kruskal [16] did not provide estimates for E
in terms of E . It follows from (3.3) that E has a pole of order one at the pole points z = ζ, and
Lemma 4.9 together with the paragraph preceding it imply that for the solutions near the infinity
set the pole points form an approximate regular hexagonal lattice with distance between the pole
points of order |E|−1/6. Therefore we cannot have E(z) ∼ E(z0) (z/z0)−6/5+o(1) for all large |E|.
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However, Lemma 4.2 and Corollary 4.3 imply this estimate if z stays away from the pole points at
a distance of larger order than |d|, when |d| ∼ |2E|−1 << |E|−1/6.

5. Near the equilibria of the limit system

In this section, we consider the Boutroux-Painlevé system near the equilibria of its autonomous
limit and prove several results about the solutions near these equilibria. These are the solutions
called tronquée by Boutroux that are asymptotically free of poles near infinity in certain sectors.
We use classical methods to determine these properties and end with a determination of their
sequences of poles near the boundaries of pole-free sectors.

The limit system
u̇1 = u2,
u̇2 = 6u1

2 + 1,
(5.1)

obtained from (2.2) by substituting z =∞, has two equilibrium points, determined by u1 = ε i /
√

6,
u2 = 0, where ε ∈ {−1, 1}. The linearization of the vector field at these equilibrium points is given
by (δu1, δu2) 7→ (δu2, 12u1 δu1) = (δu2, ε 2

√
6 i δu1), which has the eigenvalues

λ± = ± (24)1/4 eπ i (1/2−ε/4), (5.2)

with the corresponding eigenspaces determined by δu2 = λ± δu1.
Because the vector field in S9(∞) \ I(∞) has no zeros on the pole line L9(∞), and S9(∞) \

(I(∞) ∪ L9(∞)) is equal to the coordinate neighborhood where u1 and u2 are finite, these are the
only equilibrium points of the autonomous Hamiltonian system in S9(∞) \ I(∞). The values of

the function q := 2E in (2.3) at the equilibrium points are equal to −ε (2/3)3/2 i, and the curves

q = − ε (2/3)3/2 i are the only singular level curves of the function q in S9(∞) \ I(∞). Both these
singular fibers of the elliptic fibration q : S9(∞) → P1 are of Kodaira type I1. The fiber q = ∞,
equal to the infinity set I(∞) of the Hamiltonian vector field defined by the Hamiltonian function
E = q/2, is of Kodaira type II∗. The configuration of the singular fibers of the elliptic fibration
q : S9(∞)→ P1 is II∗+ I1 + I1.

5.1. Perturbation of a system with a hyperbolic equilibrium point. With the substitution
t = λ+ z and an affine change of coordinates (u1, u2) 7→ (p+, p−) which maps (ε i /

√
6, 0) to (0, 0)

and the eigenvectors of the linearization of (5.1) at (ε i /
√

6, 0) for the eigenvalues λ+ and λ− to
(1, 0) and (0, 1), respectively, the system (2.2) is transformed to a system

dp/ dt = v(t−1, p) (5.3)

such that the right hand side satisfies the conditions in Lemma 5.1 below. In the remainder of
this section we discuss arbitrary systems (5.3) which satisfy the conditions in Lemma 5.1. In the
lemmas 5.2 – 5.11, we describe the solutions p(t) of (5.3) which remain bounded for all t in an
unbounded domain in the complex plane, where the domain is increased step by step.

The conclusions of the lemmas 5.2 – 5.11 follow from O. and R. Costin [7, Th. 1 and 2],
which deals with systems (5.3) in arbitrary dimensions n, where v is complex analytic on an
open neighborhood of (0, 0) in C × Cn, v(0, 0) = 0, and less special assumptions are made on
L0 := ∂v(0, p)/∂p|p=0. The proof of [7, Th. 1] uses Borel summation. Our proofs, a sequence of
variations on the method of Cotton, are more classical, where our step by step approach may be
helpful in understanding all the aspects of the final picture. As we only need the case that n = 2
and L0 has the eigenvalues ±1, and a wide generalization would require more elaborate notations
and proofs, we did not attempt to write down the latter. In the next paragraph we summarize the
results of the lemmas 5.2 – 5.11.

In Lemma 5.2 we prove that the solutions p(t) of (5.3) which remain small on half lines t0 +R≥0

form a one-parameter family parametrized by the complex number p(t0)−. Lemma 5.3 yields
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unique solutions p↑(t) and p↓(t) which remain small on horizontal axes in the upper and lower
complex half plane, respectively. In Lemma 5.5 it is established that for every ε > 0 there exists
an r > 0 such that the p↑(t) have a common complex analytic extension to the domain defined
by the inequalities |t| > r and −π/2 + ε < arg t < 3π/2 − ε, and that this common extension
has an asymptotic expansion in strictly negative powers of t as |t| → ∞. Lemma 5.6 states that
there exists an α ∈ C such that for each solution p(t) in Lemma 5.2 there exist η, r > 0 such that
p(t) has a complex analytic extension to a small solution of (5.3) on the domain Rη, r defined by
|t| > r, −π < arg t < π, and |τ(t)| < η, where τ(t) := e−t tα. Furthemore, there exist unique
C ∈ C and dj ∈ C2, j ∈ Z≥0, such that on every subdomain Σ where e−t is of smaller order
than every negative power of t as |t| → ∞ the function p(t) − p↑(t) has the asymptotic expansion
p(t) − p↑(t) ∼ C e−t tα

∑∞
j=0 t

−j dj . Here the dj do not depend on the choice of the solution

p(t) in Lemma 5.2. With a similar argument as in the proof of Lemma 5.6, we obtain that in
a subdomain where C1 |t|−ε1 < | e−t | < C2 |t|−ε2 for strictly positive C1, C2, ε1, ε2, we have an
asymptotic expansion of the form p(t) ∼

∑
h, i∈Z≥0

τ(t)h t−i ph, i as |t| → ∞. Here the coefficients

ph, i satisfy ph, i = Ch ch, i, where the coefficients ch, i do not depend on the choice of the solution

p(t) in Lemma 5.3. Lemma 5.8 states that for each i the series Fi(τ) :=
∑

h≥0 τ
h ph, i converges for

sufficiently small |τ |, when Lemma 5.11 implies that we have an asymptotic expansion of the form
p(t) ∼

∑
i≥0 Fi(τ(t)) t−i as |t| → ∞ in a domain where Im t ≥ 0 and F0(τ(t)) remains bounded,

extending far into the domain where p(t) is bounded away from zero. This expansion will lead
to the asymptotic determination of [7, Proposition 15] of the sequence of poles of the truncated
solutions of (1.1) in Lemma 5.18. At some places our statements are more precise and our proofs
more complete than those in [7].

Lemma 5.1. Assume that v = (v+, v−) is a C2-valued complex analytic function on an open
neighborhood D of the origin in C3 such that v±(u, p) = ± p± + w(u, p), w(0, 0) = 0, and
∂w(0, p)/∂p|p=0 = 0. Here p = (p+, p−) ∈ C2 and ‖p‖ := max{|p+|, |p−|}. Then there exist
strictly positive real numbers δ0, ε0, C1, C2, C3, and C4 such that ‖w(u, p)‖ ≤ C1 ‖p‖2 + C2 |u|,
and ‖∂w(u, p)/∂p‖ ≤ C3 ‖p‖+ C4 |u| if ‖p‖ < δ0 and |u| < ε0. Here the last condition implies the
preceding one for C1 = C3/2 and a suitable C2. In the sequel we will take D equal to the set of all
(u, p) ∈ C × C2 such that |u| < ε0 and ‖p‖ < δ0. For solutions p of (5.3) we will always require
that |t| > 1/ε0 and ‖p(t)‖ < δ0 for all t in the domain of definition of p.

Proof. We have ‖w(u, p)‖ ≤ ‖w(u, p) − w(0, p)‖ + ‖w(0, p)‖ and, with the notation ∂2w(u, p) =
∂w(u, p)/∂p, ‖∂2w(u, p)‖ ≤ ‖∂2w(u, p) − ∂2w(0, p)‖ + ‖∂2w(0, p)‖. Because w(0, 0) = 0 and
∂2w(0, 0) = 0, an application of a Taylor expansion with estimate for the remainder term to each
of the terms between the norm signs yields the estimates in Lemma 5.1. �

Lemma 5.2. In the situation of Lemma 5.1, let 0 < δ < δ0, 0 < ε < ε0, t0, a
− ∈ C, |t| ≥ 1/ε for

every t ∈ T := t0 + R≥0, |a−|+ C1 δ
2 + C2 ε < δ, and C3 δ + C4 ε < 1. Then there exists a unique

a+ = a+
t0, a−

∈ C such that the solution p(t) of the differential equation (5.3) with p(t0) = (a+, a−) is

defined for all t ∈ T and satisfies ‖p(t)‖ ≤ δ for every t ∈ T . For any 0 < δ < min{δ0, 1/C1, 1/C3},
the set of all (t0, a

−) for which the above conclusions hold is a non-empty open subset of C2 on which
the function (t0, a

−) 7→ a+
t0, a−

is complex analytic. Similar conclusions hold with t0 +R≥0 replaced

by a curve τ + i σ(τ), where τ ∈ [Re t0, ∞[, σ : [Re t0, ∞[ → R is continuously differentiable with
a bounded derivative, and the curve stays sufficiently far away from the origin.

Proof. We apply the method of Cotton [8].
The system (5.3) can be viewed as an inhomogeneous system of linear differential equations with

w(t−1, p(t)) as the inhomogeneous term, and therefore it is equivalent to the system of integral
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equations

p(t)± = e±(t−τ) p(τ)± +

∫ t

τ
e±(t−s) w(s−1, p(s))± ds. (5.4)

Let X denote the set of all continuous functions p : T → C2 such that If (t−1, p(t)) ∈ D for every
t ∈ T and t 7→ w(t−1, p(t))+ is bounded on T . If the solution p(t) of (5.3) belongs to X , then we
can let τ ∈ T run to infinity in the equation (5.4) for ± = +, and obtain

p(t)+ = −
∫ +∞

t
et−s w(s−1, p(s))+ ds, (5.5)

where
∫ +∞
t indicates the limit for T 3 τ → ∞ of

∫ τ
t . Conversely, if a− ∈ C and p ∈ X , then the

equations (5.5) and

p(t)− = et0−t a− +

∫ t

t0

es−t w(s−1, p(s))− ds (5.6)

for all t ∈ T imply that p(t) is a solution of (5.3) such that p(t0)− = a−.
Let F denote the integral operator which assigns to each p ∈ X the function F (p) : T → C2 such

that, for each t ∈ T , F (p)(t)+ and F (p)(t)− are equal to the right hand side of (5.5) and (5.6),
respectively. In the situation of ii), let X denote the set of all continuous functions p : T → C2

such that ‖p(t)‖ ≤ δ for every t ∈ T . Then X ⊂ X , X is a complete space with respect to the
metric d(p1, p2) := supt∈T ‖p1(t)− p2(t)‖, and the assumed estimates imply that

|F (p)(t)+| ≤
∫ ∞

0
e−τ (C1 δ

2 + C2 ε) dτ ≤ δ, (5.7)

|F (p)(t)−| ≤ et0−t |a−|+
∫ ∞

0
e−τ (C1 δ

2 + C2 ε) dτ ≤ δ, (5.8)

|F (p1)(t)± − F (p2)(t)±| ≤
∫ ∞

0
e−τ (C3 δ + C4 ε) ‖p1(t0 + τ)− p2(t0 + τ)‖ dτ

≤ (C3 δ + C4 ε) d(p1, p2) (5.9)

for every p, p1, p2 ∈ X and t ∈ T . Therefore F (X) ⊂ X and F : X → X is a contraction, with
contraction factor ≤ C3 δ + C4 ε < 1, when the contraction mapping theorem implies that F has a
unique fixed point, a unique p ∈ X such that F (p) = p. It follows that there is a unique solution
p(t) = pt0, a−(t) of (5.3) on T such that p(t0)− = a− and ‖p(t)‖ ≤ δ for every t ∈ T . As the
arbitrary solutions p(t) of (5.3) are uniquely determined by their value p(t0) at t = t0, it follows
that for every solution p(t) of (5.3) on T with p(t0)− = a− and p(t0)+ 6= a+(t0, a

−) := pt0, a−(t0)+

there exists t ∈ T such that ‖p(t)‖ > δ. The assumptions remain verified upon small perturbations
of t0 and a−, and an application of the implicit function theorem yields that the solution p = pt0, a−
depends in a complex analytic way on (t0, a

−). This completes the proof of Lemma 5.2. �

Lemma 5.3. In the situation of Lemma 5.1, let 0 < δ < δ0, 0 < ε < ε0, C1 δ
2 + C2 ε < δ,

and C3 δ + C4 ε < 1. Then there exists a unique solution p(t) = p↑(t) and p = p↓(t) of (5.3) on
R+ i / epsilon and R− i /ε such that ‖p(t)‖ ≤ δ for every t ∈ R+ i /ε and t ∈ R− i /ε, respectively.
Similar conclusions hold with R ± i /ε replaced by a curve τ + i σ(τ), where τ ∈ R, σ : R → R is
continuously differentiable with a bounded derivative, and the curve stays sufficiently far away from
the origin.

Proof. We apply the variation on [8, p. 483] of Cotton’s method.
Let I = R + i /ε, and Y the set of all continuous functions p : I → C2 such that (t−1, p(t)) ∈ D

for every t ∈ I and t 7→ w(t−1, p(t)) is bounded on I. If the solution p(t) of (5.3) belongs to Y,
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then we can let I 3 τ → +∞ in the equation (5.4) for ± = + and let I 3 τ → −∞ in (5.4) for
± = −, and obtain (5.5) and

p(t)− =

∫ t

−∞
es−t w(s−1, p(s))− ds, (5.10)

respectively. Conversely, if p ∈ Y satisfies (5.5) and (5.10), then it is a solution of (5.3).
Let G denote the integral operator which assigns to each p ∈ Y the function G(p) : I → C2

such that, for each t ∈ I, G(p)(t)+ and G(p)(t)− are equal to the right hand side of (5.5) and
(5.10), respectively. Let Y be the set of all continuous functions p : I → C2 such that ‖p(t)‖ ≤ δ
for every t ∈ I. Then Y ⊂ Y, Y is a complete space with respect to the metric d(p1, p2) :=
supt∈U ‖p1(t) − p2(t)‖, and estimates analogous to (5.7), (5.8), and (5.9) imply that G(Y ) ⊂ Y
and G is a contraction in Y with contraction factor ≤ C3 δ + C4 ε < 1. This time the contraction
mapping theorem yields a unique solution p : I → C2 of (5.3) such that ‖p(t)‖ ≤ δ for every t ∈ I.
This completes the proof of Lemma 5.3. �

Remark 5.4. According to Anosov [1, §4], “Every five years or so, someone “discovers” the theorem
of Hadamard and Perron, proving it either by Hadamard’s method or by Perron’s.” The theorem
alluded to is the stable manifold theorem in dynamical systems, “Hadamard’s method” refers to
Hadamard [12], and “Perron’s method” to Perron [22]. However, Perron [22, p. 130] made perfectly
clear that he used the method of Cotton [8]. The paper [8] seems to be little known, for no good
reason.

Lemma 5.5. For each m, n, r ∈ R>0 such that m > n, let η = ηm,n, r : R → R be defined by

η(τ) = (r2 − τ2)1/2 when |τ | ≤ rm (1 + m2)−1/2, η(τ) = r (1 + m2)1/2 − m |τ | when rm (1 +

m2)−1/2 ≤ |τ | ≤ r (1 +m2)1/2/(m− n), and η(τ) = −n |τ | when |τ | ≥ r (1 +m2)1/2/(m− n). Let
V := {t ∈ C | Im t ≥ η(Re t)}, see Figure 5.1.

If r is sufficiently large, then all solutions p↑(t) in Lemma 5.3 have a common extension to a
unique solution of (5.3), also denoted by p↑(t), on the union V of V with all their domains of
definition. There exists j 7→ cj : Z>0 → C2, such that the solution p(t) = p↑(t) of (5.3) on V has
the asymptotic expansion

p(t) ∼
∞∑
j=1

t−j cj (5.11)

as t ∈ V, |t| → ∞. The asymptotic expansion (5.11) can be differentiated termwise in the sense
that

dp(t)

dt
∼
∞∑
j=1

−j t−j−1 cj (5.12)

as t ∈ V, |t| → ∞. All the coefficients cj are uniquely determined from the equations obtained by
substituting (5.12) and (5.11) in the left and right hand side of (5.3), respectively, and using the
power series expansion

v(t−1, p) =
∑

i, j+, j−∈Z≥0

t−i (p+)j+ (p−)j− vi, j+, j− , vi, j+, j− ∈ C2. (5.13)

We have

c1 = −

(
∂v(0, p)

∂p

∣∣∣∣
p=0

)−1
∂v(u, 0)

∂u

∣∣∣∣
u=0

. (5.14)

Applying the complex conjugation t 7→ t, we obtain similar conclusions for the solutions p↓(t) in
Lemma 5.3.
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Proof. For each t ∈ V we define half-lines L±t emanating from t, as follows. If Re t ≥ 0, then
L+
t := t+ R≥0. If 0 ≤ −Re t ≤ m Im t, then L+

t := {t+ τ − i (Re t/ Im t) τ | τ ∈ R≥0}. If Re t ≤ 0
and m Im t ≤ −Re t, then L+

t := {t + τ + i mτ | τ ∈ R≥0}. Finally, L−t := R(L+
R(t)) for every

t ∈ V , where R is the reflection t 7→ −Re t+ i Im t.
It follows that, for every t ∈ V and s ∈ L±t , |t| ≥ r and |s| ≥ (m−n) (1 +m2)−1/2 |t|. See Figure

5.1.
On the space of functions p : V → C2 such that p(t) = O(t−1/2) as t ∈ V , |t| → ∞, we

use the norm ‖p‖ := supt∈V |t|1/2 ‖p(t)‖. Let r > 1/ε0 and 0 < δ < r1/2 δ0, and Z the space
of continuous functions p : V → C2, complex analytic on the interior of V , such that ‖p‖ ≤ δ.
For each p ∈ Z we define G(p) as above, where the integrals in the right hand sides of (5.5)
and (5.10) are over L+

t and L−t , respectively. Using the Cauchy integral theorem, we obtain that
G(p) is a complex analytic function on the interior of V , with derivative equal to dG(p)(t)±/dt =
±G(p)(t)± + w±(t−1, p(t)). Because the velocities of the parametrizations of L±t in the previous

paragraph are at most (1 +m2)1/2, we have the estimates

|G(p)(t)±| ≤ (1 +m2)1/2 sup
s∈L±t

(C1 δ
2 + C2) |s|−1,

|G(p1)(t)± −G(p2)(t)±| ≤ (1 +m2)1/2 sup
s∈L±t

(C3 |s|−1/2 + C4 |s|−1) ‖p1 − p2‖ |s|−1/2

for every p, p1, p2 ∈ Z and t ∈ V . Because |s|−1 ≤ (m− n)−1 (1 +m2)1/2 |t|−1 and |s|−1 ≤ r−1 for

every s ∈ L±t , it follows that ‖G(p)‖ ≤ (1 + m2)3/4 (m − n)−1/2 (C1 δ
2 + C2) r−1/2 and ‖G(p1) −

G(p2)‖ ≤ (1+m2)3/4 (m−n)−1/2 (C3 r
−1/2+C4 r

−1) ‖p1−p2‖. Therefore, if r > 1/ε0, 0 < δ < r1/2 δ0

(1 +m2)3/4 (m−n)−1/2 (C1 δ
2 +C2) r−1/2 ≤ δ and (1 +m2)3/4 (m−n)−1/2 (C3 r

−1/2 +C4 r
−1) < 1,

which for any m, n, δ ∈ R>0 can be arranged by taking r sufficiently large, we have G(Z) ⊂ Z,
and G : Z → Z is a contraction. This time the contraction theorem implies that there is a unique
solution p = pV : V → C2 of (5.3) such that ‖p(t)‖ ≤ δ |t|−1/2 for every t ∈ V .

For any a ∈ C, successive integrations by parts yield the asymptotic expansions∫ ∞
t

et−s s−a ds ∼
∞∑
k=0

(−1)k πk t
−a−k and

∫ t

−∞
es−t s−a ds ∼

∞∑
k=0

πk t
−a−k

for |t| → ∞, where πk :=
∏k−1
j=0 (a+ j). This is one of the oldest examples of asymptotic expansions

which do not converge. Substituting the inequality ‖w(s−1, p(s))‖ ≤ C1 ‖p(s)‖2 + C2 |s|−1 ≤
(C1 δ

2 + C2) |s|−1 in the integrals in the right hand sides of p(t)± = G(p)(t)±, we obtain that
p(t) = O(t−1) as t ∈ V , |t| → ∞. Substituting

p(t) =

N−1∑
j=1

t−j cj + O(t−N ) (5.15)

for t ∈ V , the power series expansion w(u, p) =
∑

i, j+, j−≥0 wi, j+, j− u
i (p+)j+ (p−)j− , and u = t−1,

p = p(t) in the integrals in the right hand sides of p(t)± = G(p)(t)±, we obtain (5.15) with
N replaced by N + 1 and a unique cN ∈ C2. This inductive procedure yields that p(t) has
an asymptotic expansion of the form (5.11) for t ∈ V , |t| → ∞. The substitution of u = t−1

and p = p(t) in the power series expansion of v(u, p) implies that there exist bi ∈ C2 such that

p′(t) = v(t−1, p(t)) ∼
∑∞

i=1 t
−i bi as t ∈ V , |t| → ∞, when

∫ t
t0
p′(s) ds+p(t0) = p(t) ∼

∑∞
j=1 t

−j cj
yields that bi = −(i− 1) ci−1 for every i ∈ Z≥1. This proves (5.12) for p = pV .
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We will prove next that all solutions p↑ in Lemma 5.3 and pV have a common extension to a
solution of (5.3) on V. The conditions in Lemma 5.3 hold if and only if

ε < min{ε0, 1/C4, 1/4C1C2} and δ−(ε) < δ < min{δ0, δ+(ε)},
where δ±(ε) := (1 ± (1 − 4C1C2 ε)

1/2)/2C1. If in the proof of Lemma 5.3 we replace Y by the
space Yε, δ of all continuous functions p on the upper half plane Uε := {t ∈ C | Im t ≥ 1/ε}, complex
analytic in the interior of Uε and with ‖p(t)‖ ≤ δ for all t ∈ Uε, then G is a contraction on Yε, δ
and therefore has a unique fixed point pε, δ ∈ Yε, δ. The Cauchy integral theorem implies that the
restriction of pε, δ to the interior of Uε is a complex analytic solution of (5.3). As the restriction of
pε, δ to R + i /ε is a fixed point of G : Y → Y , and the latter is unique, and equal to the solution
p↑ in Lemma 5.3, it follows that the solution p↑(t) in Lemma 5.3 extends to a solution p = p↑, ε of
(5.3) on Uε, complex analytic on the interior of Uε, and satisfying ‖p(t)‖ ≤ δ for every t ∈ Uε. Note
that if 0 < ε′ < ε, then the conditions in Lemma 5.3 hold with ε replaced by ε′, and the restriction
to Uε′ of p↑, ε is equal to p↑, ε′ .

If p(t) is any solution of (5.3) on some upper half plane U , and p(t) → 0 as t ∈ U , |t| → ∞,
then there exist δ, ε as above such that Uε ⊂ U and ‖p(t)‖ ≤ δ for every t ∈ Uε, and therefore
p|Uε = p↑, ε. As the sector-like domain V contains an upper half plane Uε, and pV (t)→ 0 as t ∈ V ,
|t| → ∞, it follows that (pV )|Uε = p↑, ε. This completes the proof that all solutions p↑ in Lemma
5.3 extend to a common solution p(t) of (5.3) on V, of which the restriction to V is equal to pV ,
and therefore p has all the properties mentioned in Lemma 5.5. �

Lemma 5.6. In the situation of Lemma 5.1, let α denote the right lower corner in the 2×2-matrix

L1 =
∂2v(u, p)

∂u ∂p

∣∣∣∣
u=0, p=0

+
∂2v(0, p)

∂p2

∣∣∣∣
p=0

c1, (5.16)

with c1 defined by (5.14). For η, r ∈ R>0, let

Rη, r := {t ∈ C | |t| ≥ r and | e−t tα| ≤ η}, (5.17)

where tα = eα log t, log t = log |t|+ i arg t, and −π ≤ arg t ≤ π. For every solution p(t) = pt0, a−(t)
and p(t) = p↑(t) of (5.3) in Lemma 5.2 and Lemma 5.5, there exist η, r ∈ R>0 such that p(t) extends
to a solution of (5.3) on Rη, r, which extension is again denoted by pt0, a− and p↑, respectively. There

exist j 7→ dj : Z≥0 → C2 with d0 = (0, 1), and C = Ct0, a− ∈ C, such that on any subdomain Σ of
Rη, r on which Re t/ log |t| → +∞ as t ∈ Σ, |t| → ∞, we have the asymptotic expansion

p(t)− p↑(t) ∼ C e−t tα
∞∑
j=0

t−j dj (5.18)

as t ∈ Σ, |t| → ∞. The asymptotic expansion (5.18) can be differentiated termwise in the sense
that

p′(t)− p′↑(t) ∼ C e−t tα
∑
j=0

t−j (−dj + (α− j + 1) dj−1) (5.19)

as t ∈ S, |t| → ∞. All the coefficients dj are uniquely determined from the equations d0 = (0, 1)

and −dj +(α− j+1) dj−1 =
∑j

i=0 Li dj−i for all j ≥ 1, where the 2×2-matrices Li are determined
from the asymptotic expansion

L(t) :=
∂v(t−1, p)

∂p

∣∣∣∣
p=p↑(t)

∼
∞∑
i=0

t−i Li (5.20)

as t ∈ V , |t| → ∞. Here

L0 :=
∂v(0, p)

∂p

∣∣∣∣
p=0

=

(
1 0
0 −1

)
, (5.21)
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and L1 is given by (5.16). The asymptotic expansion (5.11) for p(t) = p↑(t) holds for t ∈ Σ,
|t| → ∞, and can be differentiated termwise there. In combination with (5.18), (5.19), it follows
that p(t) = pt0, a−(t) has the same asymptotic expansions (5.11), (5.12) for t ∈ Σ, |t| → ∞.

The complex number C = Ct0, a−, determined by

lim
t∈Σ, |t|→∞

et t−α (p(t)− p↑(t)) = (0, C),

depends in a complex analytic way on (t0, a
−). Conversely, for every C ∈ C there exist η, r ∈ R>0

and a unique solution p = pC : Rη, r → C2 of (5.3) such that (5.18) holds, where pC(t) depends
in a complex analytic way on C. If we choose t0 such that ‖p(t0)‖ is sufficiently small, then
p = pt0, a− with a− = p(t0)−, and a− 7→ Ct0, a− is a complex analytic diffeomorphism from its open
domain of definition onto an open subset of C. In particular we have p(t) ≡ p↑(t) if and only if
C = 0 if and only if there exists a sequence tj in C such that | arg(tj)| < π, e−tj tj

α → 0 and
etj tj

−α (p(tj)− p↑(tj))→ 0 as j →∞.
Finally, for every C ∈ C and ε > 0 there exist η, r ∈ R>0 such that∥∥et t−α (pC(t)− p↑(t))− (0, C)

∥∥ ≤ ε (5.22)

for every t ∈ Rη, r. In particular, if C 6= 0 and we choose 0 < ε < |C|, then pC(t) is bounded
away from zero on the set of all t ∈ C such that | e−t tα| = η, |t| ≥ r, and Im t > 0, the part of
the boundary of Vη, r in the upper half plane and sufficiently far away from the origin. A similar
statement holds in the lower half plane with p↑(t) replaced by p↓(t).

Proof. Let W be a suitable subdomain of V and p : W → C2 a solution of (5.3). Then y(t) :=
p(t)− p↑(t) is a solution of the differential equation

dy/dt = f(t−1, y) := v(t−1, p↑(t) + y)− v(t−1, p↑(t)), (5.23)

where (t, y) 7→ f(t−1, y) is a C2-valued complex analytic function on W × B, if B := {y ∈ C2 |
‖y‖ < δ′0}, where δ′0 := δ0 − supt∈W ‖p↑(t)‖ ≥ δ0 − δ r−1/2. Furthermore,

f(t−1, y) ∼
∞∑
j=0

t−j fj(y) (5.24)

for t ∈ V , |t| → ∞, where each of the functions fj is complex analytic on B. We have f(t−1, 0) ≡ 0,
hence fj(0) = 0 for every j. It follows from (5.20) that ∂fj(y)/∂y|y=0 = Lj for every j ∈ Z≥0. All
aforementioned asymptotic expansions are uniform in y ∈ B, and can be differentiated termwise,
arbitrarily often, with respect to t, y+, and y−.

If A(t) =
∑N−1

j=0 t−j Aj , where the Aj are 2 × 2-matrices with A0 = 1, then the substitution

y = A(t) z transforms the linear differential equation dy/dt = L(t) y into the linear equation
dz/dt = M(t) z, where L(t)A(t) = A′(t) + A(t)M(t). It follows that M(t) ∼

∑∞
k=0 t

−kMk,
where, for each l ∈ Z≥0 ∑

j+k=l

Lj Ak = (1− l)Al−1 +
∑
j+k=l

AjMk.

Here Aj = 0 when j < 0 or j ≥ N . It follows that M0 = L0 as in (5.21), when the linear mapping
Al 7→ L0Al − AlM0 is surjective from the space of all 2 × 2-matrices Al onto the space of all
antidiagonal 2× 2-matrices, with kernel equal to the space of all diagonal 2× 2-matrices. It follows
by induction on l ≤ N − 1 that, given the Aj and Mj for j ≤ l − 1, there is a unique antidiagonal
matrix Al such that the matrix Ml is diagonal. In other words, with the substitution y = A(t) z
the differential equation (5.23) is equivalent to the differential equation

dz/ dt = g(t−1, z) := A(t)−1 f(t−1, A(t) z)−A(t)−1A′(t) z, (5.25)
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where g(t−1, z) has an asymptotic expansion for |t| → ∞ of the same nature as f(t−1, y),

g(t−1, z) =

N−1∑
j=0

t−jMj z + h(t−1, z), (5.26)

h(t−1, z) = O(|t|−N ‖z‖) + O(‖z‖2), and (5.27)

∂h(t−1, z)

∂z
= O(|t|−N ) + O(‖z‖) (5.28)

as t ∈ V and |t| → ∞, where Mj is a diagonal 2 × 2-matrix for each 0 ≤ j ≤ N − 1. We have
M0 = L0 is as in (5.21), and M1 is equal to the diagonal part of the 2× 2-matrix L1 in (5.16).

Let µ+
j and µ−j denote the left upper and right lower corner of the diagonal matrix Mj , where

µ±0 = ±1 and µ−1 = α. Write

Θ±(t) := e±t tµ
±
1 θ±(t), where

θ±(t) := exp

N−1∑
j=2

µ±j t
1−j/(1− j)

 . (5.29)

Note that (5.29) implies that Θ±(t) ∼ e±t tµ
±
1 for large |t|. The solutions ζ(t) of the homoge-

neous linear differential equation dζ
dt =

∑N−1
j=0 t−jMj ζ are given by ζ(t)± = Θ±(t) Θ±(τ)−1 ζ(τ)±.

Substituting (5.26) in (5.25), we obtain an inhomogeneous linear differential equation for z with
h(t−1, z(t)) as the inhomogeneous term, when Lagrange’s method of variation of constants yields
the integral equations

z(t)± =
Θ±(t)

Θ±(τ)
z(τ)± +

∫ t

τ

Θ±(t)

Θ±(s)
h(s−1, z(s))± ds.

The reasoning leading to (5.5) and (5.6) this time leads to the conclusion that z(t) is a uniformly
small solution of (5.25) on T := t0 + R≥0 such that z(t0)− = b−, if and only if z(t) is a uniformly
small continuous function which satisfies the integral equations

z(t)+ = H(z)(t)+ := −
∫ +∞

t

Θ+(t)

Θ+(s)
h(s−1, z(s))+ ds (5.30)

and

z(t)− = H(z)(t)− :=
Θ−(t)

Θ−(t0)
b− +

∫ t

t0

Θ−(t)

Θ−(s)
h(s−1, z(s))− ds. (5.31)

Assume that N > 1, γ > |b−/Θ−(t0)|. In the next paragraphs we will prove that, if supt∈T |t−1|
and supt∈T | e−t tα| are sufficiently small, then H is a contraction in the set Z of all continuous
functions z : T → C2 such that ‖z‖ := supt∈T | et t−α| ‖z(t‖ ≤ γ, with respect to the metric
(z1, z2) 7→ ‖z1 − z2‖.

If in the integrand in (5.30) we substitute s = t + τ , τ ∈ R≥0, then (5.27) implies that | et t−α|
times the absolute value of the integrand is estimated from above by a uniform constant times

e−2 τ |( t+ τ

t
)α−µ

+
1 |
(
|t+ τ |−N + | e−(t+τ) (t+ τ)α| ‖z‖

)
‖z‖.

In view of (5.28), a similar estimate with the last factor ‖z‖ replaced by ‖z1 − z2‖ holds for

| et t−α| |H(z1)(t)+ − H(z2)(t)+|. The integral of τ 7→ e−2 τ |( t+τt )α−µ
+
1 | over R≥0 is uniformly

bounded if the distance from T to the origin is bounded away from zero. As |s−1| and | e−s sα|
are uniformly small for all s ∈ T , there exists a 0 < β < 1 such that | et t−α| |H(z)(t)+| ≤ γ and
| et t−α| |H(z1)(t)+ −H(z2)(t)+| ≤ β ‖z1 − z2‖ for all z, z1, z2 ∈ Z and all t ∈ T .
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In (5.31), | et t−α| times the absolute value of the integrand is estimated from above by a uniform
constant times (|s|−N + | e−s sα|) ‖z‖. A similar estimate, with the last factor ‖z‖ replaced by
‖z1 − z2‖, holds for the integrand in the integral formula for | et t−α| |H(z1)(t)− −H(z2)(t)−|. Let
N > 1 and γ > |b−/Θ−(t0)|. As |s−1| and | e−s sα| are uniformly small for all s ∈ T , there exists
a 0 < β < 1 such that | et t−α| |H(z)(t)−| ≤ γ and | et t−α| |H(z1)(t)− −H(z2)(t)−| ≤ β ‖z1 − z2‖
for all z, z1, z2 ∈ Z and all t ∈ T . This completes the proof that H(Z) ⊂ Z and H : Z → Z is
a contraction with respect to the metric (z1, z2) 7→ supt∈T | et t−α| ‖z1(t) − z2(t)‖. Because Z is
complete with respect to this metric, it follows that there is a unique solution z = zt0, b− : T → C2

of (5.25) such that z(t0)− = b− and ‖z(t)‖ ≤ γ | e−t tα| for every t ∈ T . Because the latter estimate
implies that ‖z(t)‖ is uniformly small, the solution p(t) = p↑(t)+A(t) z(t) of (5.3) is uniformly small
on T , and therefore equal to the solution pt0, a−(t) in ii), with a− = (p↑(t0)− + A(t0) zt0, b−(t0))−

and b− = A(t0)−1 (pt0, a−(t0) − p↑(t0))−. The assumptions remain valid upon small perturbations

of t0 and b−, and an application of the implicit function theorem yields that the solution z =
zt0, b− depends in a complex analytic way on (t0, b

−), when b− 7→ a− is a local complex analytic
diffeomorphism depending in a complex analytic way on t0.

The estimates in the previous paragraph imply that the integral
∫∞
t0

Θ−(s)−1 h(s−1, z(s)) ds is

absolutely convergent, when (5.31) implies that Θ−(t)−1 z(t)− converges to

C := Θ−(t0) b− +

∫ ∞
t0

Θ−(s)−1 h(s−1, z(s)) ds (5.32)

as t = t0 + τ , τ → +∞. Because Θ−(t) ∼ e−t tα, the function et t−α z(t)− has the same limit. The
previous estimates for z(t)+ = H(z)(t)+ yield that et t−α z(t)+ converges to zero, and it follows
that et t−α zt0, b−(t) converges to the vector (0, C) ∈ C2 which depends in a complex analytic way

on (t0, b
−) and on (t0, a

−). Because A(t) converges to the identity matrix, also et t−α (pt0, a−(t)−
p↑(t)) = A(t) (et t−α zt0, b−(t)) converges to (0, Ct0, a−) as t = t0 + τ , τ → +∞.

As b− = z(t0)−, and the previous remains true if we replace t0 by any t ∈ T = t0 + R≥0, the
equation (5.31) implies the integral equation

z(t)− = H(z)(t)− := Θ−(t)

(
C −

∫ ∞
t

Θ−(s)−1 h(s−1, z(s))− ds

)
. (5.33)

If H(z)(t)+ := H(z)(t)+, then then for every C ∈ C the integral operator H = HC is a con-
traction in Z, if γ > |C| and the numbers supt∈T |t−1| and supt∈T | e−t tα| are sufficiently small.
The unique fixed point z = zC of HC is equal to the unique solution z(t) of (5.25) such that
supt∈T | et t−α| ‖z(t)‖ ≤ γ, and et tα z(t)→ (0, l) as t ∈ T , |t| → ∞.

Let R = Rη, r be as in (5.17). If γ > |C| and η, r−1 are sufficiently small, then the integral
operator H in the previous paragraph defines a contraction in the complete space of all continuous
functions z : R ∩ V → C2, complex analytic in the interior of R, such that | et t−α| ‖z(t)‖ ≤ γ
for every t ∈ R ∩ V , with respect to the metric (z1, z2) 7→ supt∈R∩V | et t−α| ‖z1(t) − z2(t)‖. For
every t0 ∈ R ∩ V the restriction of z to T := t0 + R≥0 is equal to the unique fixed point zC of the
integral operator H : Z → Z in the previous paragraph, and therefore zC : T → C2 extends to
a solution of (5.25) on the much larger domain R ∩ V , which is denoted by the same letter and
satisfies supt∈R∩V | et t−α| ‖z(t)‖ ≤ γ.

Susbstituting an asymptotic expansion z(t) ∼ e−t tα
∑k−1

j=0 t
−j ej for t ∈ Σ, |t| → ∞ in the right

hand side of z(t) = H(z)(t) yields a similar expansion with k replaced by k + 1, which procedure
stops at k = N−1. In the induction step it is used that in Σ we have ‖z(t)‖ = O(| et tα|) = O(|t|−M )

for every M > 0. This leads to an asymptotic expansion y(t) ∼ C e−t tα
∑N−1

j=0 t−j dj , where the

dj satisfy the equations d0 = (0, 1) and −dj+(α−j+1) dj−1 =
∑j

i=0 Li dj−i for 0 ≤ j ≤ N−1. For
j = 1 we have −d1 +αd0 = L0 d1 +L1 d0, which implies that (L1−α) (0, 1) is in the image C×{0}
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of L0 + 1, and we recover that α has to be equal to the right lower corner of L1. If j ≥ 1, then the

equation −dj+(α−j+1) dj−1 = L0 dj+
∑j

i=1 Li dj−i determines dj only modulo the kernel {0}×C
of L0 + 1, but the equation with j replaced by j + 1 implies that (L1 − α + j) dj +

∑j
i=2 Li dj−i

belongs to the image C×{0} of L0 +1. As the right lower corner of L1−α+ j is equal to j 6= 0, the
space (L1−α+ j)({0}×C) is transversal to C×{0}, and it follows that dj is uniquely determined
by the j-th equation and the (j + 1)-st equation. Because we can take N arbitrarily large, and the
dj , 0 ≤ j ≤ N −1 do not depend on N , this implies (5.18), where (5.19) follows from a substitution
of (5.19) in y′(t) = f(t−1, y(t)), y(t) = p(t)− p↑(t).

This completes the proof of the lemma in the upper half plane, where (5.22) follows from the
aforementioned estimates for the integrals

∫∞
t Θ±(s)−1 h(s−1, z(s))± ds. In turn (5.22), in com-

bination with p↑(t) = O(t−1), implies that pC(t) is bounded away from zero on the part of the
boundary of Vη, r in the upper half plane and sufficiently far away from the origin. The statements
regarding the behavior in the lower half plane follow by replacing p↑(t) by p↓(t). Note that in the
lower half plane p↑(t) is equal to one of the solutions pt0, a− , and therefore p↑(t) extends from V to
a domain of the form V ∪Rη, r. �

Remark 5.7. Because p↓(t) is a solution of (5.3) as in Lemma 5.2, it follows from Lemma 5.6 that
there is a unique constant S ∈ C such that

p↓(t)− p↑(t) ∼ e−t tα (0, S) (5.34)

as Re t/ log |t| → ∞, |t| → ∞, where S = 0 implies that p↓(t) = p↑(t) for all t ∈ Rη, r with η and
1/r sufficiently small. Because this is a nonlinear analogue of the phenomena described by Stokes
[26], we follow Costin [5, Th. 1] in calling S the Stokes constant pertaining to the comparison in the
right half plane of the solutions p↓(t) and p↑ of (5.3). Generically the Stokes constant is nonzero.
This happens in particular for the Boutroux-Painlevé system, see Lemma 5.14 below.

Furthermore, for every solution p(t) = pt0, a−(t) of (5.3) in Lemma 5.2 there are unique C↑, C↓ ∈
C such that

p(t)− p↑(t) ∼ e−t tα (0, C↑) and p(t)− p↓(t) ∼ e−t tα (0, C↓) (5.35)

as Re t/ log |t| → ∞, |t| → ∞, where conversely the solution p(t) of (5.3) is uniquely by any of the
two asymptotic identities in (5.35). Because (p(t)− p↑(t))− (p(t)− p↓(t)) = p↓(t)− p↑(t), it follows
that

C↑ − C↓ = S. (5.36)

Conversely, every complex number occurs as C↑ in (5.35) for a unique solution p(t) of (5.3) in
Lemma 5.2. The following statements are equivalent:

i) C↓ = C↑ for some solution p(t) of (5.3) in Lemma 5.2.
ii) S = 0.
iii) C↓ = C↑ for every solution p(t) of (5.3) in Lemma 5.2.
iv) p↓(t) = p↑(t) for all t in a domain of the form Rη, r.

Recall the definition of µ+
1 as the upper left corner of the matrix L1 in (5.16). In analogy with

(5.34), the substitution t 7→ −t leads to the existence of a unique constant S− ∈ C, the Stokes
constant pertaining to the comparison of the solutions p↓(t) and p↑(t) in the left half plane, such
that

p↓(t)− p↑(t) ∼ et tµ
+
1 (S−, 0) (5.37)

as Re t/ log |t| → −∞, |t| → ∞. Here S− = 0 implies that p↓(t) = p↑(t) for all t ∈ −Rη, r with
η and 1/r sufficiently small. We have S− = S = 0 if and only if p↑(t) and p↓(t) have a common
extension to a single-valued solution p(t) of (5.3) on a neighborhood of t = ∞ such that p(t) → 0
as t→∞.
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Write τ(t) = e−t tα, and let

p formal(t) =
∑

h, i∈Z≥0

τ(t)h t−i ph, i (5.38)

be a formal power series in τ(t) and t−1, with coefficients ph, i ∈ C2. The termwise derivative of the

right hand side of (5.38), where d(τ(t)h t−i)/ dt = −h τ(t)h t−i + (hα − i) τ(t)h t−i−1, is a formal
power series in τ(t) and t−1, which by definition is the derivative of p formal(t) with respect to t.
Substitution of p formal(t) in the expansion (5.13) yields a formal power series in τ(t) and t−1, which
by definition is v(t−1, p formal(t)). The formal solutions p(t) = p formal(t) of the differential equation
(5.3) are obtained by equating the coefficients of τ(t)h t−i.

Let T be an unbounded subdomain in the complex upper half plane of the domain Rη, r in Lemma
5.6, and assume that there exist strictly positive constants C1, C2, ε1, ε2 such that

C1 |t|−ε1 ≤ |τ(t)| ≤ C2 |t|−ε2

for every t ∈ T . In such a domain any formal series (5.38) is an asymptotic series. The proof of
Lemma 5.6 yields that the solutions pC(t) in Lemma 5.6 have a formal series p formal, C(t) as their
asymptotic expansion in T , in the sense that for every N there exists an m such that pC(t) −∑

h<m, i<m τ(t)h t−i ph, i = O(t−N ) as t ∈ T , |t| → ∞. The formal series p formal, C(t) is a formal

series solution of the differential equation (5.3) such that p0, 0 = 0 and p0, 1 = (0, C). As will
be verified in the proof of Lemma 5.8 below, a formal series solution (5.38) of (5.3) is uniquely
determined by the initial consitions p0, 0 = 0, p0, 1 = (0, C), and ph, i = Ch ch, i for uniquely
determined universal coefficients ch, i ∈ C2. This is the formal solution in O. and R. Costin [7, (4),
(5)] for n = 2 and C = (0, C), where the latter implies that only the terms with k = (0, h) appear
in loc. cit. The proof of Lemma 5.8 also yields an independent verification of the existence of the
formal series solution of (5.3) such that p0, 0 = 0 and p0, 1 = (0, C).

In the subdomains Σ in Lemma 5.6, the function τ(t) is of smaller order than t−i for every
i ∈ Z≥0, when (5.38) only is an asymptotic series in the above sense if all terms with h > 0 are
deleted, and p formal, C(t) reduces to the right hand side of (5.11), which is independent of C. For
pC(t)− p↑(t) we have the asymptotic expansion (5.18) in Σ, where the right hand side is equal to
(5.38) with only the terms with h = 1 retained.

If U is an unbounded subdomain of Rη, r in the upper half plane on which τ(t) → 0 and t−i =
o(τ(t)) as t ∈ U , |t| → ∞, then p formal, C(t) is only an asymptotic series for t ∈ U , |t| → ∞ if

all terms with i > 0 are deleted, when pC(t) is asymptotically equal to this asymptotic series for
t ∈ U , |t| → ∞. For t on the boundary of Rη, r and |t| ≥ r, the absolute value of τ(t) is equal
to the constant η, p formal, C(t) is not an asymptotic series in the above sense, and we only have
the estimate (5.22). As T is a transitional region between the subdomains S on the one hand and
the subdomains U and the boundary of Rη, r on the other, the formal series p formal, C(t) and the
asymptotic expansion pC(t) ∼ p formal, C(t) as t ∈ T , |t| → ∞ could be called the transitional series
and the transitional expansion, respectively.

Lemma 5.8 below, which follows from O. and R. Costin [7, Th. 2(i) and Sec. 6.9], yields that
for each i ∈ Z≥0 the series (5.39) converges for small |τ |. This allows to formulate the asymptotic
expansion (5.49) for the solution pC(t) of (5.3). The domain of t’s where the asymptotic expansion
(5.49) holds extends well beyond the part R′η, r of the boundary of Rη, r where Im t ≥ 0, τ(t) = η,
and |t| ≥ r. Along R′η, r, Lemma 5.6 yielded that pC(t) remains bounded away from zero, but did
not provide an asymptotic expansion for |t| → ∞.
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Lemma 5.8. Let C ∈ C. Then there is a unique formal solution (5.38) of (5.3) such that p0, 0 = 0
and p1, 0 = (0, C). For each i ∈ Z≥0 the series

Fi(τ) =

∞∑
h=0

τh ph, i (5.39)

converges for τ in a neighborhood of 0 in C, where the complex analytic functions Fi satisfy

−τ dF0(τ)

dτ
= v0(F0(τ)) := v(0, F0(τ)) and (5.40)

−τ dFi(τ)

dτ
= Pi(F0(τ), . . . , Fi(τ))− α τ dFi−1(τ)

dτ
+ (i− 1)Fi−1(τ) (5.41)

for i ∈ Z>0. Here Pi(F0, . . . Fi) denotes the coefficient of t−i in the expansion of

v(t−1,
∑
j≥0

t−j Fj)

in nonnegative integral powers of t−1; a finite sum of weighted homogeneous polynomials of degree
≤ i in the Fj with 0 ≤ j ≤ i, where each Fj has the weight j. In particular

Pi(F0, . . . , Fi) =
∂v(0, F0)

∂F0
Fi +Qi(F0, . . . Fi−1), (5.42)

where Qi(F0, . . . , Fi−1) is a similar polynomial in the Fj with 0 ≤ j ≤ i− 1. We have

Fi(0) = p0, i = ci, (5.43)

where the ci are the coefficients in (5.11).
Conversely, the system (5.40), (5.41) has a unique solution Fi(τ) which is complex analytic on

a neighborhood of τ = 0 in C such that F0(0) = 0 and F ′0(0) = (0, C). If j ∈ Z>0 then, given the
functions Fk(τ) for 0 ≤ k ≤ j − 1, the function Fj(τ) is uniquely determined by the conditions that
it is a complex analytic solution on a neighborhood of τ = 0 of the equation (5.41) for i = j, and
that the equation (5.41) for i = j+ 1 admits a complex analytic solution Fj+1(τ) on a neighborhood
of τ = 0. If (5.39) denotes the power series expansion of Fi(τ), then (5.38) is the formal solution
of (5.3) in the previous paragraph.

If Fi, C(τ) denotes the solution of (5.40), (5.41) such that F0, C(0) = 0 and F0, C
′(0) = (0, C),

then Fi, C(τ) = Fi, 1(C τ). Let TC be the maximal domain of definition of the, possibly multi-valued,
solution F0 = F0, C of (5.40). Then T0 = C, TC = C−1 T1 if C 6= 0, and for each i ∈ Z>0 the
function Fi, C extends to a, possibly multi-valued, solution of (5.41) on TC .

Proof. With the substitutions τ = e−s, F0(τ) = p0(s), the equation (5.40) is equivalent to the
autonomous limit system

dp0(s)

ds
= v0(p0(s)) (5.44)

of the system (5.3). Because v0(0) = v(0, 0) = 0 and v0
′(0) = L0, an application of Lemma 5.6

with v replaced by v0, when c1 = 0, L1 = 0, and α = 0, leads to p0, ↑(s) = p0, ↓(s) = 0 and a
unique solution p0(s) of (5.44) on Re s ≥ σ >> 0 such that p0(s) ∼ e−s (0, C) as Re s ≥ σ >> 0,
|s| → ∞. The corresponding function F0(τ) = p0(s) is complex analytic on the punctured disc in
the complex plane determined by the inequalities 0 < |τ | < ε := e−σ, and satisfies F0(τ) ∼ τ (0, C)
as τ → 0. It therefore follows from the theorem on removable singularities that F0(τ) extends to
a unique complex analytic function on the disc |τ | < ε, denoted again by F0(τ), where F0(τ) is a
solution of (5.40) on the disc |τ | < ε such that F0(0) = 0 and F0

′(0) = (0, C). As the formal power
series solution

∑
h≥0 τ

h ph, 0 of (5.40) with p0, 0 = 0, p1, 0 = (0, C) is unique, the above complex

analytic solution F0(τ) is unique as well.
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Let i ∈ Z>0. For given complex analytic functions Fj , 0 ≤ j ≤ i − 1, in a neighborhood of the
origin, (5.41) is a linear inhomogeneous differential equations of the form

−τ dFi
dτ

= Λ(τ)Fi +Gi(τ), (5.45)

where Λ(τ) := ∂v(0, p)/∂p|p=F0(τ) and Gi(τ) are complex analytic functions of τ in a neighborhood

of τ = 0. With the substitutions Λ(τ) =
∑

k≥0 τ
k Λk, where Λ0 = L0 as in (5.21), and Gi(τ) =∑

k≥0 τ
kGi, k, the formal power series Fi =

∑
k≥0 Fi, k is a solution of the differential equation if

and only if

−k Fi, k = L0 Fi, k +

k∑
l=1

Λl Fi, k−l +Gi, k

for every k ∈ Z≥0. These equations determine the coefficients Fi, k in terms of the Fi, j with

j < k and Gi, k, with the exception of the equation for k = 1, where the + part yields F+
i, 1 =

−(1/2) (Λ1 Fi, 0 + Gi, 1)+, but the resonance in the − part yields no equation for F−i, 1, but instead

the solvability condition (Λ1 Fi, 0 + Gi, 1)− = 0. As Fi, 0 = −L0
−1Gi, 0, this solvability condition

is equivalent to the equation G−i, 1 = (Λ1 L0
−1Gi, 0)− for the inhomogeneous term Gi(τ) in the

differential equation. Because Gi, 0 = Qi(F0, 0, . . . , Fi−1, 0) + (i − 1)Fi−1, 0 is determined, the
solvability condition determines G−i, 1.

For i = 1 we have P1(F0, F1) = ∂1v(0, F0) + ∂2v(0, F0)F1, hence G1(τ) = ∂1v(0, F0(τ)) −
α τ F ′0(τ) = ∂1v(0, F0(τ)) +α v(0, F0(τ)). Therefore G1, 0 = ∂1v(0, 0) and G1, 1 is equal to C times

∂2v(u, p)

∂u∂p−

∣∣∣∣
u=0, p=0

+ α
∂v(0, p)

∂p−

∣∣∣∣
p=0

,

because F ′0(0) is equal to C times the second basis vector. As the minus part of the second term
is equal to −α, it follows from the definition of α in Lemma 5.6 that G−1, 1 is equal to C times the

lower left corner of ∂2
2v(0, 0)L0

−1 ∂1v(0, 0). On the other hand Λ1 is equal to C times ∂2
2v(0, 0)

applied to the second basis vector, when the symmetry of the second order partial derivatives yields
the solvability condition G−1, 1 = (Λ1 L0

−1G1, 0)−.

For i ≥ 2 the above computations yield that G−i, 1 depends in an inhomogeneous linear way on

F−i−1, 1 with coefficient equal to i−1 6= 0. Therefore the solvability condition is satisfied by a unique

choice of F−i−1, 1. It follows that the system (5.40), (5.41) has a unique formal solution such that

F0(0) = 0 and F ′0(0) = (0, C), where for the unique determination of Fj(τ), j > 0, one needs (5.41)
for i = j and i = j + 1.

If in a neighborhood of τ = 0 the functions Fj(τ) are complex analytic solutions of (5.40), (5.41)
for 0 ≤ j ≤ i−1, then (5.45) is an inhomogeneous linear differential equation with complex analytic
coefficients Λ(τ) and Gi(τ), with τ = 0 as a regular singular point. Therefore every formal powers
series solution of (5.45) is convergent. For inhomogeneous linear differential equations this theorem,
which sounds classical, seems to be due to Gérard and Levelt [11, Lemme 4.2]. For nonlinear higher
order scalar ordinary differential equations, it has been obtained by Malgrange [20, Remarque 4.1],
where the proof also works for nonlinear systems near a regular singular point.

If g(τ) = f(C τ), then τ g′(τ) = (C τ) f ′(C τ). Therefore the function Φ0 : τ 7→ F0, 1(C τ)
satisfies (5.40) with Φ0(0) = 0, Φ0

′(0) = C, hence F0, C(τ) = Φ0(τ) = F0, 1(C τ). Furthermore,
if Fj(τ) = Fj, 1(C τ) for 0 ≤ j ≤ i − 1, then Φi : τ 7→ Fi, 1(C τ) satisfies (5.41), hence Fi(τ) =
Φi(τ) = Fi, 1(C τ). This proves Fi, C(τ) = Fi, 1(C τ) by induction on i. If the coefficients ph, i for
C = 1 are denoted by ch, i, then the equations Fi, C(τ) = Fi, 1(C τ) are equivalent to the equations

ph, i = Ch ch, i mentioned in the text preceding Lemma 5.8.
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The last statement in Lemma 5.8 follows, by induction on i, from the description of Fi as a
solution of an inhomogeneous linear differential equation (5.45), of which the coefficients Λ(τ) and
Gi(τ) are complex analytic functions of τ ∈ TC . �

Remark 5.9. It would have been more precise to define the domain TC as the Riemann surface
of the maximal solution of (5.40) such that F0(0) = 0, F0

′(0) = (0, C), as follows. Let D0 :=
{p ∈ C2 | (0, p) ∈ D}, where D is the domain of definition of the vector field v in (5.3). In
M := C × D0 \ {(τ, p) ∈ C × D0 | τ = 0 and v(0, p) = 0} we have the regular complex one-
-dimensional distribution D defined by the equation τ dp + v(0, p) dτ = 0. For the local solution
F0 of (5.40) with F0(0) = 0 and F0

′(0) = (0, C), the set IC, ε := {(τ, F0(τ)) | 0 < |τ | < ε} is an
integral manifold of D; let IC denote the maximal integral manifold of D which contains IC, ε. Then
TC is canonically identified with the Riemann surface IC ∪ {(0, 0)}. The inverse of the projection
IC 3 (τ, p) → τ followed by the projection (τ, p) 7→ p is the, possibly multi-valued, maximal
solution F0, C of (5.40) mentioned in Lemma 5.8.

Lemma 5.11 below follows from O. and R. Costin [7, Th. 2(ii)]. Our proof is different. Lemma
5.11 implies all the previous asymptotic expansions in Section 5.1, but not the explicit estimates
such as in Lemma 5.2 and 5.3.

The following Lemma 5.10 will be used in the last part of the proof of Lemma 5.11, and in
Lemma 5.18 about the poles of the truncated solutions. Lemma 5.10 is a detailed version of the
estimate in [7, (24)].

Lemma 5.10. Let τ ∈ C \ {0} and log τ a given solution λ of the equation eλ = τ . Then the
solutions t of the equation e−t tα = τ , where tα = eα log t, log t = log |t| + i arg t, | arg t| ≤ π, and
|t| is large, form two sequences tn, where n ∈ Z, n >> 0 and n << 0 respectively, such that

tn = 2π in+ α log(2π in)− log τ + s(u, w) (5.46)

as |n| → ∞. Here log(2π in) := log(2π|n|) + i sgn(n)π/2,

u :=
1

2π in
, v :=

log(2π in)

2π in
, w := −u log τ + α v, (5.47)

and s(u, w) is a convergent power series in (u, w). More precisely, s(u, w) is a complex analytic
function of (u, w) in a neighborhood of (u, w) = (0, 0), equal to the unique small solution s of the
equation

s = f(u, w, s) := α log(1 + w + αu log(1 + u s+ w)) (5.48)

for u and w both small. It follows that, with the substitutions (5.47) and λ := log τ ,

s(u, w) = αw + α2 uw − αw2/2 + α3 u2w − 3α2 uw2/2 + αw3/3 + O(n−4)

= −αλu+ α2 v − αλ (α+ λ/2)u2 + α2 (α+ λ)u v − α3 v2/2

−αλ (α2 + 3αλ/2 + λ2/3)u3 + α2 (α2 + 3αλ+ λ2)u2 v

−α3 (3α/2 + λ)u v2 + α4 v3/3 + O(n−4).

The tn depend in a complex analytic way on log τ , τ ∈ C \ {0}. If τ runs around the origin
once in the positive direction, then tn(τ) moves continuously to tn−1(τ). In this sense the τn(τ) for
n >> 0 and n << 0 can be viewed as two multi-valued complex analytic functions of τ .

Proof. The equation e−t tα = τ is equivalent to the equation t − α log t = 2π in − log τ for some
n ∈ Z. For large |t|, log |t| = o(|t|), |n| is large, 2π in/t = 1 + o(1), and t = 2π in (1 + o(1)).

With the notation a := 2π in − log τ , the equation for t is equivalent to 0 = φ(t) := (t −
a) (1 − (t − a)−1 α log t). If γ : [0, 1] → C \ {a} is a Jordan curve which winds once around
a in the positive direction and |α| | log s| < |s − a| for all s ∈ γ([0, 1]), then the the winding
number = (2π)−1 times the increase of the argument of φ ◦ γ a is equal to one, hence the function

32



φ has a unique zero in the interior of γ, which is simple, and therefore in view of the implicit
function theorem depends in a complex analytic way on a. If |a| > 1 and |s − a| = |a| − 1, then
1 ≤ |s| ≥ 1, |α| | log s| ≤ |α| (π+log |s|+π) ≤ |α| (π+log(2|a|−1)) and therefore |α| | log s| < |t−a|
for all s on the circle γ around a with radius |a| − 1 if |α| (π + log(2|a| − 1)) < |a| − 1, which
happens if |a| is sufficiently large. Because |n| >> 0 implies that |a| = |2π in − log τ | >> 0, and
t− a = α log t = α log(2π in) + o(1) = α log a+ o(1) = o(|a|), the conclusion is that every solution
t of the equation t − α log t = 2π in − log τ such that t = 2π in (1 + o(1)) is equal to the unique
zero of φ in the disc around a with radius |a| − 1. Therefore the solution t = tn(τ) of the equation
t − α log t = 2π in − log τ with | arg t| ≤ π and |t| >> 0 is unique, depends in a complex analytic
way on τ , and satisfies t = 2π in (1 + o(1)).

If we substitute the latter estimate for t in the right hand side of t = 2π in − log τ + α log t =
2π in − log τ + α (log(2π in) + log(1 + (2π in)−1 (− log τ + α log t)), we obtain that t = 2π in +
α log(2π in) − log τ + s with s = O((log |n|)/|n|) → 0 as |n| → ∞. With the definitions of u, v,
and w in (5.47), s satifies the equation (5.48). Because f(0, 0, s) ≡ 0, it follows from the implicit
function theorem in the complex analytic setting that there exist open neighborhoods U , W , and
S of the origin in C such that for each (u, w) ∈ U ×W the equation (5.48) has a unique solution
s = s(u, w) ∈ S, and that (u, w) 7→ s(u, w) is a complex analytic function on U × W , with
s(0, 0) = 0. Substitution of (5.47) in s = s(u, w) leads to (5.46). Subsequent differentiations of
s(u, w) = f(u, w, s(u, w)) with respect to (u, w) at (u, w) = (0, 0) up to the order three and
subsequent evaluations of the results at (u, w) = (0, 0) lead to the asymptotic formulas for tn(τ)
modulo terms of order n−4. With the help of a formula manipulation computer program one could
go on a little bit further, but the complexity of the asymptotic formulas increases rapidly with
growing order.

If τ runs around the origin once in the positive direction, then 2π in− log τ moves continuously
to 2π i(n− 1)− log τ , and therefore tn(τ) moves continuously to tn−1(τ). �

Lemma 5.11. Let K be a compact subset of C2 such that {0} × K is contained in the domain
of definition D of the vector field v in (5.3). Let T0 be a bounded subdomain of the domain T in
Lemma 5.8, such that F0(τ) ∈ K for every τ ∈ T0. Let V be a t-domain in the complex upper
half plane where |t| >> 0 and τ(t) ∈ T0. Then the solution pC(t) in Lemma 5.6 extends to a,
possibly multi-valued, solution p(t) of (5.3) on V . This solution has the asymptotic expansion
p(t) ∼

∑
i≥0 t

−i Fi(τ(t)) in the sense that, for every m ∈ Z>0,

p(t) =

m−1∑
i=0

t−i Fi(τ(t)) + O(t−m) (5.49)

as t ∈ V , |t| → ∞.

Proof. Write

p[m](t) :=
m−1∑
i=0

t−i Fi(τ(t)), p
[m]
0 (t) :=

m−1∑
i=0

t−i Fi(0), and δ(t) := p(t)− p[m](t). (5.50)

According to Lemma 5.6, p(t)−p↑(t) ∼ C τ(t) as τ(t)→ 0. The expansion (5.18) and equation (5.43)

imply that p↑(t)−p
[m]
0 (t) = O(t−m). Finally p[m](t)−p[m]

0 (t) = F0(τ(t))−F0(0)+
∑i−1

i=1 t
−i (Fi(τ(t))−

Fi(0)) ∼ C τ(t) + O(t−1 τ(t)) ∼ C τ(t) as τ(t) → 0, because F0(τ) ∼ C τ as τ → 0 and τ(t) → 0

implies that t → 0. Therefore y[m](t) := (p(t) − p↑(t)) − (p[m](t) − p[m]
0 (t)) = o(τ(t)), as τ(t) → 0;

and δ(t) = y[m](t) + O(t−m), hence (5.49) ⇔ y[m](t) = O(t−m).
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The differential equations (5.40) and (5.41) imply that

dp[m](t)

dt
= v(0, F0(τ(t))) +

m−1∑
i=1

t−i [L0 Fi(τ(t)) + Pi(F0(τ(t)), . . . , Fi−1(τ(t)))]

+t−m
(
α τ

dFm−1(τ)

dτ
− (m− 1)Fm−1(τ)

)∣∣∣∣
τ=τ(t)

= v(t−1, p[m](t)) + O(t−m),

hence

dy[m](t)

dt
=

dp(t)

dt
− dp[m](t)

dt
−

d(p↑(t)− p
[m]
0 (t))

dt

= v(t−1, p(t))− (v(t−1, p[m](t)) + O(t−m)) + O(t−m−1)

= v(t−1, p[m](t) + y[m](t))− v(t−1, p[m](t)) + O(t−m)

as long as τ(t) ∈ T0, where in the last identity we have used that p(t) = p[m](t) + y[m](t) + (p↑(t)−
p

[m]
0 (t)) = p[m](t) + y[m](t) + O(t−m).

We start with the proof for t in a domain Rη, r as in (5.17) with η > 0 sufficiently small, when

(5.49) is [7, (20)] in our situation. It follows that dy[m](t)/ dt = L(t, p[m](t)) y[m](t)+O(‖y[m](t)‖2)+

O(t−m), where L(t, p) := ∂v(t−1, p)/∂p. Because p[m](t) = p↑(t) − (p↑(t) − p
[m]
0 (t)) + p[m](t) −

p
[m]
0 (t)) = p↑(t) + O(t−m) + O(τ(t)), we have L(t, p[m](t)) = L(t) + O(t−m) + O(τ(t)) with L(t) as

in (5.20), hence

dy[m](t)

dt
= L(t) y[m](t) + O(|τ(t)| ‖y[m](t)‖) + O(‖y[m](t)‖2) + O(t−m).

Applying a linear subtitution of variables y = A(t) z as in the proof of Lemma 5.6 we arrive at an

integral equation z = H(z) for z : t 7→ A(t)−1 y[m](t), where H(z)(t)+ = H(z)(t)+ and H(z)(t)−

are as in (5.30) and (5.33), respectively, C = 0 in view of z(t) = A(t)−1 y[m](t) = o(τ(t)), and
h(t−1, z) = O(|τ(t)| ‖z‖) + O(‖z‖2) + O(t−m). If η and 1/r are sufficiently small, then H is a
contraction on the space Z of all continuous functions z : Rη, r → C2 that are complex analytic on
the interior of Rη, r and satisfy a uniform bound ‖z(t)‖ ≤ C |t|−m, where H is a contraction with
respect to the metric (z1, z2) 7→ supt∈Rη, r |t|

m ‖z1(t)− z2(t)‖. It follows that H has a unique fixed

point z in Z, when y[m](t) = A(t) z(t) satisfies y[m](t) = O(t−m) when t ∈ Rη, r and |t| → ∞. This
completes the proof for t in a domain where |τ(t)| remains sufficiently small.

For t in a subdomain of V where τ(t) := e−t tα ∈ T0 remains bounded away from zero, we use
τ = τ(t) instead of t as the independent variable. The domain T0 can be arranged such that its
points τ can be joined with points τ0 close to the origin by smooth paths γ in T0, parametrized
by arclength, with a uniformly bounded length, and staying at a uniform distance away from the
origin. The solution y[m](τ) will be estimated along such γ. With τ along γ, we view t = tn(τ),
n >> 0, as the multi-valued inverse in Lemma 5.10 of the function t 7→ τ(t) with large |t| and
0 < arg t < π. Then t = tn(τ) = 2π in (1 + o(1)), uniformly for τ along γ. Because

dy[m]

dτ
= (−1 + α/t)−1 τ−1 dy[m]

dt
= O(‖y[m]‖) + O(|tn(τ)|−m),

we have

d‖y[m](γ(s))‖
ds

≤

∥∥∥∥∥dy[m](γ(s))

ds

∥∥∥∥∥ ≤ ∥∥∥(y[m])′(γ(s))
∥∥∥ ≤ C1 ‖y[m](γ(s))‖+ C2 |tn(γ(s))|−m
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for some positive constants C1 and C2. Or,

d‖y[m](γ(s))‖
ds

= C1 ‖y[m](γ(s))‖+ C2 |tn(γ(s))|−m − r(s)

for a non-negative continuous function r(s). Lagrange’s variation of constants formula yields

‖y[m](γ(s))‖ = eC1 s ‖y[m](γ(0))‖+

∫ s

s0

eC1 (s−σ) (C2 |tn(γ(σ))|−m − r(σ)) dσ

≤ eC1 s ‖y[m](γ(0))‖+ C2

∫ s

0
eC1 (s−σ) |tn(γ(σ))|−m dσ.

Write t = tn(γ(s)), where |t| >> 0. Then, unfiformly for 0 ≤ σ ≤ s, tn(γ(σ)) = 2π in (1 + o(1)) =

t (1+o(1)), hence |tn(γ(σ))|−m = O(|t|−m). Furthermore, because γ(0) = τ0 is small, ‖y[m](γ(0))‖ =

O(|tn(γ(0))|−m) = O(|t|−m). Combination of the estimates yields y[m](γ(s)) = O(t−m). That is,

returning to t as the independent variable, y[m](t) = O(t−m). �

Lemma 5.11 can be used in order to obtain asymptotic information about the large t where the
solution pC(t) becomes singular, where τ(t) is close to points τ where the solution F0(τ) of (5.40)
becomes singular. This will be done in more detail for the Boutroux-Painlevé system in Subsection
5.2, leading to the asymptotic description in Lemma 5.18 of the poles in the domain Rη, r with
large η and r correspondingly large. These poles correspond to the first sequence of poles of the
truncated and triply truncated solutions of the first Painlevé equation which appear beyond the
boundary of the truncated domains.

5.2. Truncated and triply truncated solutions. In this subsection we collect the conclusions
from Subsection 5.1 for the Painlevé equation.

Boutroux [2, §13] found a family of solutions u(z) of the Boutroux-Painlevé system (2.2), depend-
ing in a complex analytic way on one complex variable, such that u(z) converges to the equilibrium
point (ε i

√
6, 0) of (5.1) as t = λ+ z runs to infinity in the complex plane in the direction of the

positive real axis. On [2, p. 346], he called these solutions truncated in the direction of the positive
real axis. These solutions correspond to the solutions pt0, a−(t) and pl(t) described in the lemmas
5.2 and 5.6.

In [2, §14], Boutroux found a solution u(z) which converges to the equilibrium point of (5.1)
as t = λ+ z runs to infinity in a sector in the complex plane which does not contain the positive
imaginary axis. Because such a sector contains the three orthogonal axes equal to the negative
real, negative imaginary, and positive real one, he called this solution the triply truncated solution.
This solution corresponds to the solution p↓(t) described in the lemmas 5.3, 5.5, and 5.6. In the
sequel we will follow Boutroux’s terminology.

Remark 5.12. The proofs in Boutroux [2, §13, 14] contain gaps and errors. In the formula for Y1

following [2, (51)] the factor X−1 in the first and second integral should be replaced by −X−2/
√

12
and X−2/

√
12, respectively. A similar correction is needed in [2, (54 bis)]. In the right hand side

of [2, (54)] the term 6
∑j−1

k=1 Yk Yj−k is missing. More seriously, the inductive assumption that
Yk(X) → 0 as X → ∞ for every k < j implies that the second limit relation at the bottom of [2,
p. 343] is automatically satisfied, when the first one is equivalent to the condition that Yj(X)→ 0

as X → ∞. This determines Yj only up to the addition of a constant times e−
√

12X . Therefore

the estimate lj < K lj−1X
α−1

on [2, p. 345] cannot be proved for the solutions Yj described by
Boutroux. It is a bit surprising that Boutroux did not use the method of Cotton [8], which appeared
two years earlier in the same journal as the paper of Boutroux.

Remark 5.13. On [2, p. 261], Boutroux gave a definition of truncated solutions which looks quite
different from the definition in terms of the convergence to the equilibrium point of the limit
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system. In our notation, we understand his definition on [2, p. 261] in the following way. For every
z0 ∈ C\{0} and c ∈ C there is a unique solution U(z) = Uz0, c(z) of (2.4) which has a pole at z = z0

and c as the coefficient of (z−z0)4 in its Laurent expansion at z = z0. The parameter c corresponds

in an bijective affine manner to the position on the pole line L9 \L(1)
8 in Okamoto’s space, see (3.2).

Assume that uz0, c(z) has another pole at z = z1 6= z0. Because the vector field is regular, nonzero
at and transversal to the pole line, an application of the implicit function theorem yields that for
every (z0

′, c′) near (z0, c) there is a unique z1
′ = Z1(z0

′, c′) near z1 such that the solution uz0′, c′(z)
has a pole at z = z1

′, and the function (z0
′, c′) 7→ Z1(z0

′, c′) is complex analytic. It seems that
Boutroux considered this to be evident, as he did not provide further proof. Then, according to
our interpretation of [2, p. 261], uz0′′, c′′(z) is a truncated solution if the function Z1(z0

′, c′) has a
complex analytic continuation for (z0

′, c′) on a path approaching (z0
′′, c′′), but that the superior

limit of |Z1(z0
′, c′)| is infinite if (z0

′, c′) → (z0
′′, c′′) along the path. We find this an interesting

definition of truncated solutions. However, we did not find any statement or proof in Boutroux’s
paper which relates the truncated solutions as defined on [2, p. 261] with the truncated solutions
defined in term of their convergence to one of the equilibrium points of the limit system. We will
stay with the second definition, and view it as a challenge to find relations with the first one.

According to Remark 2.1, the substitutions x = −2−3/5 3−1/5 ξ, y(x) = 2−4/5 3−3/5 η(ξ) turn the
first Painlevé equation (1.1) into

d2 η/dξ2 = (η2 − ξ)/2, (5.51)

when the substitutions ξ = ((5/4) t)4/5, η(ξ) = ξ1/2 π1(t), and η′(ξ) = ξ3/4 π2(t) turn the corre-
sponding first order system for (η, η′) into

dπ1/ dt = π2 − 2 (5 t)−1 π1,
dπ2/ dt = (π1

2 − 1)/2− 3 (5 t)−1 π2.
(5.52)

At the equilibrium point (π1, π2) = (1, 0) of the limit system for t = ∞, the linearization has the
eigenvalues ±1, and the substitution of variables π1 = 1+p+ +p−, π2 = p+−p− lead to the system
(5.3) with

v(1/t, p)+ = p+ − 1/5t− p+/2t+ p−/10t+ (p+ + p−)2/4,

v(1/t, p)− = −p− − 1/5t− p−/2t+ p+/10t− (p+ + p−)2/4.

It follows that the vector c1 in (5.14) and the matrix L1 in (5.16) are equal to

c1 =

(
1/5
−1/5

)
and L1 =

(
−1/2 1/10
1/10 −1/2

)
,

respectively. Because c+
1 + c−1 = 0, the asymptotic expansion (5.11) implies that for the truncated

solutions p(t) we have π1(t) = 1+O(t−2) as t ∈ S, |t| → ∞. Furthermore, both the left upper corner
and the right lower corner α of L1 are equal to −1/2, and therefore p(t) − p↑(t) is asymptotically

equal to τ(t) = e−t t−1/2 times a series in nonnegative powers of t−1 as t ∈ Σ, |t| → ∞, see (5.18).
The fact that Reα < 0 implies that the large positive and negative parts of the imaginary axis are
contained in the interior of the domains Rη, r in (5.17). More precisely, the part in |t| ≥ r of the
boundary of Rη, r is given by the equation

cos(arg t) = (−(1/2) log |t| − log η)/|t|, |t| ≥ r, −π < arg t < π, (5.53)

which is to the left of the imaginary axis if and only if |t| > η−2. See Figure 5.2.
Because the Painlevé property implies that all solutions y(x) of (1.1) are single-valued, the

analytic continuation of (π1(t), π2(t)) along the path t ei θ, where θ ∈ R runs from 0 to 5/4 times
2π, applied to the substitutions

x = −2−3/5 3−1/5 (5 t/4)4/5, y(x) = 2−4/5 3−3/5 (−23/5 31/5 x)1/2 π1(t) (5.54)
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leaves the solution y(x) of (1.1) invariant. We conclude as in (2.6) that the analytic continuation
of (π1(t), π2(t)) along the aforementioned path is equal to (−π1(t), iπ2(t)). This agrees with the
symmetry (t, π1, π2) 7→ (i t, −π1, iπ2) of order four of the system (5.52). This analytic continuation
converges for t running to infinity in the direction of the positive imaginary axis to the other
equilibrium point (π1, π2) = (−1, 0) of the limit system of (5.52) for t =∞. Applying this analytic
continuation a second and third time, one obtains a solution which converges to (π1, π2) = (1, 0)
and (π1, π2) = (−1, 0) for t running to infinity in the direction of the negative real and imaginary
axis, respectively. In this way each of the four types of truncated solutions, for t running to infinity
in the direction of the positive and negative real axis with (π1(t), π2(t)) converging to (1, 0), and for
t running to infinity in the direction of the positive and negative imaginary axis with (π1(t), π2(t))
converging to (−1, 0), are obtained by analytic continuation from the solutions pt0, a−(t) = pl(t) in
Lemma 5.2 and 5.6.

Similarly, the analytic continuation of p↑(t) along the path t ei θ is equal to p↓(t) if θ ∈ R runs
from 0 to 5π. As this agrees with the symmetry (t, π1, π2) 7→ (−t, π1, −π2) of the system (5.52), it
follows that p↓(t)

+ = p↑(−t)− and p↓(t)
− = p↑(−t)+. If θ runs from 0 to 5π/2 and 15π/2, then the

analytic continuation of p↑(t) is equal to the two triply truncated solutions near (π1, π2) = (−1, 0).
In this way each of the four triply truncated solutions, for t running to infinity in the upper and
lower half plane with (π1(t), π2(t)) converging to (1, 0) and for t running to infinity in the left and
right half plane with (π1(t), π2(t)) converging to (−1, 0), is obtained by analytic continuation from
the solution p↑(t) in Lemma 5.3, 5.5, and 5.6.

Because the system (5.52) is real, it has the symmetry (t, π1, π2) 7→ (t, π1, p2). Therefore, if
(π1(t), π2(t)) is a truncated solution of (5.52) in the sense that it converges to (1, 0) as t runs to

infinity in the direction of the positive real axis, then t 7→ (π1(t), π2(t)) is a solution of (5.52) with
the same limit behavior, and therefore is truncated in the same way. The triply truncated solutions

satisfy p↓(t) = p↑(t), which in combination with p↓(t)
± = p↑(−t)∓ implies that p↑(t)

± = p↑(−t)∓.

The corresponding triply truncated solution of (5.52) satisfies π1(t) = π1(−t) and π2(t) = −π2(−t).

Lemma 5.14. The Stokes constant S in (5.34) is nonzero and purely imaginary.

Proof. Because p↓(t) = p↑(t), the asymptotic identity for t ∈ R, t → ∞ implies that S is purely
imaginary. If S = 0, then p↓(t) = p↑(t) in the right half plane, and therefore p↑(t) and p↓(t) would
have a common extension to a small solution p(t) for −(3/2)π ≤ arg(t) ≤ (3/2)π, |t| ≥ r, when the

corresponding solution y(x) would be bounded by a constant times |x|1/2 for −(6/5)π ≤ arg(x) ≤
(6/5)π and |x| ≥ R for some R. As this implies that the single valued function y(x) has no poles
for large |x|, it would follow that y(x) has only finitely many poles, in contradiction with Corollary
4.7. �

Remark 5.15. Because τ(t) = e−t t−1/2, the positive and negative imaginary axis are transitional
domains as in the paragraphs preceding Lemma 5.8, the Stokes constant S is equal to the one in
Costin [6, (2.8)]. According to [6, Note (3) on p. 7], S = i

√
6/5π. The formula p↓(t) − p↑(t) ∼

i
√

6/5π e−t t−1/2 as −π/2 ≤ arg t ≤ π/2, |t| → ∞ agrees, at least up to the sign, with Kapaev
[19, Cor. 2.4].

Figure 5.3 shows a region in the x-plane, the plane of definition of the solution of (1.1), where
the corresponding truncated solution of (2.2) is close to one of the two equilibrium points of the

limit system (5.1). This region is the image under the mapping t 7→ −2−3/5 3−1/5 ((5/4) t)4/5 of a
domain of the form Rη, r.

The triply truncated solution p↑(t) of (2.2) is defined on a domain determined by the inequalities
|t| ≥ r and

− arccos((−(1/2) log |t| − log η)/|t|) ≤ arg t ≤ π + arccos((−(1/2) log |t| − log η)/|t|).
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Here r and η are sufficiently large and small strictly positive real numbers, and arccos denotes
the inverse of the bijective function cos : [0, π] 7→ [−1, 1]. As the inequalities for |t| and arg t
allow points t, t′ such that |t′| = |t| and arg t′ = arg t + 2π, the function p↑(t) is interpreted as

multi-valued. The properties p↑(t)
± = p↑(−t)∓, (5.34), and p↓(t) = O(t−1) when t runs to infinity

in the direction of the negative imaginary axis imply that for arg t = −π/2 and arg t = (3/2)π we

have p↑(t) ∼ e−t t−1/2 (0, −S) and p↑(t) ∼ et t−1/2 (− i S, 0) as |t| → ∞, respectively. As Lemma
5.14 implies that S 6= 0, the two branches of p↑(t) do not coincide on the overlap.

The image under the mapping t 7→ x = −2−3/5 3−1/5 ((5/4) t)4/5 of the aforementioned domain
where p↑(t) is small is a domain in the x-plane where |x| is large and arg(x) runs from slightly
smaller than (3/5)π to slightly larger than (11/5)π. The other truncated and triply truncated
regions are obtained from these by applying a rotation in the x-plane over k 2π/5, 1 ≤ k ≤ 4.
Because the truncated and triply truncated solutions of (2.2) are bounded in their domains of
definition, they have no pole there, and therefore the corresponding truncated and triply truncated
solutions of (1.1) have no poles in the aforementioned truncated and and triply truncated regions
in the x-plane.

Figure 5.4 shows the unique triply truncated region in the x-plane which is invariant under
complex conjugation. If y(x) denotes the corresponding triply truncated solution of (1.1), the

function x 7→ y(x) is a solution of (1.1) which is triply truncated in the same domain. The
uniqueness of triply truncated solutions of (2.2) leads to the following observation of Joshi and
Kitaev [14, Cor. 3].

Lemma 5.16. Let D denote the triply truncated domain in Fig. 5.4 which is invariant under
complex conjugation. Then the solution y(x) of (1.1) which is triply truncated on D is real in the

sense that y(x) = y(x) for every x ∈ C. In particular y(x) ∈ R for every x ∈ R not equal to a pole
point of y.

The next lemma discusses what happens with Lemma 5.11 in the case of the Boutroux-Painlevé
system. Our results correspond to [7, (113)] with the formulas for H0(ξ) and H1(ξ) on [7, p.
38], as π1(x) = Y (x) = 1 − 4/25x2 + h(x), see [7, p. 36], hence π1, 0(ξ) = H0(ξ) + 1, π1, 2(ξ) =
H2(ξ) − 4/25 and π1, l(ξ) = H(ξ) for all l /∈ {0, 2}. O. and R. Costin [7, p. 39] wrote: “We omit
the straightforward but quite lengthy inductive proof that all Hk are rational functions of ξ.” And
on p. 40: “For large ξ induction shows that Hn ∼ Constn ξ

n, . . . ” , but did not give further details
of the proof.

Lemma 5.17. With the notation of Lemma 5.11, the solution (π1(t), π2(t)) of (5.52) corresponding
to pC(t) has the asymptotic expansion

πk(t) =

m−1∑
l=0

t−l πk, l(C τ(t)) + O(t−m) (5.55)

as t ∈ V , |t| → ∞. Here π1, l(ξ) = (ξ − 12)−l−2 P1, l(ξ) and π2, l(ξ) = (ξ − 12)−l−3 P2, l(ξ), where
P1, l(ξ) and P2, l(ξ) is a polynomial in ξ := C τ of degree ≤ 2 l + 2 and ≤ 2 l + 3, respectively. We
have

P1, 0(ξ) = (ξ − 12)2 + 144 ξ, (5.56)

P2, 0(ξ) = 144 ξ(ξ + 12), (5.57)

P1, 1(ξ) = ξ (216 + 210 ξ + 3 ξ2 − ξ3/60), (5.58)

P2, 1(ξ) = (497664− 134784 ξ + 266112 ξ2 + 25704 ξ3 − 24 ξ4 + ξ5)/60. (5.59)
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Proof. It follows from the last paragraph in Lemma 5.8 that it suffices to prove all the formulas for
C = 1, when τ = ξ.

The shortest proof of the formulas for π1, 0(ξ) and π2, 0(ξ) is to verify that these functions satisfy
the differential equations −ξ dP1, 0/ dξ = P2, 0, −ξ dP2, 0/ dξ = (P1, 0

2 − 1)/2 corresponding to
(5.40), with the initial conditions P1, 0(0) = 1, P2, 0(0) = 0, and the derivatives with respect to ξ at
ξ = 0 of p+ = (P1, 0 +P2, 0− 1)/2 and p− = (P1, 0−P2, 0− 1)/2 equal to 0 and C, respectively. The
longer proof below explains how the formulas for π1, 0(ξ) and π2, 0(ξ) could have been found.

The system (5.52) is equivalent to the second order differential equation

d2 π

dt2
= −1

t

dπ

dt
+

1

2
(π2 − 1) +

4

25 t2
π (5.60)

for π(t) = π1(t), when π2(t) is given in terms of π(t) by means of the formula

π2(t) =
dπ(t)

dt
+

2

5 t
π(t). (5.61)

The autonomous limit equation of (5.60) for t → ∞ is Π′′ = (Π2 − 1)/2, a Newton equation with
potential energy V (Π) := −Π3/6 + Π/2. It follows that the total energy E = (Π′)2/2 + V (Π) is a
constant of motion, and the solution which converges to the equilibrium point (Π, Π′) = (1, 0) has
energy E = V (1) = 1/3. This leads to the first order differential equation (Π′)2 = 2 (1/3−V (Π)) =

(Π−1)2 (Π +2)/3, hence, if the independent variable is denoted by s, ds/dΠ = 31/2 (Π−1)−1 (Π +

2)1/2, when the substitution Π + 2 = Ψ2 leads to

s = 2
√

3

∫ Ψ(s)

(Ψ2 − 3)−1 dΨ + c = log
Ψ(s)−

√
3

Ψ(s) +
√

3
+ c

⇔ Ψ(s) +
√

3

Ψ(s)−
√

3
= c e−s =: c ξ ⇔ Ψ(s) =

√
3
c ξ + 1

c ξ − 1

⇒ Π(s) = Ψ(s)2 − 2 = 1 +
12 c ξ

(c ξ − 1)2
,

where c denotes a constant which at every place might be a different one. The function s 7→ Π(s)
is the “degenerate elliptic function” of [7, p. 38]. With the substitution ξ = e−s, the differential
equation (5.40) is equivalent to dF0/ ds = v(0, F0). As the derivative of F+

0 (ξ) and F−0 (ξ) at
ξ = 0 have to be equal to 0 and 1, respectively, the derivative of Π = π1 = 1 + p+ + p− with
respect to ξ at ξ = 0 has to be equal to 1. Therefore c = 1/12 and Π = 1 + ξ/(ξ/12 − 1)2,
which proves π1, 0(ξ) = P1, 0(ξ)/(ξ − 12)2 with P1, 0(ξ) as in (5.56). The formula (5.61) with
d/ dt = (−1− 1/2t) ξ d/dξ yields

π2, 0 = −ξ dπ1, 0/dξ = P2, 0(ξ)/(ξ − 12)3,

with P2, 0(ξ) as in (5.57).
Because π1, 0 and π2, 0 are only singular at ξ = 12, it follows from Lemma 5.8 and Lemma 5.11

that the functions π1, l and π2, l have a complex analytic continuation along any path in C \ {12},
and that the asymptotic expansion (5.55) holds along these paths. If ξ runs around 12 along a
small circle, then the tn(ξ) with large modulus, see Lemma 5.10, return to the same value. As the
Painlevé property implies that the function pC(t) is single valued, the asymptotic expansion (5.55)
implies by induction on l that π1, l and π2, l are single valued complex analytic functions on C\{12}.
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For our system (5.52) the differential equations (5.41) for i ∈ Z>0 take the form

−ξ dπ1, i

dξ
= π2, i +

1

2
ξ

dπ1, i−1

dξ
+ (i− 7

5
)π1, i−1 (5.62)

−ξ dπ2, i

dξ
= π1, 0 π1, i +

1

2
ξ

dπ2, i−1

dξ
+ (i− 8

5
)π2, i−1 +

1

2

i−1∑
j=1

π1, j π1, i−j . (5.63)

Given π1, j and π2, j for j < i, (5.62), (5.63) is an inhomogeneous linear system of first order
differential equations for (π1, i, π2, i), equivalent to the inhomogenous linear second order differential
equation

ξ2 d2 π1, i

dξ2
+ ξ

dπ1, i

dξ
= −ξ d

dξ

(
−ξ dπ1, i

dξ

)
= π1, 0 π1, i +

1

2
ξ

dπ2, i−1

dξ
+ (i− 8

5
)π2, i−1 +

1

2

i−1∑
j=1

π1, j π1, i−j

−ξ d

dξ

(
1

2
ξ

dπ1, i−1

dξ
+ (i− 7

5
)π1, i−1

)
for π1, i, when π2, i can be solved from (5.62) in terms of π1, i and π1, i−1.

Let ϕ1(ξ) and ϕ2(ξ) be a basis of solutions of the homogeneous linear second order differential
equation π′′ = a(ξ)π′+b(ξ)π. Lagrange’s method of variations of constants yields that the solutions
of the inhomogeneous equation π′′ = a(ξ)π′ + b(ξ)π + f(ξ) are of the form

π(ξ) = c1 ϕ1(ξ) + c2 ϕ2(ξ) +

∫ ξ

ξ0

(−ϕ1(ξ)ϕ2(η) + ϕ2(ξ)ϕ1(η)
f(η)

w(η)
dη. (5.64)

Here w = ϕ1 ϕ
′
2 − ϕ′1 ϕ2 is the Wronskian determinant, which satisfies w′ = aw, hence

w(ξ) = w(ξ0) e
∫ ξ
ξ0
a(η) dη

.

The differential equation π′′ = a(ξ)π′+ b(ξ)π has a regular singular point at ξ = Ξ if a(ξ) and b(ξ)
have a pole of order ≤ 1 and ≤ 2 at ξ = Ξ. If a(ξ) = A (ξ − Ξ)−1 + O(1) and b(ξ) = B (ξ − Ξ)−2 +
O((ξ − Ξ)−1) as ξ → Ξ, and the indicial equation λ (λ− 1) = Aλ+B has to distinct solutions λ1

and λ2, then there is a basis of solutions ϕ1(ξ) and ϕ2(ξ) such that ϕk(ξ) = (ξ−Ξ)λk(1+o(1)), and
w(ξ) = (λ2 − λ1) (ξ − Ξ)λ1+λ2−1. See for instance Coddington and Levinson [4, Chap. 4, Sec. 8].
Therefore, if b(ξ) = O(ξ−Ξ)b, then the integral in (5.64) is of order (ξ−Ξ)b+2 as ξ → Ξ. If λ1 = λ2,
then one has to replace ϕ2(ξ) = (ξ − Ξ)λ2(1 + o(1)) by ϕ2(ξ) = ((ξ − Ξ)λ1 log(ξ − Ξ)) (1 + o(1)),
with a corresponding change in the estimate for the integral in (5.64).

At ξ = 12 we have A = 0 and B = (12)−2 (12)3 = 12, when the solutions of the indicial equation
are λ1 = −3 and λ2 = 4. If, for every 0 ≤ j ≤ i− 1, π1, j and π2, j are meromorphic at ξ = 12 with
a pole of order ≤ j + 2 and ≤ j + 3, respectively, then an inspection of the inhomogenous terms in
the second order diffrential equation for π1, i yields b = −i − 4, and because b + 2 = −i − 2 ≤ −3
it follows that π1, i has a pole of order ≤ i + 2 at ξ = 12. For i = 1 we have b = −4, but then
λ1 = −3 yields that π1, 1 has a pole of order ≤ 3. Subsequently (5.62) implies that π2, i has a pole
of order ≤ i+ 3 at ξ = 12. It follows by induction on l that, at ξ = 12, π1, l and π2, l have a pole of
order ≤ l + 2 and ≤ l + 3, respectively.

At ξ = ∞ we have A = −1 and B = 1, when the solutions of the indicial equation are λ1 = 1
and λ2 = −1. If, for every 0 ≤ j ≤ i− 1, π1, j and π2, j are meromorphic at ξ =∞ with exponents
≤ j, then an inspection of the inhomogenous terms in the second order diffrential equation for π1, i

yields b = i − 2, and because b + 2 = i ≥ 1 it follows that at ξ = ∞ the function π1, i has an
exponent ≤ i. Subsequently (5.62) implies that also π2, i has an exponent ≤ i at ξ =∞. It follows
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by induction on l that the functions π1, l and π2, l have exponents ≤ l at ξ = ∞, and therefore

are rational functions of the form π1, l(ξ) = (ξ − 12)−l−2 P1, l(ξ) and π2, l(ξ) = (ξ − 12)−l−3 P2, l(ξ),
where P1, l and P2, l are polynomials of degree ≤ 2 l + 2 and ≤ 2 l + 3, respectively.

The functions π1, 1(ξ) = (ξ − 12)−3 P1, 1(ξ) and π2, 1(ξ) = (ξ − 12)−4 P2, 1(ξ), with the respective
polynomials P1, 1(ξ) and P2, 1(ξ) as in (5.58) and (5.59), have been found with the help of a formula
manipulation computer program, in the following way. The solutions of the system (5.62), (5.63)
for i = 1 which are complex analytic in a neighborhood of ξ = 0 are of the form

π1, 1(ξ) = ξ ((720 c− 84672) + (60 c+ 4464) ξ + 180 ξ2 − ξ3)/(60 (ξ − 12)3),

π2, 1(ξ) = (497664 + (8640 c− 1306368) ξ + (2880 c− 124416) ξ2 + (60 c+ 17568) ξ3

−24 ξ4 + ξ5)/(60 (ξ − 12)4),

where c is free constant. With these functions π1, 1 and π2, 1, an investigation of the explicit solutions
π1, 2, π2, 2 of the system (5.62), (5.63) for i = 2 yields that there exist solutions which are complex
analytic in a neighborhood of ξ = 0 if and only if c = 678/5. Therefore π1, 1(ξ) = (ξ−12)−3 P1, 1(ξ)
and π2, 1(ξ) = (ξ − 12)−4 P2, 1(ξ) with P1, 1(ξ) and P2, 1(ξ) as in (5.58) and (5.59), respectively. �

As the system (5.52) is just a rescaled version of (2.2), passing to the complex projective plane
and successively blowing up the base points of the vector fields, as in Section 2, leads to surface
S9, with a locus I where the vector field is infinite equal to the union of nine complex projective

lines L
(9−i)
i , 0 ≤ i ≤ 8, and a pole line L9 \ I, where L9 is the complex projective line appearing

at the last blowup. In the common domain of definition of the coordinate systems (πij1, πij2) and
(π1, π2), an application of the birational transformation (π1, π2) 7→ (πij1, πij2) to the symptotic
expansion (5.55) leads to an asymptotic expansion

πijk(t) =

m−1∑
l=0

t−l πijk, l(τ(t)) + O(t−m) (5.65)

as t ∈ V , |t| → ∞, where the functions πijk, l(τ) are rational expressions in the functions π1,l′(τ),
π2, l′(τ) for 0 ≤ l′ ≤ l, and therefore are rational functions of τ . Because the differential equations
for πijk, 0(τ), analogous to (5.40), correspond to the autonomous limit system, these differential
equations are regular and its solutions have a complex analytic extension as long as they remain in
in the complement of the inifinity set I in the coordinate system (πij1, πij2). Because also the non-
autonomous vector field is regular in S\I, the functions πijk, l(τ) with l ∈ Z>0 satisfy inhomogeneous
linear differential equations as (5.41), variational equations of the differential equations for πijk, 0(τ),
where the inhomogeneous term is a regular expression in the πijk,m(τ) with m < l. It follows by
induction on l that all the rational functions πijk, l(τ) are regular, when the perturbation argument
in the last paragraph of the proof of Lemma 5.11 yields that the asymptotic expansion (5.65)
extends to the whole complement of I in the coordinate system (πij1, πij2).

The pole line is visible in the coordinate system (π911, π912) as the line π912 = 0, and therefore
the poles are the solutions T of the equation π912(T ) = 0, where π912 = π1/π2. This leads to the
following asymptotic results for the poles, where in view of (5.54) the poles of the corresponding

truncated solution of (1.1) are given by Xn = −2−3/5 3−1/5 (5Tn/4)4/5.

Lemma 5.18. There exist universal sequences of coefficients cj, dk, l j, k, l ∈ Z≥0, with c0 = 12,
c1 = 109/10, and d0, 0 = 0, such that following holds. Let C 6= 0, and let pC(t) be the solution in
Lemma 5.11, of the system (5.3) obtained from (5.52) by means of the substitutions π1 = 1+p++p−,
π2 = p+ − p−. Let (π1(t), π2(t)) be the corresponding solution of (5.52). Then there is a sequence
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of poles Tn, n ∈ Z, n >> 0 of π1(t), such that Tn = 2π i n (1 + o(1)) as n→∞, and

τ(Tn) := e−Tn Tn
−1/2 ∼ 1

C

∞∑
j=0

cj Tn
−j as n→∞. (5.66)

Furthermore, with the notations

u :=
1

2π in
, v :=

log(2π in)

2π in
, and W := u log

C

12
− v

2
,

where log(2π in) = log(2π n) + π i /2, we have the more explicit but more complicated asymptotic
expansion

Tn ∼ 2π in− 1

2
log(2π in) + log

C

12
+
∑
k, l≥0

dk, l u
kW l as n→∞, (5.67)

of which the leading terms yield

Tn = 2π in− 1

2
log(2π in) + log

C

12
+
v

4
− (

1

2
log

C

12
+

109

120
)u

+
1

16
v2 − (

1

4
log

C

12
+

139

240
)u v + O(n−2) (5.68)

as n → ∞. If C ∈ C \ {0} runs once around the origin in the positive direction, then Tn moves
continuously to Tn+1.

Conversely, for every η > 0 there exists an r > 0, such that these Tn are the only poles T of
π1(t) such that |T | ≥ r, ImT ≥ 0, and | e−T T−1/2| ≤ η.

Proof. It follows from Lemma 5.17 that the poles T of π1(t) with bounded Ξ(T ) := C e−T T−1/2

satisfy Ξ(T )→ 12 as |T | → ∞.
There exists a sequence of rational functions π912, l, l ∈ Z≥0, such that, with the notation

ξ = C τ = C e−t t−1/2,

π912(t) =
π1(t)

π2(t)
=

m−1∑
l=0

t−l π912, l(ξ) + O(tm),

for every m ∈ Z>0. Lemma 5.17 implies that

π912, 0(ξ) = (ξ − 12) (144 + 120 ξ + ξ2)/(144 ξ(ξ + 12)) and

π912, 1(ξ) = (−71663616− 40310784 ξ − 248832 ξ2 − 11860992 ξ3 − 1221696 ξ4

+1224 ξ5 − 240 ξ6 − ξ7)/((1244160 ξ2 (ξ + 12)2).

Because π912, 0(12) = 0 and π′912, 0(12) = 1/24 6= 0, an application of the implicit function theroem
yield that there exist open neighborhoods A and B of 12 and 0, respectively, such that for every
t−1 ∈ A the equation

m−1∑
l=0

t−l π912, l(ξ) = 0

has a unique solution Ξm = Ξm(t−1) ∈ B, which moreover depends in a complex analytic fashion on
t−1, and satisfies Ξm(0) = 12. Furthermore, Ξ(T ) = Ξm(T−1) + O(T−m), and as the left hand side
does not depend on m, it follows that the coefficients cj for 0 ≤ j ≤ m− 1 in the Taylor expansion
of the function Ξm at the origin do not depend on m. Because this holds for every m ∈ Z>0, it
follows that there is a sequence of complex numbers cj , j ∈ Z>0, such that the poles T of π1(t)

with bounded Ξ(T ) := C e−T T−1/2 satisfy

C τ(T ) = C e−T T−1/2 ∼ 12 +
∑
j>0

cj T
−j as |T | → ∞.
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Because π912, 1(12) = −109/240, we have c1 = −π912, 1(12)/π′912, 0(12) = 109/10. This completes

the proof of (5.66).
The proof of (5.67) is analogous to the proof of (5.46). For any m ∈ Z>0, (5.66) yields that

τ = τ(Tn) =
12

C
(1 +

1

12

m−1∑
j=1

cj Tn
−j + r),

where r = O(Tn
−m) = O(n−m), hence

log τ = log
12

C
+ log(1 +

m−1∑
j=1

cj
12
Tn
−j + r).

Upon the substitution

Tn = 2π in− 1

2
log(2π in) + log

C

12
+ S

= 2π in (1− 1

2
v + u log(C/12) + uS) = 2π in (1 +W + uS),

which implies

log Tn = log(2π in) + log(1 +W + uS)

and

Tn
−1 = u (1 +W + uS)−1,

the equation Tn = 2π in− (1/2) log Tn − log τ is equivalent to the equation

S = F (u, W, r, S) := −1

2
log(1 +W + uS)− log(1 +

m−1∑
j=0

cj
12
uj (1 +W + uS)−j + r).

Because F (0, 0, 0, S) ≡ 0, it follows from the implicit function theorem in the complex analytic
setting that there exist open neighborhoods U , W, R, and S of the origin in C such that for every
(u, W, r) ∈ U ×W ×R the equation has a unique solution S = Sm(u, W, r) ∈ S, and that Sm is a
complex analytic function on U ×W ×R. In our setting

Sm(u, W, r) = Sm(u, W, 0) + O(r) =
m−1∑
k=0

m−k∑
l=0

dk, l u
kW l + O(n−m).

Here the coefficients dk, l do not depend on m because S does not depend on m. This completes
the proof of (5.67).

The equation for m = 2 yields

S = −1

2
(W + uS) +

1

4
(W 2 + 2W uS)− c1

12
u (1−W ) + O(n−2),

hence

S = −1

2
W − c1

12
u+

1

4
W 2 + (

1

4
+
c1

12
)W u+ O(n−2),

which implies (5.68).
If C ∈ C \ {0} runs once around the origin in the positive direction, then (5.66) implies that

τ(Tn) runs once around the origin in the negative direction, when Lemma 5.10 implies that Tn
moves continuously to Tn+1. �
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Figure 5.5 illustrates the asymptotic approximations of the poles in (5.68) in the complex t-plane,

of Boutroux’s triply truncated solution p↓(t), when, according to Remark 5.15, C = i
√

6/5π.
Shown are the points in the right hand side of (5.68) without the remainder term O(n−2), for
1 ≤ n ≤ 20. For clarity of the picture, the imaginary part has been multiplied by 1/24 in comparison
to the real part. It would be interesting to compare the approximate poles in Figure 5.5 with the
numerical approximations of the actual poles of p↓(t).

Remark 5.19. The intriguing “General comments 2” of [7, p. 40] say:

“The pole structure can be explored beyond the first array, in much of the same way: For large ξ
induction shows that Hn ∼ Const ξn, suggesting a reexpansion for large ξ in the form

h ∼
∞∑
k=0

H
[1]
k (ξ2)

xk
; ξ2 = C [1] ξ x−1 = C C [1] x−3/2 e−x . (118)

By the same technique it can be shown that (118) holds and, by matching with

h ∼
∞∑
k=0

x−kHk(ξ(x)) (113)

at ξ2 ∼ x−2/3, we get H
[1]
0 = H0 with C [1] = −1/60. Hence, if xs belongs to the first line of poles,

i.e.

ξ(xs) = ξs = 12 +
109

10x
+ O(x−2), (116)

the second line of poles is given by the condition

x
−3/2
1 e−x1 = −60 · 12 c

i.e., it is situated at a logarithmic distance from the first one:

x1 − xs = − lnxs + (2n+ 1)π i− ln(60) + o(1).

Similary one finds xs, 3 and in general xs, n. The second scale for the n-array is x−n−1/2 e−x.
The expansion (113) can however matched directly to an adiabatic invariant-like expansion valid

throughout the sector where h has poles, similar to the one in Joshi and Kruskal [16]. In this
language, the successive expansions of the form (118) pertain to the separatrix crossing region. We
will not pursue this issue here.”

The word “suggesting” preceding (118) indicates that (118) is a conjecture, but in the sequel all
the statements, including (118), are treated as facts, with only some hints of proofs. The phrase

“matching with (113) at ξ2 ∼ x−2/3” suggests that Hn ∼ Constn ξ
n implies that the expansion

(113) extends to domains where ξ(x) is of order x1/3, thus allowing a matching with (118) for

ξ2(x) = C [1] ξ(x)x−1 of order x−2/3.

Write τ [N ](t) := τ(t) t−N = e−t t−N−1/2, the second scale for the (N + 1)-st array of poles.
Because πk, l(ξ) ∼ Constk, l ξ

l for ξ → ∞, see Lemma 5.17, the t−l πk, l(C τ(t), l ∈ Z≥0 form an
asymptotic sequence for |t| → ∞, |τ(t)| = o(|t|) and τ(t) bounded away from 12/C, in the sense

that t−l πk, l(C τ(t) = O(τ [1](t)l), where τ [1](t) → 0. A stronger conjecture would be that (5.55)
extends as an asymptotic expansion for |t| → ∞ in the aforementioned domain. Because (5.56)
and (5.57) imply that (π1, 0(ξ), π2, 0(ξ)) → (1, 0) as ξ → ∞, it would follow that (π1(t), π2(t))
converges to the equilibrium point (1, 0) of the autonomous limit system if |t| → ∞, |τ(t)| → ∞,
and |τ(t)| = o(|t|). In view of (5.56), (5.57), (5.58), and (5.59), the first two terms of the extended
asymptotic expansion yield

π1(t) = 1 + 144 (C τ(t))−1 − C τ [1](t)/60 + o(τ(t)−1) + o(τ [1](t)),

π2(t) = 144 (C τ(t))−1 + C τ [1](t)/60 + o(τ(t)−1) + o(τ [1](t)).
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Therefore, if we restrict to τ(t)−1 = o(τ [1](t)) = o(τ(t)/t), that is |τ(t)|/|t|1/2 →∞, then

(π1(t), π2(t)) = (1, 0) + ξ[1] (1, −1) + o((ξ[1])) if ξ[1](t) = −C τ [1](t)/60,

the leading term of an asymptotic expansion

(π1(t), π2(t) ∼
∑
l≥0

t−l (π
[1]
1, l(ξ

[1](t)), π
[1]
2, l(ξ

[1](t))).

As in Lemma 5.8, the function ξ[1] 7→ (π
[1]
1, 0(ξ[1]), π

[1]
2, 0(ξ[1])) satisfies the same differential equation

(5.40) as the function ξ 7→ (π1, 0(ξ), π2, 0(ξ)), where both functions have the same value and first

order derivative at the origin. Therefore π
[1]
k, 0 = πk, 0, with π1, 0 and π2, 0 as in Lemma 5.8. It

follows, if the aforementioned statements about the asymptotic expansions hold, that the second
sequence of poles occurs at points 2π i n − (3/2) log(2π i n) − log(−720/C) + o(1), equal to the
first sequence 2π i n− (1/2) log(2π i n)− log(12/C) + o(1) plus − log(2π in)− log(−60) + o(1) as
n→∞.

The text in “General comments 2”of [7, p. 40] continues with the statement that for each N
there is an asymptotic expansion of the form

(π1(t), π2(t)) ∼
∞∑
l=0

t−l (π
[N ]
1, l (C

[N ] τ [N ](t)), π
[N ]
2, l (C

[N ] τ [N ](t))),

valid, if interpreted in the strong sense, for |t| → ∞, |τ [N ](t)| = o(t), and |τ [N−1](t)| → ∞, where

the constant C [N ] depends linearly on C. This would lead to an asymptotic description of the
(N + 1)-st sequence of poles, equal to the N -th sequence plus − log n+γN + o(1) as n→∞, where
the constant γN neither depends on n nor on C. For |t| → ∞ and t between the Nth and the
(N + 1)-st sequence of poles, the solution (π1(t), π2(t)) converges to the equilibrium point (1, 0) of
the autonomous system, if and only the distance from t to both sequences of poles tends to infinity.
Furthermore, for every M > 0 we have that the energy E = π2

2/2 − π1
3/6 + π1/2 converges to

the criticial level 1/3, meaning that the solution converges to the solution of the autonomous limit
system at the critical energy level, if Im t → ∞, Re t ≥ −M log(Im t), and |t| times the distance
from t to the poles tends to infinity. The latter condition is related to the description of the energy
near the poles in (3.3).

We would like to prove statements like those in the second paragraph in the “General comments
2” of [7, p. 40] by means of the averaging method. This is not a trivial matter, as all the asymptotic
expansions up till now are near one of the critical values of the energy function, where solutions of
the averaged differential equation for the energy function are not uniquely determined. One might
expect that the energy function acquires different limit values from the critical value 1/3 of the
energy function, if t runs to infinity in the direction of e i θ with π/2 < θ < 3π/2. On the other
hand the truncated solution converges to the equilibrium point of the autonomous limit system
(with energy equal to the critical value 1/3) if −π/2 < θ < π/2.
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second ordre. Ann. Sci. École Norm. Sup., Série 3 30 (1913) 255–375. (suite) (3) 31 (1914) 99–159.
[3] H. Bruns: Ueber die Perioden der elliptischen Integrale erster und zweiter Gattung. Festschrift, Dorpat, 1875. Reprinted

in Mathematische Annalen 27 (1886) 234–252.
[4] E.A. Coddington and N. Levinson: Theory of Ordinary Differential Equations. McGraw-Hill, New York, etc., 1955.

[5] O. Costin: On Borel summation and Stokes phenomena for rank one nonlinear systems of ODE’s. Duke Math. J. 93 (1998)
289–344.

45



[6] O. Costin: Correlation between pole location and asymptotic behavior for Painlevé I solutions. Comm. Pure Appl. Math.
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Appendix A. Okamoto’s Space

We construct Okamoto’s space of initial conditions [21] in the Boutroux rescaling. (See also
[10] for the original Painlevé equation (1.1).) The notation (uij1, uij2) will be used to denote the
coordinates in the j-th chart of the i-th blowup. In each coordinate chart, the Jacobian of the
coordinate change from (u1, u2) to (uij1, uij2) will be denoted by

wij =
∂uij1
∂y1

∂uij2
∂u2

− ∂uij1
∂u2

∂uij2
∂u1

. (A.1)

Up to and including the seventh blowup, the function z Ė is rational with wij in the denominator,

and we have added the formula for Ė wij in each coordinate chart.
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Second affine chart in P2:

u021 = u1
−1,

u022 = u1
−1 u2,

u1 = u021
−1,

u2 = u021
−1 u022,

u̇021 = u021 (−u022 + 2 (5 z)−1),

u̇022 = u021
−1 (6 + u021

2 − u021 u022
2 − (5 z)−1 u021 u022),

w02 = −u021
3,

ẇ02 = 3u021
3 (u022 − 2 (5 z)−1),

E w02 = 2 + u021
2 − 2−1 u021 u022

2,

Ė w02 = −(5 z)−1 (12 + 2u021
2 − 3u021 u022

2).

The line at infinity L0 corresponds to u021 = 0. In this chart there are no base points for the
Painlevé vector field or the anticanonical pencil.

Third affine chart in P2:

u031 = u2
−1,

u032 = u1 u2
−1,

u1 = u031
−1 u032,

u2 = u031
−1,

u̇031 = −u031
2 − 6u032

2 + 3 (5 z)−1 u031,

u̇032 = u031
−1 (u031 − u031

2 u032 − 6u032
3 + (5 z)−1 u031 u032),

w03 = u031
3,[

w03 u032
−3
]•

= 3u031
3 (−1 + 2 (5 z)−1 u032)u032

−4,

E w03 = 2−1 u031 − u031
2 u032 − 2u032

3,

Ė w03 = (5 z)−1 (−3u031 + 2u031
2 u032 + 12u032

3).

The line at infinity L0 corresponds to u031 = 0. Both the The Painlevé vector field and the
anticanonical pencil both have a base point b0 given by u031 = 0, u032 = 0.
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Blowing up P2 at b0 leads to S1. First coordinate chart:

u031 = u111 u032,

u032 = u112,

u111 = u1
−1,

u112 = u1 u2
−1,

u1 = u111
−1,

u2 = u111
−1 u112

−1,

u̇111 = u112
−1 u111 (−1 + 2 (5 z)−1 u112),

u̇112 = u111
−1 (u111 − 6u112

2 − u111
2 u112

2 + (5 z)−1 u111 u112),

w11 = u111
3 u112

2,[
w11 u112

−2
]•

= 3u111
3 (−1 + 2 (5 z)−1 u112)u112

−1,[
w11 u111

−1
]•

= 2u111 u112
2 (−6u112 − u111

2 u112 + 3 (5 z)−1 u111),

E w11 = 2−1 u111 − 2u112
2 − u111

2 u112
2,

Ė w11 = (5 z)−1 (−3u111 + 12u112
2 + 2u111

2 u112
2).

Then u112 = 0 defines L1 and u111 = 0 defines L
(1)
0 . The Painlevé vector field and the anticanonical

pencil both have a base point b1 given by u111 = 0, u112 = 0.
The second coordinate chart after the first blowup is defined by

u031 = u121,

u032 = u122 u031,

u121 = u2
−1 = u111 u112,

u122 = u1 = u111
−1,

u1 = u122,

u2 = u121
−1,

u̇121 = u121 (−u121 − 6u121 u122
2 + 3 (5 z)−1),

u̇122 = u121
−1 (1− 2 (5 z)−1 u121 u122),

w12 = u121
2,

ẇ12 = 2u121
2 (−u121 − 6u121 u122

2 + 3 (5 z)−1),

E w12 = 2−1 − u121
2 u122 − 2u121

2 u122
3,

Ė w12 = (5 z)−1 (−3 + 2u121
2 u122 + 12u121

2 u122
3).

The equation u121 = 0 defines L1. The line L
(1)
0 is not visible, and there are no base points in this

chart.
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Blowing up S1 at b1 leads to S2. First coordinate chart:

u111 = u211 u112,

u112 = u212,

u211 = u1
−2 u2,

u212 = u2
−1 u1,

u1 = u211
−1 u212

−1,

u2 = u211
−1 u212

−2,

u̇211 = u212
−1 (−2u211 + 6u212 + u211

2 u212
3 + (5 z)−1 u211 u212),

u̇212 = u211
−1 (u211 − 6u212 − u211

2 u212
3 + (5 z)−1 u211 u212),

w21 = u211
3 u212

4,[
w21 u212

−1
]•

= 3u211
3 u212

2 (−1 + 2 (5 z)−1 u212),[
w21 u211

−1
]•

= 2u211 u212
4 (−6− u211

2 u212
2 + 3 (5 z)−1 u211),

E w21 = 2−1 u211 − 2u212 − u211
2 u212

3,

Ė w21 = (5 z)−1 (−3u211 + 12u212 + 2u211
2 u212

3).

Then u212 = 0 defines L2 and u211 = 0 defines the proper transform L
(2)
0 of L

(1)
0 . The proper

transform L
(1)
1 of L1 is not visible in this chart. The Painlevé vector field and the anticanonical

pencil both have a base point b2 given by u211 = 0, u212 = 0.
The second coordinate chart after the second blowup is defined by

u111 = u221,

u112 = u222 u111,

u221 = u1
−1 = u211 u212,

u222 = u1
2 u2

−1 = u211
−1,

u1 = u221
−1,

u2 = u221
−2 u222

−1,

u̇221 = u222
−1 (−1 + 2 (5 z)−1 u221 u222),

u̇222 = u221
−1 (2− 6u221 u222

2 − u221
3 u222

2 − (5 z)−1 u221 u222),

w22 = u221
4 u222

2,

ẇ22 = 2u221
4 u222

2 (−6u222 − u221
2 u222 + 3 (5 z)−1),

E w22 = 2−1 − 2u221 u222
2 − u221

3 u222
2,

Ė w22 = (5 z)−1 (−3 + 12u221 u222
2 + 2u221

3 u222
2).

The equations u221 = 0 and u222 = 0 define L2 and L
(1)
1 , respectively. The line L

(2)
0 is not visible,

and there are no base points in this chart.
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Blowing up S2 at b2 leads to S3. First coordinate chart:

u211 = u311 u212,

u212 = u312,

u311 = u1
−3 u2

2,

u312 = u1 u2
−1,

u1 = u311
−1 u312

−2,

u2 = u311
−1 u312

−3,

u̇311 = u312
−1 (12− 3u311 + 2u311

2 u312
4),

u̇312 = u311
−1(−6 + u311 − u311

2 u312
4 + (5 z)−1 u311 u312),

w31 = u311
3 u312

6,[
w31 (u311 − 4)−1

]•
= 2u311

3 u312
6 (u311 − 4)−2 (−u311

2 u312
3 + 3 (5 z)−1 (u311 − 4)),

E w31 = −2 + 2−1 u311 − u311
2 u312

4,

Ė w31 = (5 z)−1 (12− 3u311 + 2u311
2 u312

4).

Then u312 = 0 defines L3 and u311 = 0 defines the proper transform L
(3)
0 of L

(2)
0 . The proper

transforms L
(1)
2 of L2 and L

(2)
1 of L

(1)
1 are not visible in this chart. The Painlevé vector field and

the anticanonical pencil both have a base point b3 given by u311 = 4, u312 = 0.
The second coordinate chart after the third blowup is defined by

u211 = u321,

u212 = u322 u211,

u321 = u1
−2 u2 = u311 u312,

u322 = u1
3 u2

−2 = u311
−1,

u1 = u321
−2 u322

−1,

u2 = u321
−3 u322

−2,

u̇321 = u322
−1 (−2 + 6u322 + u321

4 u322
3 + (5 z)−1 u321 u322),

u̇322 = u321
−1 (3− 12u322 − 2u321

4 u322
3),

w32 = u321
6 u322

4,[
w32 (1− 4u322)−1

]•
= 2u321

6 u322
4 (1− 4u322)−2 (−u321

3 u322
2 + 3 (5 z)−1 (1− 4u322)),

E w32 = 2−1 − 2u322 − u321
4 u322

3,

Ė w32 = (5 z)−1 (−3 + 12u322 + 2u321
4 u322

3).

The equations u321 = 0 and u322 = 0 define L3 and L
(1)
2 , respectively. The lines L

(3)
0 and L

(2)
1 are

not visible. The Painlevé vector field and the anticanonical pencil both have a base point b3 given
by u321 = 0, u322 = 1/4 in this chart.
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Blowing up S3 at b3 leads to S4. First coordinate chart:

u311 − 4 = u411 u312,

u312 = u412,

u411 = u1
−4 u2 (−4u1

3 + u2
2),

u412 = u1 u2
−1,

u1 = u412
−2 (4 + u411 u412)−1,

u2 = u412
−3 (4 + u411 u412)−1,

u̇411 = u412
−1 (4 + u411 u412)−1

× (−10u411 − 4u411
2 u412 + 128u412

3 + 112u411 u412
4 + 32u411

2 u412
5

+3u411
3 u412

6 − (5 z)−1 u411 u412 (4 + u411 u412)),

u̇412 = (4 + u411 u412)−1

× (−2 + u411 u412 − 16u412
4 − 8u411 u412

5 − u411
2 u412

6

+ (5 z)−1 u412 (4 + u411 u412)),

w41 = u412
5 (4 + u411 u412)3,[

w41 u411
−1
]•

= 2u412
5 (4 + u411 u412)3 u411

−2 (−u412
2 (4 + u411 u412)2 + 3(5 z)−1 u411),

E w41 = 2−1 u411 − u412
3 (4 + u411 u412)2,

Ė w41 = (5 z)−1 (−3u411 + 2u412
3 (4 + u411 u412)2).

Then u412 = 0 defines L4 and 4 + u411 u412 = 0 defines the proper transform L
(4)
0 of L

(3)
0 . The

proper transforms of the other lines on which the Painlevé vector field is infinite are not visible in
this chart. The Painlevé vector field and the anticanonical pencil both have a base point b4 given
by u411 = 0, u412 = 0.

The second coordinate chart after the fourth blowup is defined by

u311 − 4 = u421,

u312 = u422 (u311 − 4),

u421 = u1
−3 (−4u1

3 + u2
2) = u411 u412,

u422 = u1
4 u2

−1 (−4u1
3 + u2

2)−1 = u411
−1,

u1 = u421
−2 (4 + u421)−1 u422

−2,

u2 = u421
−3 (4 + u421)−1 u422

−3,

u̇421 = u422
−1 (−3 + 32u421

3 u422
4 + 16u421

4 u422
4 + 2u421

5 u422
4),

u̇422 = u421
−1 (4 + u421)−1 (10 + 4u421 − 128u421

3 u422
4 − 112u421

4 u422
4

−32u421
5 u422

4 − 3u421
6 u422

4 + (5 z)−1 u421 (4 + u421)u422),

w42 = u421
5 (4 + u421)3 u422

6,

ẇ42 = 2u421
5 (4 + u421)3 u422

6 (−u421
2 (4 + u421)2 u422

3 + 3 (5 z)−1),

E w42 = 2−1 − u421
3 (4 + u421)2 u422

4,

Ė w42 = (5 z)−1 (−3 + 2u421
3 (4 + u421)2 u422

4).

The equations u421 = 0, 4 + u421 = 0, and u422 = 0 define L4, L
(4)
0 , and and L

(1)
3 , respectively. The

proper transforms of the other lines on which the Painlevé vector field is infinite are not visible in
this chart. Both the Painlevé vector field and the anticanonical pencil have no base point in this
chart.

51



Blowing up S4 at b4 leads to S5. First coordinate chart:

u411 = u511 u412,

u412 = u512,

u511 = u2
2 (−4u1

3 + u2
2)u1

−5,

u512 = u1 u2
−1,

u1 = u512
−2 (4 + u511 u512

2)−1,

u2 = u512
−3 (4 + u511 u512

2)−1,

u̇511 = u512
−1 (4 + u511 u512

2)−1

× (−8u511 + 128u512
2 − 5u511

2 u512
2 + 128u511 u512

4 + 40u511
2 u512

6

+4u511
3 u512

8 − 2 (5 z)−1 u511 u512 (4 + u511 u512
2)),

u̇512 = (4 + u511 u512
2)−1

× (−2 + u511 u512
2 − 16u512

4 − 8u511 u512
6 − u511

2 u512
8

+(5 z)−1 u512 (4 + u511 u512
2)),

w51 = u512
4 (4 + u511 u512

2)3,[
w51 u511

−1
]•

= 2u512
4 (4 + u511 u512

2)3 u511
−2 (−u512 (4 + u511 u512

2)2 + 3 (5 z)−1 u511),

E w51 = 2−1 u511 − u512
2 (4 + u511 u512

2)2,

Ė w51 = (5 z)−1 (−3u511 + 2u512
2 (4 + u511 u512

2)2).

Then u512 = 0 defines L5 and 4 + u511 u512
2 = 0 defines the proper transform L

(5)
0 of L

(4)
0 . The

proper transforms of the other lines on which the Painlevé vector field is infinite are not visible in
this chart. The Painlevé vector field and the anticanonical pencil both have a base point b5 given
by u511 = 0, u512 = 0.

The second coordinate chart after the fifth blowup is defined by

u411 = u521,

u412 = u522 u411,

u521 = u1
−4 (−4u1

3 + u2
2)u2 = u511 u512,

u522 = u1
5 (−4u1

3 + u2
2)−1 u2

−2 = u511
−1,

u1 = u521
−2 u522

−2 (4 + u521
2 u522)−1,

u2 = u521
−3 u522

−3 (4 + u521
2 u522)−1,

u̇521 = u522
−1 (4 + u521

2 u522)−1

× (−10− 4u521
2 u522 + 128u521

2 u522
3 + 112u521

4 u522
4 + 32u521

6 u522
5

+3u521
8 u522

6 − (5 z)−1 u521 u522 (4 + u521
2 u522)),

u̇522 = u521
−1 (4 + u521

2 u522)−1

× (8 + 5u521
2 u522 − 128u521

2 u522
3 − 128u521

4 u522
4 − 40u521

6 u522
5

−4u521
8 u522

6 + 2 (5 z)−1 u521 u522 (4 + u521
2 u522)),

w52 = u521
4 u522

5 (4 + u521
2 u522)3,

ẇ52 = 2u521
4 u522

5 (4 + u521
2 u522)3 (−u521 u522

2 (4 + u521
2 u522)2 + 3 (5 z)−1),

E w52 = 2−1 − u521
2 u522

3 (4 + u521
2 u522)2,

Ė w52 = (5 z)−1 (−3 + 2u521
2 u522

3 (4 + u521
2 u522)2).
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The equations u521 = 0, 4 +u521
2 u522 = 0, and u522 = 0 define L5, L

(5)
0 , and and L

(1)
4 , respectively.

The proper transforms of the other lines on which the Painlevé vector field is infinite are not visible
in this chart. Both the Painlevé vector field and the anticanonical pencil have no base point in this
chart.

Blowing up S5 at b5 leads to S6. First coordinate chart:

u511 = u611 u512,

u512 = u612,

u611 = u1
−6 u2

3 (−4u1
3 + u2

2),

u612 = u1 u2
−1,

u1 = u612
−2 (4 + u611 u612

3)−1,

u2 = u612
−3 (4 + u611 u612

3)−1,

u̇611 = u612
−1 (4 + u611 u612

3)−1

× (−6u611 + 128u612 − 6u611
2 u612

3

+144u611 u612
4 + 48u611

2 u612
7 + 5u611

3 u612
10

−3 (5 z)−1 u611 u612 (4 + u611 u612
3)),

u̇612 = (4 + u611 u612
3)−1

× (−2 + u611 u612
3 − 16u612

4 − 8u611 u612
7

−u611
2 u612

10 + (5 z)−1 u612 (4 + u611 u612
3))),

w61 = u612
3 (4 + u611 u612

3)3,[
w61 u611

−1
]•

= 2u612
3 (4 + u611 u612

3)3 u611
−2

× (−(4 + u611 u612
3)2 + 3 (5 z)−1 u611),

E w61 = 2−1 u611 − u612 (4 + u611 u612
3)2,

Ė w61 = (5 z)−1 (−3u611 + 2u612 (4 + u611 u612
3)2).

Then u612 = 0 defines L6 and 4 + u611 u612
3 = 0 defines the proper transform L

(6)
0 of L

(5)
0 . The

proper transforms of the other lines on which the Painlevé vector field is infinite are not visible in
this chart. The Painlevé vector field and the anticanonical pencil both have a base point b6 given
by u611 = 0, u612 = 0.

The second coordinate chart after the sixth blowup is defined by

u511 = u621,

u512 = u622 u511,

u621 = u1
−5 u2

2 (−4u1
3 + u2

2) = u611 u612,

u622 = u1
6 u2

−3 (−4u1
3 + u2

2)−1 = u611
−1,

u1 = u621
−2 u622

−2 (4 + u621
3 u622

2)−1,

u2 = u621
−3 u622

−3 (4 + u621
3 u622

2)−1,
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u̇621 = u622
−1 (4 + u621

3 u622
2)−1

× (−8 + 128u621 u622
2 − 5u621

3 u622
2

+128u621
4 u622

4 + 40u621
7 u622

6 + 4u621
10 u622

8

−2 (5 z)−1 u621 u622 (4 + u621
3 u622

2)),

u̇622 = u621
−1 (4 + u621

3 u622
2)−1

× (6− 128u621 u622
2 + 6u621

3 u622
2

−144u621
4 u622

4 − 48u621
7 u622

6 − 5u621
10 u622

8

+3 (5 z)−1 u621 u622 (4 + u621
3 u622

2)),

w62 = u621
3 u622

4 (4 + u621
3 u622

2)3,

ẇ622 = 2u621
3 u622

4 (4 + u621
3 u622

2)3

× (−u622 (4 + u621
3 u622

2)2 + 3 (5 z)−1),

E w62 = 2−1 − u621 u622
2 (4 + u621

3 u622
2)2,

Ė w62 = (5 z)−1 (−3 + 2u621 u622
2 (4 + u621

3 u622
2)2).

The equations u621 = 0, 4+u621
3 u622

2 = 0, and u622 = 0 define L6, L
(6)
0 , and and L

(1)
5 , respectively.

The proper transforms of the other lines on which the Painlevé vector field is infinite are not visible
in this chart. Both the Painlevé vector field and the anticanonical pencil have no base point in this
chart.

Blowing up S6 at b6 leads to S7. First coordinate chart:

u611 = u711 u612,

u612 = u712,

u711 = u1
−7 u2

4 (−4u1
3 + u2

2),

u712 = u1 u2
−1,

u1 = u712
−2 (4 + u711 u712

4)−1,

u2 = u712
−3 (4 + u711 u712

4)−1,

u̇711 = u712
−1 (4 + u711 u712

4)−1

× (128− 4u711 + 160u711 u712
4 − 7u711

2 u712
4

+56u711
2 u712

8 + 6u711
3 u712

12

−4 (5 z)−1 u711 u712 (4 + u711 u712
4)),

u̇712 = (4 + u711 u712
4)−1

× (−2− 16u712
4 + u711 u712

4 − 8u711 u712
8

−u711
2 u712

12 + (5 z)−1 u712 (4 + u711 u712
4)),
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w71 = u712
2 (4 + u711 u712

4)3,[
w71 (u711 − 32)−1

]•
= −2u712

2 (4 + u711 u712
4)2 (u711 − 32)−2

× (u712
3 (1024− 64u711 + 512u711 u712

4 + 12u711
2 u712

4

+64u711
2 u712

8 + u711
3 u712

8)

+(5 z)−1 (32− 3u711) (4 + u711 u712
4)),

E w71 = 2−1 u711 − (4 + u711 u712
4)2,

Ė w71 = (5 z)−1 (−3u711 + 2 (4 + u711 u712
4)2).

Then u712 = 0 defines L7 and 4 + u711 u712
4 = 0 defines the proper transform L

(7)
0 of L

(6)
0 . The

proper transforms of the other lines on which the Painlevé vector field is infinite are not visible in
this chart. The Painlevé vector field and the anticanonical pencil both have a base point b7 given
by u711 = 32, u712 = 0. Remarkably this base point in the Boutroux coordinates does not depend
on the independent variable z, whereas the seventh base point in the unscaled system is given by
y711 = 32x, y712 = 0.

The second coordinate chart after the seventh blowup is defined by

u611 = u721,

u612 = u722 u611,

u721 = u1
−6 u2

3 (−4u1
3 + u2

2) = u711 u712,

u722 = u1
7 u2

−4 (−4u1
3 + u2

2)−1 = u711
−1,

u1 = u721
−2 u722

−2 (4 + u721
4 u722

3)−1,

u2 = u721
−3 u722

−3 (4 + u721
4 u722

3)−1,

u̇721 = u722
−1 (4 + u721

4 u722
3)−1

× (−6 + 128u722 − 6u721
4 u722

3 + 144u721
4 u722

4 + 48u721
8 u722

7

+5u721
12 u722

10 − 3 (5 z)−1 u721 u722 (4 + u721
4 u722

3)),

u̇722 = −u721
−1 (4 + u721

4 u722
3)−1

× (4− 128u722 + 7u721
4 u722

3 − 160u721
4 u722

4 − 56u721
8 u722

7

−6u721
12 u722

10 + 4 (5 z)−1 u721 u722 (4 + u721
4 u722

3)),

w72 = u721
2 u722

3 (4 + u721
4 u722

3)3,[
w72 (32u722 − 1)−1

]•
= 2u721

2 u722
3 (4 + u721

4 u722
3)2 (32u722 − 1)−2

× (u721
3 u722

3 (−64 + 1024u722 + 12u721
4 u722

3

+512u721
4 u722

4 + u721
8 u722

6 + 64u721
8 u722

7)

+(5 z)−1 (−3 + 32u722) (4 + u721
4 u722

3)),

E w72 = 2−1 − u722 (4 + u721
4 u722

3)2,

Ė w72 = (5 z)−1 (−3 + 2u722 (4 + u721
4 u722

3)2).

The equations u721 = 0, 4+u721
4 u722

3 = 0, and u722 = 0 define L7, L
(7)
0 , and and L

(1)
6 , respectively.

The proper transforms of the other lines on which the Painlevé vector field is infinite are not visible
in this chart. The Painlevé vector field and the anticanonical pencil have the base point u721 = 0,
u722 = 1/32 in this chart, which is equal to the previously found base point b7.
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Blowing up S7 at b7 leads to S8. First coordinate chart:

u711 − 32 = u811 u712,

u712 = u812,

u811 = −u1
−8 u2 (32u1

7 + 4u1
3 u2

4 − u2
6),

u812 = u1 u2
−1,

u1 = u812
−2 (4 + 32u812

4 + u811 u812
5)−1,

u2 = u812
−3 (4 + 32u812

4 + u811 u812
5)−1,

u̇811 = u812
−1 (4 + 32u812

4 + u811 u812
5)−1

× [−2 (u811 + 1024u812
3 + 152u811 u812

4 + 4u811
2 u812

5)

+u812
7 (32 + u811 u812) (1792 + 64u811 u812 + 6144u812

4 + 416u811 u812
5

+7u811
2 u812

6)− (5 z)−1 (128 + 5u811 u812) (4 + 32u812
4 + u811 u812

5)],

u̇812 = −(4 + 32u812
4 + u811 u812

5)−1

× [2− 16u812
4 − u811 u812

5 + 256u812
8 + 8u811 u812

9 + 1024u812
12

+64u811 u812
13 + u811

2 u812
14 − (5 z)−1 u812 (4 + u811 u812

5 + 32u812
9)],

w81 = u812 (4 + 32u812
4 + u811 u812

5)3,

E w81 = 2−1 u811 − u812
3 (32 + u811 u812) (8 + 32u812

4 + u811 u812
5),

Ė w81 = (5 z)−1 u812
−1 (−64− 3u811 u812

+2u812
4 (32 + u811 u812) (8 + 32u812

4 + u811 u812
5)).

Furthermore

[
w81 (u811 + 256 (5 z)−1)−1

]•
= 2u812 (4 + 32u812

4 + u811 u812
5)2 (u811 + 256 (5 z)−1)−2

× [−u812
2 (−210 − 26 u811 u812 + 212 · 7u812

4 + 28 · 5u811 u812
5 + 22 · 3u811

2 u812
6

+215 · 3u812
8 + 210 · 7u811 u812

9 + 25 · 5u811
2 u812

10 + u811
3 u812

11)

+(5 z)−1 (22 · 3u811 − 212 · 5u812
3 − 25 · 33 u811 u812

4 + 3u811
2 u812

5 + 215 · 5u812
7

+210 · 5u811 u812
8 + 217 · 5u812

11 + 213 · 5u811 u812
12 + 27 · 5u811

2 u812
13)

+768 (5 z)−2 (4 + 32u812
4 + u811 u812

5)].

The equation u812 = 0 defines L8 and 4+32u812
4 +u811 u812

5 = 0 defines the proper transform L
(8)
0

of L
(7)
0 . The proper transforms of the other lines on which the Painlevé vector field is infinite are

not visible in this chart. The Painlevé vector field has a base point b8 given by u811 = −256 (5 z)−1,
u812 = 0. In the Boutroux coordinates, this is the first base point which depends on the independent
variable z. The anticanonical pencil has a base point b ell8 given by u811 =, u812 = 0. We have
b ell8 6= b8 with a distance between both base point vanishing of order 1/z as z →∞.
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The second coordinate chart after the eighth blowup is defined by

u711 − 32 = u821,

u712 = u822 (u711 − 32),

u821 = −u1
−7 (32u1

7 + 4u1
3 u2

4 − u2
6) = u811 u812,

u822 = −u1
8 u2

−1 (32u1
7 + 4u1

3 u2
4 − u2

6)−1 = u811
−1,

u1 = u821
−2 u822

−2 (4 + 32u821
4 u822

4 + u821
5 u822

4)−1,

u2 = u821
−3 u822

−3 (4 + 32u821
4 u822

4 + u821
5 u822

4)−1,

u̇821 = u822
−1 (4 + 32u821

4 u822
4 + u821

5 u822
4)−1

× [−4− 2048u821
3 u822

4 − 288u821
4 u822

4 − 7u821
5 u822

4

+2u821
7 (32 + u821)2 u822

8 (28 + 96u821
4 u822

4 + 3u821
5 u822

4)

−4 (5 z)−1 (32 + u821)u822 (4 + 32u821
4 u822

4 + u821
5 u822

4)],

u̇822 = −u821
−1 (4 + 32u821

4 u822
4 + u821

5 u822
4)−1

× [−2− 8u821
3 (256 + 38u821 + u821

2)u822
4

+u821
7 (32 + u821)u822

8 (1792 + 64u821 + 6144u821
4 u822

4 + 416u821
5 u822

4

+7u821
6 u822

4)− (5 z)−1 (128 + 5u821)u822 (4 + 32u821
4 u822

4 + u821
5 u822

4)],

w82 = u821 u822
2 (4 + 32u821

4 u822
4 + u821

5 u822
4)3,

E w82 = 2−1 − u821
3 (32 + u821)u822

4 (8 + 32u821
4 u822

4 + u821
5 u822

4),

Ė w82 = (5 z)−1 u821
−1 (−64− 3u821

+2u821
4 (32 + u821)u822

4 (8 + 32u821
4 u822

4 + u821
5 u822

4)).

Furthermore,

[
w82 (256 (5 z)−1 u822 + 1)−1

]•
=

2u822
2 (4 + 32u821

4 u822
4 + u821

5 u822
4)2 (256 (5 z)−1 u822 + 1)−2

× [−u821
3 u822

3 (−210 − 26 u821 + 217 · 7u821
4 u822

4 + 28 · 5u821
5 u822

4 + 22 · 3u821
6 u822

4

+215 · 3u821
8 u822

8 + 210 · 7u821
9 u822

8 + 25 · 5u821
10 u822

8 + u821
11 u822

8)

−(5 z)−1 (−28 − 22 · 3u821 − 218 u821
3 u822

4 − 211 · 32 u821
4 u822

4

−25 · 5u821
5 u822

4 − 3u821
6 u822

4 + 220 · 7u821
7 u822

8

+216 · 5u821
8 u822

8 + 210 · 3u821
9 u822

8 + 223 · 3u821
11 u822

12

+218 · 7u821
12 u822

12 + 213 · 5u821
13 u822

12 + 28 u821
14 u822

12)

+27 (5 z)−2 (27 + 11u821) (4 + 32u821
4 u822

4 + u821
5 u822

4)u822].

The equations u821 = 0, 4 + 32u821
4 u822

4 + u821
5 u822

4 = 0, and u822 = 0 define L8, L
(8)
0 , and and

L
(1)
7 , respectively. The proper transforms of the other lines on which the Painlevé vector field is

infinite are not visible in this chart. The Painlevé vector field has the base point b8 defined by the
equations u821 = 0, 256 (5 z)−1 u822 + 1 = 0. The base point b ell8 of the anticanonical pencil is not
visible in this chart.
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Blowing up S8 at b8 = b8(z) leads to S9 = S9(z). First coordinate chart:

u811 + 256 (5 z)−1 = u911 u812,

u812 = u912,

u911 = u1
−9 u2 (−32u1

7 u2 − 4u1
3 u2

5 + u2
7 + 256 (5 z)−1 u1

8),

u912 = u1 u2
−1,

u1 = u912
−2 (4 + 32u912

4 + u911 u912
6 − 256 (5 z)−1 u912

5)−1,

u2 = u912
−3 (4 + 32u912

4 + u911 u912
6 − 256 (5 z)−1 u912

5)−1,

u̇911 = (4 + 32u912
4 + u911 u912

6 − 256 (5 z)−1 u912
5)−1

× [u912 (−211 − 26 · 5u911 u912
2 + 213 · 7u912

4 − 32 u911
2 u912

4

+212 u911 u912
6 + 216 · 3u912

8 + 23 · 32 u911
2 u912

8

+212 · 5u911 u912
10 + 26 · 11u911

2 u912
12 + 23 u911

3 u912
14)

−2 (5 z)−1 (22 · 3u911 − 212 · 32 u912
2 − 25 · 32 · 7u911 u912

4

+215 · 3 · 5u912
6 + 3u911

2 u912
6 + 210 · 17u911 u912

8

+217 · 19u912
10 + 213 · 3 · 7u911 u912

12 + 27 · 23u911
2 u912

14)

+29 (5 z)−2 u912
3 (−26 · 3 · 5 + 3u911 u912

2

+213 u912
4 + 214 · 5u912

8 + 28 · 11u911 u912
10)

−224 · 7 (5 z)−3 u912
12],

u̇912 = −(4 + 32u912
4 + u911 u912

6 − 256 (5 z)−1 u912
5)−1

× [2− 24 u912
4 − u911 u912

6 + 28 u912
8 + 23 u911 u912

10

+210 u912
12 + 26 u911 u912

14 + u911
2 u912

16

−(5 z)−1 u912 (22 − 25 · 7u912
4 + u911 u912

6

+211 u912
8 + 214 u912

12 + 29 u911 u912
14)

+28 (5 z)−2 u912
6 (1 + 28 u912

8)],

w91 = (4 + 32u912
4 + u911 u912

6 − 256 (5 z)−1 u912
5)3,

ẇ91 = 3u912
3 (4 + 32u912

4 + u911 u912
6 − 256 (5 z)−1 u912

5)2)

× [−26 − 3u911 u912
2 + 29 u912

4 + 24 u911 u912
6 + 211 u912

8

+27 u911 u912
10 + 2u911

2 u912
12

−28 (5 z)−1 u912 (−3 + 24 u912
4 + 27 u912

8 + 22 u911 u912
10)

+217 (5 z)−2 u912
10],

E w91 = −2−1 u912
−1 [u912 (−u911 + 29 u912

2 + 24 u911 u912
4

+211 u912
6 + 27 u911 u912

8 + 2u911
2 u912

10)

−28 (5 z)−1 (−1 + 24 u912
4 + 27 u912

8 + 4u911 u912
10)

+217 (5 z)−2 u912
9],

Ė w91 = (5 z)−1 u912
−2 [−26 − 3u911 u912

2 + 29 u912
4 + 24 u911 u912

6

+211 u912
8 + 27 u911 u912

10 + 2u911
2 u912

12

−28 (5 z)−1 u912 (−3 + 24 u912
4 + 27 u912

8 + 22 u911 u912
10)

217 (5 z)−2 u912
10].
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As the change of coordinates from (u1, u2) to all previous coordinate systems (uij1, uij2) for i ≤ 8
do not depend on z the limiting system of differential equations 0u̇1 = u2, 0u̇2 = 6u1

2 + 1 in the
coordinate systems (uij1, uij2) for i ≤ 8 is obtained by deleting the term in u̇ij1 and u̇ij2 which
have a factor 1/z in front. This is no longer true in the coordinate system (u911, u912). However,
the difference between the Painlevé-Boutroux system and the limiting system still has a relatively
simple expression:

u̇911 −0 u̇911 = −2 (5 z)−1 u912
−2 (64− 640 (5 z)−1 u912 + 3u911 u912

2)
u̇912 −0 u̇912 = (5 z)−1 u912.

(A.2)

The equation u912 = 0 defines L9 and 4 + 32u912
4 +u911 u912

6− 256 (5 z)−1 u912
5 = 0 defines the

proper transform L
(9)
0 of L

(8)
0 . The proper transforms of the other lines on which the Painlevé vector

field is infinite are not visible in this chart. The Painlevé vector field is regular along L9, nonzero,
and transversal to it. Moreover, the Painleveé vector field has no base points in this chart. On the
other hand the blowing up of S8 in the point b8, which is not the base point of the anticanonical
pencil, causes E w91 to be infinite along L9, the line determined by the equation u912 = 0. The
image (1)b ell8 of b ell8 in S9 is not visible in this coordinate chart.

The second coordinate chart after the ninth blowup is defined by

u921 = u811 + 28 (5 z)−1,

u812 = u922 (u811 + 28 (5 z)−1),

u921 = u1
−8 (−25 u1

7 u2 − 22 u1
3 u2

5 + u2
7 + 28 (5 z)−1 u1

8) = u911 u912,

u922 = u1
9 u2

−1 (−25 u1
7 u2 − 22 u1

3 u2
5 + u2

7 + 28 (5 z)−1 u1
8)−1 = u911

−1,

u1 = u921
−2 u922

−2 (22 + 25 u921
4 u922

4 + u921
6 u922

5 − 28 (5 z)−1 u921
5 u922

5)−1,

u2 = u921
−3 u922

−3 (22 + 25 u921
4 u922

4 + u921
6 u922

5 − 28 (5 z)−1 u921
5 u922

5)−1,

u̇921 = −u922
−1 (22 + 25 u921

4 u922
4 + u921

6 u922
5 − 28 (5 z)−1 u921

5 u922
5)−1

× [2 + 211 u921
2 u922

3 + 24 · 19u921
4 u922

4 + 23 u921
6 u922

5

−213 · 7u921
6 u922

7 − 28 · 3 · 5u921
8 u922

8 − 26 u921
10 u922

9

−216 · 3u921
10 u922

11 − 210 · 19u921
12 u922

12 − 27 · 5u921
14 u922

13

−7u921
16 u922

14 + (5 z)−1 u921 u922

× (22 · 5− 213 32 u921
2 u922

3 − 25 · 7 · 17u921
4 u922

4

+5u921
6 u922

5 + 216 · 3 · 5u921
6 u922

7 + 215 u921
8 u922

8

+218 · 19u921
10 u922

11 + 216 · 5u921
12 u922

12 + 28 · 3 · 7u921
14 u922

13)

−28 (5 z)−2 u921
4 u922

5 (−27 · 3 · 5 + 5u921
2 u922

+214 u921
4 u922

4 + 215 · 5u921
8 u922

8 + 28 · 3 · 7u921
10 u922

9)

224 · 7 (5 z)−3 u921
13 u922

14],
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u̇922 = −(22 + 25 u921
4 u922

4 + u921
6 u922

5 − 28 (5 z)−1 u921
5 u922

5)−1 u922

× [u921 u922
2 (−211 − 26 · 5u921

2 u922 − 32 u921
4 u922

2

+213 · 7u921
4 u922

4 + 212 u921
6 u922

5 + 23 · 32 u921
8 u922

6

+216 · 3u921
8 u922

8 + 212 · 5u921
10 u922

9 + 26 · 11u921
12 u922

10

+23 u921
14 u922

11)− 2 (5 z)−1 (22 · 3− 212 · 32 u921
2 u922

3

−25 · 32 · 7u921
4 u922

4 + 3u921
6 u922

5 + 215 · 3 · 5u921
6 u922

7

+210 · 17u921
8 u922

8 + 217 · 19u921
10 u922

11 + 213 · 3 · 7u921
12 u922

12

+27 · 23u921
14 u922

13) + 29 (5 z)−2 u921
3 u922

4 (−26 · 3 · 5 + 3u921
2 u922

+213 u921
4 u922

4 + 214 · 5u921
8 u922

8 + 28 · 11u921
10 u922

9)

−224 · 7 (5 z)−3 u921
12 u922

13],

w92 = u922 (22 + 25 u921
4 u922

4 + u921
6 u922

5 − 28 (5 z)−1 u921
5 u922

5)3,

ẇ92 = 2u922 (22 + 25 u921
4 u922

4 + u921
6 u922

5 − 28 (5 z)−1 u921
5 u922

5)2

× [−u921 u922
2 (−210 − 26 u921

2 u922 + 212 · 7u921
4 u922

4

+28 · 5u921
6 u922

5 + 22 · 3u921
8 u922

6 + 215 · 3u921
8 u922

8

+210 · 7u921
10 u922

9 + 25 · 5u921
12 u922

10 + u921
14 u922

11)

+(5 z)−1 (22 · 3− 212 · 32 u921
2 u922

3 − 25 · 33 u921
4 u922

4

+3u921
6 u922

5 + 215 · 3 · 5u921
6 u922

7 + 210 · 11u921
8 u922

8

+217 · 19u921
10 u922

11 + 213 · 3 · 5u921
12 u922

12 + 27 · 11u921
14 u922

13)

−28 (5 z)−2 u921
3 u922

4 (−26 · 3 · 5 + 3u921
2 u922 + 213 u921

4 u922
4

+214 · 5u921
8 u922

8 + 211 u921
10 u922

9) + 223 · 7 (5 z)−3 u921
12 u922

13],

E w92 = −2−1 u921
−1 [u921 (−1 + 29 u921

2 u922
3 + 24 u921

4 u922
4

+211 u921
6 u922

7 + 27 u921
8 u922

8 + 2u921
10 u922

9)

−28 (5 z)−1 (−1 + 24 u921
4 u922

4 + 27 u921
8 u922

8 + 22 u921
10 u922

9)

+217 (5 z)−2 u921
9 u922

9],

Ė w92 = (5 z)−1 u921
−2 u922

−1

× [−26 − 3u921
2 u922 + 29 u921

4 u922
4 + 24 u921

6 u922
5

+211 u921
8 u922

8 + 27 u921
10 u922

9 + 2u921
12 u922

10

−28 (5 z)−1 u921 u922 (−3 + 24 u921
4 u922

4 + 27 u921
8 u922

8

+22 u921
10 u922

9) + 217 (5 z)−2 u921
10 u922

10].

The difference between the system and the limiting system is given by

u̇921 −0 u̇921 = −(5 z)−1 u921
−1 u922

−1 (128− 1280 (5 z)−1 u921 u922 + 5u921
2 u922)

u̇922 −0 u̇922 = 2 (5 z)−1 u921
−2 (64− 640 (5 z)−1 u921 u922 + 3u921

2 u922).

The equations u921 = 0, 22 +25 u921
4 u922

4 +u921
6 u922

5−28 (5 z)−1 u921
5 u922

5 = 0, and u922 = 0

define L9, L
(9)
0 , and and L

(1)
8 , respectively. The proper transforms of the other lines on which the

Painlevé vector field is infinite are not visible in this chart.
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Figure 4.1. Near the components of the infinity set

Figure 4.2. The absolute value of the Weierstrass ℘ function
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Figure 5.1. The domain V , four half-lines L+
t ⊂ V , and their distances to the origin
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Figure 5.2. The region Rη, r, to the right of the curved boundary
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Figure 5.3. Truncated region in the x-plane, to the left of the curved boundary
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Figure 5.4. Triply truncated region in the x-plane, to the left of the curved boundary
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Figure 5.5. The first twenty of the asymptotic approximations in (5.68) of the poles of p↓(t)
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