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Abstract. Let G be a complete Kac–Moody group of rank n ≥ 2 such that the Weyl group of G is a free
product of cyclic groups of order 2. We construct new families of examples of cocompact lattices in G, many

of which act transitively on the chambers of the building for G.

1. Introduction

Our main result, Theorem 1 below, constructs new cocompact lattices in certain complete Kac–Moody
groups G of rank n ≥ 2. By definition, a complete Kac–Moody group is the completion with respect to
some topology of a minimal Kac–Moody group Λ over a finite field. We use the completion in the “building
topology” (see [CaprRe]). Complete Kac–Moody groups are locally compact, totally disconnected topological
groups, which act transitively on the chambers of their associated building ∆. For further background, see
our earlier work [CapdTh], which considered complete Kac–Moody groups of rank n = 2.

We denote by B the standard Borel subgroup of G, which is the stabiliser in G of the standard chamber
of ∆, and by Pi for 1 ≤ i ≤ n the standard parabolics, which are the stabilisers in G of the panels of the
standard chamber of ∆. We denote by T a fixed maximal split torus of G with T ≤ B = ∩ni=1Pi, and by
Z(G) the centre of G, which is finite and is the kernel of the action of G on ∆ [CaprRe]. Each parabolic
subgroup Pi has a Levi decomposition [CaprRe], with Levi complement denoted Li.

Theorem 1. Let G be a complete Kac-Moody group of rank n ≥ 2 with generalised Cartan matrix A = (Aij),
defined over the finite field Fq of order q where q = pa with p a prime. Assume that |Aij | ≥ 2 for all
1 ≤ i, j ≤ n.

(1) If p = 2, then G admits a chamber-transitive cocompact lattice Γ.
(2) If q ≡ 3 (mod 4), then G admits a chamber-transitive cocompact lattice Γ and a cocompact lattice Γ′

which has two orbits of chambers.
(3) If q ≡ 1 (mod 4), then:

(a) G admits a cocompact lattice Γ′ which has two orbits of chambers; and
(b) if in addition, for all 1 ≤ i ≤ n we have Li/Z(Li) ∼= PGL2(q), and for a non-split torus Hi

of [Li, Li] chosen among all the non-split tori of [Li, Li] so that NT (Hi) is as big as possible,
we have that NT0

(Hi) = NT0
(Hj) for all 1 ≤ i, j ≤ n where T0 ∈ Syl2(T ), then G admits a

chamber-transitive cocompact lattice Γ.

Notice that the lattices in (1), (2) and (3a) do not require any special additional conditions on the Li, thus
for all G as in Theorem 1 we have constructed at least one cocompact lattice in G. The technical conditions
in (3b) are precisely those required for our construction, and can hold under various simpler assumptions,
for example if Li/Z(Li) ∼= PGL2(q) and Z(Li) ≤ Z(G) for all 1 ≤ i ≤ n, or for Li as in [CapdTh, Theorem
1.1(3a)]. We will provide more explicit descriptions of the lattices Γ and Γ′ in our proofs in Section 4 below.

As discussed in [CapdTh], it is interesting that the groups G we consider admit any cocompact lattices.
In rank n ≥ 3, the only previous constructions of cocompact lattices in non-affine complete Kac–Moody
groups G that are known to us are as follows.
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• Rémy–Ronan [RéRo, Section 4.B] constructed cocompact chamber-transitive lattices in certain
groups defined using a twin root datum. In their construction, the finite ground fields were “mixed”
(that is, of distinct characteristics). However under the additional conditions that all Li/Z(Li) ∼=
PGL2(q) and all Z(Li) ≤ Z(G), their construction can be carried out for fixed ground field Fq, and
in this case some of the lattices we obtain in (1), (2) and (3b) above are equivalent to the lattices
that can be obtained via the construction of [RéRo, Section 4.B]. We explain this further in Section
4.1 below.

• Gramlich–Horn–Mühlherr [GHM, Section 7.3] showed that for certain complete Kac–Moody groups
G the fixed point set of a quasi-flip in G must be a cocompact lattice in G.

• Carbone–Cobbs [CarbCobb, Lemma 21] constructed a cocompact chamber-transitive lattice in G as
in Theorem 1 in the case n = 3 and p = q = 2. Their lattice, which has panel stabilisers cyclic of
order three, is the same as one of the groups Γ in (1) above.1

It is also interesting that many of the lattices we construct are chamber-transitive, since for affine buildings
of dimension ≥ 2 there exist very few chamber-transitive lattices [KLTi]. The chamber-transitive lattices we
obtain in Theorem 1 above generalise many of the edge-transitive lattices in [CapdTh, Theorem 1.1].

To prove Theorem 1, we use the action of G on the (n, q+1)–biregular tree X which is the Davis geometric
realisation of the building ∆ for G. We recall this realisation and G–action in Section 2 below. Since G acts
on X cocompactly with compact vertex stabilisers, a subgroup Γ ≤ G is a cocompact lattice in G if and only
if Γ acts on X cocompactly with finite vertex stabilisers (see [BL]).

We construct the lattices in Theorem 1 as fundamental groups Γ or Γ′ of finite graphs of finite groups with
universal covering tree X. The theory of tree lattices then implies that Γ and Γ′ are cocompact lattices in
the full automorphism group Aut(X) of X. Since Aut(X) is much larger than the Kac–Moody group G, the
key to proving Theorem 1 is to show that Γ and Γ′ embed in G. For this, we use covering theory for graphs
of groups (see [B]). Specifically, we generalise and simplify our earlier embedding criterion for cocompact
lattices [CapdTh, Proposition 3.1], in Section 3 below. Our assumptions on the generalised Cartan matrix
for G then allow us in Section 4 to generalise results from [CapdTh] concerning the actions of the finite
subgroups of G on X, and hence apply our embedding criterion.

2. The Davis realisation of the building for G

Let G be as in Theorem 1 above. In this section we recall the construction of the Davis geometric
realisation X of the building ∆ for G, and describe how the action of G on X induces a graph of groups G.
For background on graphs of groups, see for example [B, BL].

We denote by Ck the cyclic group of order k. Our assumptions on the generalised Cartan matrix for G
imply that its Weyl group is W = 〈s1, . . . , sn | s2i = 1 for 1 ≤ i ≤ n〉, that is, a free product of n copies of
C2. For the general construction of the Davis realisation X of a building, see [D]. In our case, each chamber
K of X is the star graph obtained by coning on n vertices, one for each of the Coxeter generators si. We
will say that the cone point of K has type 0 and is coloured red, and that the other n vertices of K have
types 1 ≤ i ≤ n respectively and are coloured blue.

The Davis realisation X is then the (n, q + 1)–biregular tree with alternating red and blue vertices, each
red vertex having valence n and each blue vertex valence (q + 1). More precisely, the tree X is a union of
copies of K glued together along blue vertices, so that each blue vertex has a unique type 1 ≤ i ≤ n and is

1As acknowledged in [CarbCobb], the covering morphism used in the proof of [CarbCobb, Lemma 21] is due to Anne Thomas.

However the claim in the statement of [CarbCobb, Lemma 21] that the resulting embedding is nondiscrete is incorrect, as we

now explain. We recall in Section 2 that when n = 3 there is a realisation of the building for G as a hyperbolic building with
ideal vertices. In particular, the G–stabilisers of the ideal vertices may contain infinite discrete subgroups, which invalidates the

reason given for nondiscreteness in the proof of [CarbCobb, Lemma 21]. Indeed in [CarbCobb, Section 7], the tree X which is

naturally embedded in this hyperbolic building is used to construct an embedding into G of the abstract group Γ = C3 ∗C3 ∗C3

as a cocompact lattice. Although it is claimed in [CarbCobb] that a different embedding of Γ is obtained by using X, in fact

the embedding of this abstract group in [CarbCobb, Section 7] the same as that in [CarbCobb, Lemma 21]. This shows that
the embedding in [CarbCobb, Lemma 21] is discrete.
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contained in exactly (q+ 1) chambers (and each red vertex has type 0). We will sometimes refer to the blue
vertices of X as its panels.

The action of G on X is chamber-transitive and preserves the types of panels. The stabiliser of the
standard chamber is B and for 1 ≤ i ≤ n, the stabiliser in G of the panel of type i of the standard chamber
is the standard parabolic Pi = B t BsiB. We may thus describe G as the fundamental group of a graph
of groups G over the star graph K, with the red vertex group and all edge groups being B, the blue vertex
group of type i being Pi and all monomorphisms the natural inclusions.

In the case n = 2, the red vertices of the tree X may be omitted, so that the chamber K is a single edge,
X is a (q + 1)–regular tree with two types of (blue) vertices and G = P1 ∗B P2 is the fundamental group
of an edge of groups. In the case n = 3, the building for G may be realised as a hyperbolic building with
chambers ideal hyperbolic triangles. The stabilisers in G of the (ideal) vertices of the standard chamber of
this hyperbolic building are the amalgamated free products Pi∗BPj for 1 ≤ i < j ≤ 3, which are noncompact
and so may contain infinite discrete subgroups. For all n ≥ 3, the building ∆ for G may be realised as a
simplicial complex with chambers simplices on n vertices, so that the G–stabilisers of the vertices of ∆ are
noncompact and the Davis realisation X embeds naturally in the barycentric subdivision of ∆. The reason
we consider the action of G on X rather than on ∆ is that, as explained in the introduction, actions on X
provide a straightforward characterisation of cocompact lattices in G.

3. Embedding criterion

In this section we establish our embedding criterion, Proposition 2 below. The definitions and results
from covering theory for graphs of groups that we will need are recalled in [CapdTh, Section 2.2].

We continue all assumptions and notation from Section 2 above. In addition, we denote by x1, . . . , xn the
(blue) vertices of X which have stabilisers P1, . . . , Pn respectively, and by x0 the (red) vertex of X which
has stabiliser B. For 1 ≤ i ≤ n let fi be the oriented edge of X with initial vertex xi and terminal vertex
x0, so that fi is the edge of X from x0 to xi. Given a vertex x of X, we denote by EX(x) the set of oriented
edges of X with initial vertex x. We let Km,n be the complete bipartite graph with m red vertices and n
blue vertices. The case m = 1 is the chamber K, that is, a star graph on n vertices. We denote the n blue
vertices of Km,n by a1, . . . , an, and the m red vertices by b1, . . . , bm. For 1 ≤ i ≤ n and 1 ≤ k ≤ m, the
oriented edge of Km,n from ai to bk will be denoted by ei,k, and that from bk to ai by ei,k.

Proposition 2. Let m ≥ 1 be an integer. Suppose that for all 1 ≤ i ≤ n there are finite groups Ai ≤ Pi

such that:

(1) the group Ai has m orbits of equal size on EX(xi);
(2) for all 1 ≤ j ≤ n with i 6= j, we have Ai ∩Aj = A0 := ∩ni=1Ai;
(3) there are representatives fi,1 = fi, fi,2, . . . , fi,m of the orbits of Ai on EX(xi) and elements gi,1 = 1,

gi,2, . . . , gi,m ∈ Pi such that for all 1 ≤ k ≤ m:
(a) gi,k · fi,1 = fi,k; and
(b) Ai ∩Bgi,k = A

gi,k
0 .

Let A be the graph of groups over Km,n with:

• blue vertex groups Aai = Ai for 1 ≤ i ≤ n, and red vertex groups and edge groups A0;
• the monomorphism αei,k from the edge group Aei,k = A0 into Ai inclusion composed with ad(gi,k),

and all other monomorphisms inclusions.

Then the fundamental group of the graph of groups A is a cocompact lattice in G, with quotient Km,n.

Note that when m = 1, so that each Ai acts transitively on EX(xi), Condition (3) reduces to the requirement
that Ai ∩B = A0.

Proof. We construct a covering of graphs of groups Φ : A → G, where G is the graph of groups for G
constructed in Section 2 above. Since Km,n is a finite graph and A0, A1, . . . , An are finite, the result follows.

Let θ : Km,n → K be the graph morphism given by θ(ai) = xi for 1 ≤ i ≤ n, θ(bk) = x0 for 1 ≤ k ≤ m

and θ(ei,k) = fi and θ(ei,k) = fi for 1 ≤ i ≤ n and 1 ≤ k ≤ m. We construct a morphism of graphs of
groups Φ : A→ G over θ as follows. All of the local maps φai : Ai → Pi, φbk : A0 → B and φei,k : A0 → B
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are natural inclusions. We put φ(ei,k) = gi,k and φ(ei,k) = 1. Then it is easy to check that Φ is a morphism
of graphs of groups.

To show that Φ is a covering, we first show that for 1 ≤ i ≤ n the map

Φai/ei,k :

m∐
k=1

Aai
/αei,k(Aei,k)→ Pi/B

induced by g 7→ φai
(g)φ(ei,k) = ggi,k, for g representing a coset of αei,k(Aei,k) = A

gi,k
0 in Aai

= Ai, is a
bijection. For this, we note that since the edges fi,k = gi,k ·fi,1 = gi,k ·fi represent pairwise distinct Ai–orbits
on EX(xi), for all g, h ∈ Ai and all 1 ≤ k 6= k′ ≤ m the cosets ggi,kB and hgi,k′B are pairwise distinct. The
conclusion that Φai/ei,k is a bijection then follows from the hypothesis that Ai ∩Bgi,k = A

gi,k
0 .

It remains to show that for 1 ≤ i ≤ n and 1 ≤ k ≤ m the map

Φbk/ei,k : Abk/αei,k(Aei,k)→ B/B

is a bijection, which is immediate since this is a map A0/A0 → B/B. We conclude that Φ : A → G is a
covering of graphs of groups, as desired. �

4. Constructions of lattices

We now complete the proof of Theorem 1, by applying Proposition 2 above to construct the chamber-
transitive lattices Γ in Section 4.1 and the lattices Γ′ which have two orbits of chambers in Section 4.2. Recall
that for each 1 ≤ i ≤ n, the Levi complement Li factors as Li = MiT , where Mi

∼= A1(q) is normalised by
T . We denote by Hi a non-split torus of Mi such that NT (Hi) is as big as possible.

4.1. Chamber-transitive case. We will apply Proposition 2 with m = 1.
We first consider the case p = 2. As explained in [CapdTh, Section 3.2.1], in this case Hi

∼= Cq+1. The
edges EX(xi) may be identified with the cosets of B in Pi, and then the same proof as for [CapdTh, Lemma
3.2] shows that Hi acts simply transitively on EX(xi). Let A0 be any subgroup of Z(G) and for 1 ≤ i ≤ n
put Ai := A0 ×Hi. The conditions of Proposition 2 are then easily verified, using the fact that Hi ∩ B is
trivial. Thus we have constructed a cocompact lattice Γ ≤ G which acts on X with quotient the standard
chamber K, that is, a chamber-transitive lattice Γ ≤ G.

If in the case p = 2, we have in addition that Z(Li) ≤ Z(G) for all 1 ≤ i ≤ n, then the lattice Γ just
constructed would be the lattice obtained via the construction of Rémy–Ronan [RéRo, Section 4.B].

Suppose now that q ≡ 3 (mod 4). Let T0 ∈ Syl2(T ). For each 1 ≤ i ≤ n, consider the group
NLi(Hi). If Li/Z(Li) ∼= PSL2(q), then NLi(Hi) = NMi(Hi)CT (Li) where CT (Li) ∩NMi(Hi) = Z(Mi) and
[CT (Li), NMi

(Hi)] = 1. In this case put Ai := NMi
(Hi)T0Z0 where Z0 is any subgroup of Z(G). By the same

proof as for [CapdTh, Lemma 3.3], the group NMi
(Hi) acts transitively on EX(xi), and therefore so does Ai.

Moreover, Ai ∩T = T0Z0. If on the other hand Li/Z(Li) ∼= PGL2(q), then NLi
(Hi) = HiQ

′
iT0CT (Li) where

Q′
i ∈ Syl2(CLi(Hi)), CT (Li)∩HiQ

′
iT0 = CT0(Li) and [CT (Li), HiQ

′
iT0] = 1. This time put Ai := HiQ

′
iT0Z0

where Z0 is again any subgroup of Z(G). By the same proof as for [CapdTh, Lemma 3.4], it follows that
the group Ai := HiQ

′
iT0Z0 acts transitively on EX(xi). Moreover, Ai ∩ T = T0Z0. If we now fix a subgroup

Z0 ≤ Z(G), then independently of whether each Li/Z(Li) is isomorphic to PSL2(q) or to PGL2(q), we obtain
that Ai∩Aj = T0Z0 for all 1 ≤ i 6= j ≤ n. It follows that if A0 := T0Z0 then Ai∩B = Ai∩T = T0Z0 = A0 for
1 ≤ i ≤ n. The existence of a chamber-transitive lattice Γ ≤ G in this case then follows from Proposition 2.

Notice that if Li/Z(Li) ∼= PGL2(q) and Z(Li) ≤ Z(G) for all 1 ≤ i ≤ n, we could simply take Ai :=
HiQ

′
iZ0, since HiQ

′
i acts transitively on EX(xi) as explained in [CapdTh, Lemma 3.4], and Ai ∩ B =

HiQ
′
iZ0 ∩ T ≤ Z(Li) ≤ Z(G). This would generalise (3)(b)(ii) of [CapdTh, Theorem 1.1] to construct

another chamber-transitive lattice Γ in G. This would also be the lattice obtained by the construction
of [RéRo, Section 4.B].

Finally, suppose that q ≡ 1 (mod 4), that Li/Z(Li) ∼= PGL2(q) for all 1 ≤ i ≤ n and that NT0(Hi) =
NT0(Hj) for 1 ≤ i, j ≤ n where T0 ∈ Syl2(T ). Take any 1 ≤ i ≤ n. Notice that Hi ∩ T = Z(Mi) and
Hi = H ′

i × Z(Mi) with H ′
i
∼= C q+1

2
. Let Q′

i ∈ Syl2(CLi(Hi)). Then |Q′
i : Q′

i ∩ T | = |Q′
i : Q′

i ∩ T0| = 2,

Q′
i ∩ T = CT0(Hi) and by the same proof as for [CapdTh, Lemma 3.5], it follows that the group HiQ

′
i acts
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transitively on EX(xi). Take Ai := HiQ
′
iNT0

(Hi). Then Ai acts transitively on EX(xi) and Ai ∩ Aj =
NT0

(Hi) = NT0
(Hj). Putting A0 := NT0

(Hi) for any i, we then have Ai ∩ B = Ai ∩ T = NT0
(Hi) = A0 for

all i. The existence of a chamber-transitive lattice Γ ≤ G in this case then follows from Proposition 2.
Notice that for n = 2, under the technical conditions on G listed in (3)(a)(i) of [CapdTh, Theorem 1.1], the

conclusion of (3)(a)(i) of [CapdTh, Theorem 1.1] coincides with our current conclusion. We could describe
analogous conditions for larger n, but have omitted them since they would be tedious.

Finally, if Li/Z(Li) ∼= PGL2(q) and Z(Li) ≤ Z(G) for all 1 ≤ i ≤ n, we could also generalise (3)(a)(ii) of
[CapdTh, Theorem 1.1] to construct another chamber-transitive lattice Γ in G, which would be the lattice
that can be obtained in this case via the construction of [RéRo, Section 4.B].

4.2. Construction of Γ′. We will apply Proposition 2 with m = 2.
Suppose first that q ≡ 1 (mod 4). Then q + 1 = 2r where r is odd and Hi

∼= C2 × Cr. Take Ai ≤ Hi

such that Ai
∼= Cr. That is, Ai is the unique subgroup of Hi of index 2 and |Ai| = q+1

2 is odd. By the

same arguments as in [CapdTh, Section 3.3.2], each Ai has 2 orbits of equal size 1
2 (q + 1) on EX(xi), and

we may choose an edge fi,2 ∈ EX(xi) so that fi and fi,2 represent these two orbits (notice that these orbits
are exactly the same as the orbits of Ni from [CapdTh, Section 3.3.2]). Since Li acts transitively on the set
EX(xi), we may choose an element gi,2 ∈ Li such that fi,2 = gi,2 · fi. As Ai ∩ Aj = 1 for 1 ≤ i 6= j ≤ n, let
A0 be the trivial group. Since (|Ai|, |T |) = 1 for all 1 ≤ i ≤ n, we have Ai ∩ T g = 1 for all g ∈ G, and so
Ai ∩ B = 1 = A0 and Ai ∩ Bgi,2 = 1 = A

gi,2
0 for 1 ≤ i ≤ n. We may now apply Proposition 2 to obtain a

cocompact lattice Γ′ ≤ G which acts with two orbits of chambers.
Finally suppose q ≡ 3 (mod 4). Notice that if T0 ∈ Syl2(T ), then T0 is a group of exponent 2 and T0

normalises Hi. Take Ai := HiT0 for 1 ≤ i ≤ n and put A0 := T0. Since Ai intersects every Borel subgroup
of Li in T0, by the same arguments as in [CapdTh, Section 3.3.2], each Ai has 2 orbits of equal size q+1

2 on
EX(xi). Moreover, we may choose an edge fi,2 ∈ EX(xi) so that fi and fi,2 represent these two orbits and
moreover fi and fi,2 are the only two edges of EX(xi) which are fixed by T . Since A0 6= 1, this time we
must choose the element gi,2 a bit more carefully. Take gi,2 to be an element of NPi(T ) which represents
the Weyl group generator si. It then follows that fi,2 = gi,2 · fi. We also have Ai ∩ B = T0 = A0 and, as
T0 is a characteristic subgroup of T , Ai ∩ Bgi,2 = T0 = A0 = A

gi,2
0 for 1 ≤ i ≤ n. We may now again apply

Proposition 2 to obtain a cocompact lattice Γ′ ≤ G which acts with two orbits of chambers.
This completes the proof of Theorem 1.
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